Dimensional Analysis

Force F : MLt ⁻²	μ : ML ⁻¹ t ⁻¹	ho : ML ⁻³	diameter D : L	speed V : Lt^{-1}
pressure p : $ML^{-1}t^{-2}$	ν : L ² t ⁻¹	g: Lt ⁻²	$f \text{ or } \omega : \mathfrak{t}^{-1}$	SURF TENSION $\sigma:{ m Mt}^{-2}$
Torque T : $\mathrm{ML}^2 \mathrm{t}^{-2}$	work $W : ML^2t^{-2}$	AREA $A: L^2$	flowrate $Q: \mathrm{L}^{3} \mathrm{t}^{\text{-}1}$	volume \forall : L ³
mass flowrate: Mt^{-1}	POWER: ML^2t^{-3}	$\gamma = \rho g : \mathrm{ML}^{-2} \mathrm{t}^{-2}$	YOUNG'S MODULUS :	$E = Y : \mathbf{ML}^{-1}\mathbf{t}^{-2}$

Procedure to Apply the Buckingham Pi Theorem:

- 1. List the "n" parameters involved, starting with the dependent parameter.
- 2. Under each parameter, write the primary dimensions MLtT.
- 3. Find the rank "r" of the dimensional matrix. Typically r = number of primary dimensions.
- 4. Select r repeating parameters from the n available. Avoid the dependent variable along with μ , c, Δp or σ . The repeating parameters must have independent units that yet include in total all the primary dimensions. The best choice is that of parameters similar to ρ , V, D.
- 5. For each of the (n r) remaining parameters (called *nonrepeating*), form a nondimensional Pi parameter Π starting with the dependent variable.
- 6. Express the Pi parameter containing the dependent variable as a function of the remaining Pi parameters: $\Pi_1 = F(\Pi_2, \Pi_3, ...)$. Identify well-known Pi parameters, especially those that are named after famous scientists.