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CHAPTER I

INTRODUCTION

Preliminaries.  Perturbation theory is the study of the effects of small disturbances in
the mathematical model of a physical system.  The model could be expressed as an
algebraic equation, integral equation, ordinary differential equation, partial differential
equation, or systems of these.  The list of types of differential equations which may be
solved in closed form using elementary functions is short.  These are first order exact,
linear, homogeneous, the higher order linear equations with constant coefficients and
the partial differential equations that are reducible to these by separation of variables.
Beyond this one must use methods of advanced theory, numerical analysis, or
approximation of solutions by means of formulas.  The latter methods comprise the
subject of perturbation theory.
 The intent of this paper is to cover the main techniques of perturbation analysis
as they have been applied to the solution of ordinary differential equations.  Examples
of each method will be given to show how it may be applied to the various different
classifications of problems and to motivate the theoretical discussions.  Because
algebraic equations are easy to work with, the details of their solution do not obscure
the perturbation methods employed to solve them.  For this reason Chapter II will cover
algebraic equations and introduce some fundamental concepts of perturbation theory.
Chapter III will begin the study of perturbations of ordinary differential equations.
 This paper will be organized according to the type of perturbation method being
studied.  Different types of problems will be solved using each method to illustrate the
correct application of that method and to reveal its scope and limitations.  Perturbation
methods are broadly organized into  and .regular methods singular methods
 Problems are often referred to as being singular or regular because singular or
regular perturbation methods are required to solve them.  We may classify problems
according to this convention but it is not an absolute distinction as some problems
respond to both methods.  Regular problems are usually less difficult as their solutions
may be approximated by direct substitution of an asymptotic series for the independent
variable.  If the resulting series solution holds uniformly in the desired domain of the
independent variable then the regular perturbation method is the preferred method.
___________________________________
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The first four examples introduce some terms and motivate the different problem
classifications used in perturbation theory.
 E  1.1:  Regular problem.XAMPLE

D  #D  œ !# % .

  roots of the     are ,% œ ! Ê D  #D œ ! !ß #reduced equation # e f
 so as   and    .% % %p!ß D Ð Ñ p ! D Ð Ñ p #" #

A singular problem either cannot be solved by direct substitution of an asymptotic
series, or the resulting series solution holds pointwise and not uniformly in the full
domain or it is not uniform except for certain subsets of the domain.
 E  1.2:  Singular problem.  Lin and Segel[5], pp. 278.XAMPLE

%D  #D  " œ !# .

  root of the reduced equation   is ,% œ ! Ê #D  " œ ! ˜ ™"
#

 so as   . Typically, as     in a singular problem:% % %p!ß D Ð Ñ p p !"
"
#

 i)   the number of solutions change or
 ii)  the order of the reduced equation changes from the original equation.
The singularity may be caused by the  or may be inherent in the .domain model
 A singularity in the domain usually occurs as the independent variable    .> p _

These problems were first studied by Poincaré in celestial  mechanics.  Thesecular type 
word  is derived from the French word for century because in celestialsecular
mechanics the regular asymptotic expansions of equations describing planetary orbits
develop terms which only become significant on the order of a century of time.
 E  1.3:  Secular Type Problem.XAMPLE

. ?

.>
 ?  ? œ !

?Ð!Ñ œ +
.?

.>
Ð!Ñ œ ,

#

#
$%

.

We will see in Chapter III that the regular solution of this problem is not uniformly
valid for all .>  !

 A singularity in the model  typically arises when the phenomenon being
modeled is not accurately predicted as the perturbation parameter  0 .  These%p  layer
type problems were first studied by Prandtl in fluid flow boundary layer problems.



3

 E  1.4:  Layer Type Problem.XAMPLE

%
. C .C

.B .B
  ? œ !

CÐ!Ñ œ +

CÐ"Ñ œ ,

!  B  "

#

#

As 0 the order of the equation is changed and the solution cannot represent the%p

system being modeled.

Terminology   Þ Consider a differential equation with initial conditions

+  ,  -C œ 0ÐBß Cß C ß Ñ
. C .C

.B .B

CÐ!Ñ œ ß Ð!Ñ œ
.C

.B

#

#
w% %

! ".

1.1a b

The variables ( , , ) are called .  Fixing their value as constants+ß ,ß -ß ! " % parameters
does not change the character of the problem as long as .  The variables  and a b+ Á ! B C

may not be fixed or the problem becomes meaningless.  These two variables are called
coordinates.  The solution of (1.1) has the form

C œ CÐBà +ß ,ß -ß ß à Ñ œ CÐBà à Ñ! " % %:

that is, the coordinate  is the  variable and the coordinate  with theC Bdependent
parameters  , and  are variables.  Parameters will always be+ß ,ß -ß ß! " % independent 
independent variables while coordinates may be dependent or independent.  The
parameter  is singled out as the  because when  a % %perturbation parameter reducedœ !

problem is obtained which belongs to a solvable class.  The other parameters are
control parameters.

Gauge functions.  We will be interested in the limit of functions such as as 0Ð Ñ p !Þ% %

From Nayfeh[7], pp. 7, if the limit of  exists then there are three possibilities:0Ð Ñ%

 0Ð Ñp !%

 0Ð ÑpE%

 0Ð Ñp_%

as , .  In the first and last cases the rate at which   and% %p! !  E  _ 0Ð Ñp !

0Ð Ñp_ 0Ð Ñ% % is expressed by comparing with known functions called .gauge functions
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 D 1.1:  A gauge function is a positive, monotone function, ,EFINITION $ %Ð Ñ

defined in some interval, of interest.!   ß% %!

 The simplest and most useful of these are the powers of .%

1ß ß ß ßá% % %# $

and the inverse powers of %

% % %" # $ß ß ßá

For  we know that!   "%

"     â% % %# $

and

% % %" # $   â

In some cases these gauge functions must be supplemented by

log log log% %" "ß ß / ß%#

etc.

Other possible gauge functions are

sin cos tan sinh cosh% % % % %ß ß ß ß ß etc.

The behavior of a function  is compared with a gauge function  as  by0Ð Ñ 1Ð Ñ p !% % %

employing either of the   or .Landau symbols, S 9

Order Symbols.
 D  1.2:   is "big oh" of   written  as  if aEFINITION 0Ð Ñ 1Ð Ñ 0Ð Ñ œ SÐ1Ð ÑÑ p% % % % % %!

neighborhood of  exists and a constant, , exists such that % % %! 5  ! l0Ð Ñl Ÿ 5 l1Ð ÑlÞ

Thus, as  if  is bounded.  Cole 2 , pp. 1.0 œ SÐ1Ñ p 0Î1% %! c d
For example, as %p!

 

    % % % %8 8œ SÐ Ñ œ SÐ Ñsin

    sin sin% % % % %# # $œ SÐ Ñ #  # œ SÐ Ñ

    cos cos% % %œ SÐ"Ñ "  œ SÐ Ñ#

   cot coth% % % %œ SÐ Ñ œ SÐ Ñ" "

 1    N Ð Ñ œ SÐ Ñ +  SÐ Ñ œ +  SÐ Ñ ß + Á !! ! !
#

!
#% % %c d
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For the purposes of this paper we need to know that as   % p !

 5S œ SÐ Ña b% %8 8

 for SÐ Ñ  SÐ Ñ œ SÐ Ñ 8  5% % %8 5 8

 SÐ ÑSÐ Ñ œ S% % %8 5 85ˆ ‰
 ÒSÐ ÑÓ œ SÐ Ñ% %8 5 85

It is worth noting that the  does not mean "the order of magnitude of" but moreS

accurately means "the asymptotic order of".  As an example we see that "!ß !!! œ SÐ"Ñ

and  in spite of the fact that these functions are not at all the order ofÞ!!!" œ SÐ"Ñ

magnitude of ."

 D  1.3:   is "little oh" of  written  as  if aEFINITION 0Ð Ñ 1Ð Ñ 0Ð Ñ œ 9Ð1Ð ÑÑ p% % % % % %!

neighborhood of  exists and a function  exists where   and% $ % $ %!
Ä

Ð Ñ  ! Ð Ñ œ !lim
% %!

l0Ð Ñl Ÿ Ð Ñl1Ð Ñl 0 œ 9Ð1Ñ p 0Î1p!% $ % % % % .  Thus,  as  if .  Cole[2], pp. 1.!

For example, as %p!

    % % %8 8"œ 9 œ 9 "a b a bsin
    sin cos% % % %# œ 9Ð Ñ œ 9Š ‹"#
   "  ( œ 9Ð Ñ N Ð Ñ œ 9cos % % % %!

"a b
 coth % %œ 9Š ‹$

#

 D  1.4:  Following Cole[2], pp. 1, any two functions,  and , of EFINITION 0 1 %

belong to the same  in a neighborhood of , (ord  or ord ), ifequivalence class %! 0 1

!   _Þ
0Ð Ñ

1Ð Ñ
lim
% %Ä !

%

%

A of equivalence classes is given bypartial ordering 

ord ord0Ð Ñ  1Ð Ñ% %

if

lim
% %Ä 0

0Ð Ñ

1Ð Ñ
p !

%

%
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 We notice that  but that the converse is not0Ð Ñ œ 9Ð1Ð ÑÑ Ê 0Ð Ñ œ SÐ1Ð ÑÑ% % % %

true.  Order symbols are used to compare the relative "size" of gauge functions.  If
0Ð Ñ œ 9Ð1Ð ÑÑ 0Ð Ñ ¥ 1Ð Ñ 0Ð Ñ 1Ð Ñ% % % % % % then  which means that  is negligible compared to .
If  and  then we can write  where the0Ð Ñ œ SÐ1Ð ÑÑ 1Ð Ñ œ SÐ0Ð ÑÑ 0Ð Ñ ¸ 1Ð Ñ% % % % % %

symbol  means  and  and  are .¸ 0Ð Ñ 1Ð Ñasymptotic to asymptotically equivalent% %

Asymptotic Expansions   . A measure of decreasing orders of magnitude is provided by
an asymptotic sequence of functions.
 D  1.5:  A sequence, , (finite or infinite) is anEFINITION $ %8Ð Ñ 8 œ "ß #ßá

asymptotic sequence if

$ % $ % % %8" 8 !Ð Ñ œ 9Ð Ð ÑÑ p as 

which is equivalent to

lim
% %Ä

8"

8!
Œ $ %

$ %

Ð Ñ

Ð Ñ
œ !.(1.2)

Some examples of asymptotic sequences are

% % %8 8 8Þß Ð Ñ ß Ð Ñsin log

 D  1.6:  From Murdock[6], pp. 69, any approximationEFINITION

0 B : 0 B :Ð à à Ñ µ Ð à à Ñ% %‡

is called a  of order  ifpointwise asymptotic approximation $ %Ð Ñ

0 B : 0 B :Ð à à Ñ œ Ð à à Ñ  9Ð Ð ÑÑ p !Þ% % $ % %‡ as 

The approximation is called a  for  and inuniform  asymptotic approximation B : 
specified sets if the  symbol holds uniformly in those sets.9

 Most asymptotic approximations are built up sequentially using a set of gauge
functions.

$ % $ % $ %! " 5Ð Ñ  Ð Ñ  â  Ð Ñ

 D  1.7:  Let  be a sequence of gauge functions.  AnEFINITION $ %8a b
approximation

0 B : 0 B : 0 B :Ð à à Ñ µ Ð à Ñ Ð Ñ â Ð à Ñ Ð Ñ% $ % $ %! ! 5 5(1.3)

is called an pointwise or uniform  provided that each of the followingasymptotic seriesa b
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statements holds pointwise or uniformly :a b
0 B : 0 B :

0 B : 0 B : 0 B :

0 B : 0 B :

Ð à à Ñ œ Ð à Ñ Ð Ñ  9Ð Ð

Ð à à Ñ œ Ð à Ñ Ð Ñ  Ð à Ñ Ð Ñ  9Ð Ð ÑÑ

ã

Ð à à Ñ œ Ð à Ñ Ð Ñ  9Ð Ð ÑÑ

% $ % $ %

% $ % $ % $ %

% $ % $ %

! ! !

! ! " " "

8œ!

5

8 8 5

))(1.4)

"
This last sum is often called an of a function  to  termsasymptotic expansion 0 B :Ð à à Ñ 5%

as .  Murdock[6], pp. 69.  We will use the terms asymptotic expansion and% %p !

asymptotic series interchangeably.
 Each error term, or remainder, with fixed  has behavior as  specified by8 p% %!

9Ð Ð ÑÑ 8p_$ % %8 , but for fixed  the remainders need not go to zero as .  An asymptotic
series need only satisfy a sequence of error estimates of the form (1.4).  Hence,
convergence of an asymptotic series is not guaranteed.
  Asymptotic series need not be convergent to be useful in perturbation theory.  A
convergent series must have an infinite number of terms.  An asymptotic series may
have a finite number of terms, and even if it is infinite, one is never concerned with
letting  become large.  Instead, (1.4) indicates that the focus is on the error in8

approximating a function by a partial sum when the number of terms in the partial sum
is held constant.  This error should decrease at a specified rate as  and not as%p!

8 p _  .
 It may happen that an asymptotic series solution is divergent.  Even so, the
underlying asymptotic sequence of gauge functions must still satisfy (1.2).  This implies
that the remainder term may be computed only to within some irreducible error for a
given value of .  If we compute terms beyond a certain point, the approximation%

becomes less and less accurate.  In practice, however, one rarely determines more than
one or two terms in the expansion because they are usually difficult to compute.  Also,
additional terms are not necessarily desirable to decrease error in the divergent case
where estimates improve as  and not as %p! 8p_Þ

 For instance, in an asymptotic power series, the error after the first two
terms constant and linear term  may be bounded by 10 ; including the quadratic terma b %#

might give an error bounded by 1000 .  The asymptotic nature of the series specifies%$

the powers in these error bounds, but not the coefficients.  In this example, the linear
approximation has error less than 0.1 when ; the error of the quadratic% œ !Þ"

approximation is only bounded by 1, so the linear approximation is probably best.
What we do gain by increasing the number of terms in an asymptotic series is an
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improvement in the  at which the error goes to zero when  is decreased.  In thisrate %

illustration the linear approximation is better for , but for  the quadratic% %œ !Þ" œ !Þ!"

is better.  One always gains accuracy by increasing  .  But8 and decreasing  sufficiently%

for fixed  in the divergent case there may be a certain number of terms beyond which%

the accuracy begins to decline.  Even so, there are cases where a divergent asymptotic
series develops more significant figures with fewer computed terms than the convergent
power series representing the same function!  Consider for example two different
representations of Bessel's function of order zero.

N B œ "    â
B B B

# # † % # † % † '

N B µ ? B   @ B  Bp_
#

B

!

# % '

# # # # # #

!

a b

a b c dÊ a b a b

a b

a b
1

1 1cos sin" "
% % as 

1.5

1.6

where

? B œ "   â
" † $ " † $ † & † (

% † # † #xB % † # † %xB

@ B œ  â
" " † $ † &

% † #B % † # † $xB

a b

a b

# # # # # #

# # # % # %

# # #

$ $ $

The series 1.5  is uniformly and absolutely convergent for all values of  , whereas thea b B

series  and , and hence, 1.6  diverge for all values of    However, the? B @ B BÞa b a b a b
representation 1.6  is asymptotic because the error committed by truncating the seriesa b
is of the order of the first neglected term.  Nayfeh[7], pp. 16.
 For small , the first few terms in 1.5  give fairly accurate results.  In fact, theB a b
first nine terms give a value of  correct to 11 significant figures.  However, as N # B!a b
increases, the number of terms needed to yield the same accuracy increases rapidly.  At
B œ %, eight terms are needed to give an accuracy of three significant figures, whereas
the first term of the asymptotic expansion 1.6  yields the same accuracy.  As a b B

increases further, an accurate result is obtained with far less labor by using the
asymptotic divergent series 1.6 .  In fact, for very large values of , the convergenta b B

series is useless from a computational point of view.
 For any given function  the asymptotic expansion (1.4) is not unique0 B :Ð à à Ñ%

because there exists an infinite number of asymptotic sequences that can be used in the
representation (1.4).  However, given an asymptotic sequence we have the following
uniqueness theorem.
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 T  1.1:   Given an asymptotic sequence, , the representation of anyHEOREM $ %8Ð Ñ

function  in terms of this sequence is unique.0 B :Ð à à Ñ%

 : LetProof

0 B : 0 B : 0 B : 0 B :Ð à à Ñ œ à Ð Ñ  à Ð Ñ  à Ð Ñ â% $ % $ % $ %! ! " " # #a b a b a b(1.7)

dividing by we have$ %!Ð Ñ

0 B : 0 B : 0 B :
0 B :

Ð à à Ñ à Ð Ñ à Ð Ñ

Ð Ñ Ð Ñ Ð Ñ
œ à   â

% $ % $ %

$ % $ % $ %! ! !
!

" " # #a b a b a b
which upon letting  yields% %p !

0 B :
0 B :

!
Ä !

a bà œ Þ
Ð à à Ñ

Ð Ñ
lim
% %!

%

$ %

Moving  to the left side of  (1.7) and dividing by  we have0 B :! ! "a bà Ð Ñ Ð Ñ$ % $ %

c d a ba b a b0 B : 0 B : 0 B :
0 B :

Ð à à Ñ  à Ð Ñ à Ð Ñ

Ð Ñ Ð Ñ
œ à  â

% $ % $ %

$ % $ %
! ! # #

" "
"

Taking the limit as  yields% %p !

0 B : œ
0 B : 0 B :

"
Ä

! !

"
a b ” •c da b

à Þ
Ð à à Ñ  à Ð Ñ

Ð Ñ
lim
% %!

% $ %

$ %

Continuing in this manner we can see that the   are all uniquely determined0 B :8a bà

where

0 B : 0 B :
0 B :

8
Ä

7œ!

8"
7 7

8
a b " a b

à œ Ð à à Ñ  Þ
à Ð Ñ

Ð Ñ
lim
% %!

%
$ %

$ %
(1.8)

 An expansion obtained by formula (1.8) is called a limit process expansion,
Murdock[6], pp. 74-75.  If  is any function for which the limits (1.8) exist, the0 B :Ð à à Ñ%

series  defined from (1.8) will be asymptotic to   To see that this is more! a b0 B : 08 8à Þ$  

general than a Taylor expansion, even when , consider the function$ %8
8œ

0 BÐ à Ñ œ /  /% % %B BÎ

for  and .  This has no Taylor series expansion in  since it is not even% % ! B  !

defined for .  But it is easy to calculate the limits using (1.8) with  and find% $ %œ ! œ8
8

an asymptotic expansion, which turns out to be the same as the Taylor series for .  A/%B

function such as , which approaches zero so rapidly as  that its influence never/ p!BÎ% %

shows up in an asymptotic power series is called .  This exampletranscendentally small
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shows that an asymptotic series does not determine a function uniquely but that the
function does determine the series uniquely (provided the gauges are fixed).

Uniformity.  Uniformity of an asymptotic series refers to uniform validity of the error
estimates in (1.4).  The problem is that in parameter perturbations, the quantities to be
expanded can be functions of one or more variables besides the perturbation parameter.
 D  1.8:  If we derive the asymptotic expansion of a function ,EFINITION 0 B :Ð à à Ñ%

where  is a variable independent of , we have, in terms of the asymptotic sequenceB %

$ %8Ð Ñ

0 B : 0 B :Ð à à Ñ µ Ð à Ñ Ð Ñ p !% $ % %"
8œ!

5

8 8 as .

This expansion is said to be  or  ifuniformly valid regular

0 B : 0 B : B :Ð à à Ñ µ Ð à Ñ Ð Ñ  V Ð à à Ñ% $ % %"
8œ!

5

8 8 5"(1.9a)

V Ð à à Ñ œ 9Ð Ð ÑÑ5" 5B : % $ %(1.9b)

holds uniformly for all and  in specified sets, and if the  symbol holds uniformly inB : 9

those sets.  Otherwise the expansion is said to be or .  Fornonuniformly valid singular
the conditions (1.4) to hold uniformly,  must be small compared to0 B :8 8Ð à Ñ Ð Ñ$ %

0 B :8" 8"Ð à Ñ Ð Ñ 8$ % for each .
 Since the sequence  is asymptotic, we require that  be$ %8 8" 8Ð Ñ Ð à ÑÎ Ð à Ñ0 B : 0 B :

bounded.  If this condition is true then the expansion is uniform.  In other words, each
term must be a small correction to the preceding term irrespective of the value of  andB

: in their domains of interest.
 There is a closely related, but weaker, notion which is sometimes treated as if it
were equivalent to uniformity.  Each term of (1.3) is clearly of the order of its gauge for
fixed  and .  That is,B :

0 B :8 8 8Ð à Ñ Ð Ñ œ SÐ Ð ÑÑ$ % $ %(1.10)

always holds pointwise.
 D  1.9:  If for a given set of   and  equation (1.10) holds uniformlyEFINITION B :

for each , the approximation (1.3) will be called  for  and  in8  ! uniformly ordered B : 
their respective sets.  Murdock[6], pp. 69.  Note that no requirement is placed on the
leading term .8 œ !
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 Uniform ordering is often confused with uniformity.  Since uniform ordering
depends only upon the terms appearing in the approximation, it is much easier to check
than to check for uniformity, which requires an estimate for the error.  An important
insight is that uniformity implies uniform ordering but the converse is not true.  In
practice, this means that we look for uniform ordering because it is easier to verify.  If
the approximation is not uniformly ordered then it can not be uniform.  If the expansion
is determined to be uniformly ordered then we may proceed to the more difficult
process of finding error estimates or to proving uniformity.
 T  1.2:HEOREM

a.  The series

0 B : 0 B : 0 B :Ð à à Ñ µ Ð à Ñ Ð Ñ â Ð à Ñ Ð Ñ% $ % $ %! ! 5 5(1.3)

is uniformly ordered ( and in specific sets) if and only ifB :  

0 B : B :8Ð à Ñ ß 8  ! is bounded (for and in those sets) .  

b.  If the series (1.3) is uniform then it is uniformly ordered.
c.  If the series (1.3) is uniformly ordered and the last equation of (1.4) holds uniformly,
then all of (1.3) holds uniformly and the series is uniform.
 Proof:
a. By the definition of uniform ordering  

0 B :8 8 8Ð à Ñ Ð Ñ œ SÐ Ð ÑÑ 8  !$ % $ % for 

º º0 B :8 8

8

Ð à Ñ Ð Ñ

Ð Ñ
Ÿ EÊ

$ %

$ %

0 B :8Ð à Ñ ÞÊ   is bounded

The  case may be proved by reversing the above steps.Ð É Ñ

b.  If (1.3) is uniform then (1.4) holds uniformly.  Comparing the first two equations we
see that

0 B :" " ! " !Ð à Ñ Ð Ñ œ 9Ð Ð ÑÑ  9Ð Ð ÑÑ œ 9Ð Ð ÑÑ$ % $ % $ % $ %

uniformly.  This means that

0 B :" "

!

Ð à Ñ Ð Ñ

Ð Ñ
p ! p!

$ %

$ %
%uniformly as 
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since

$ %

$ %
%

"

!

Ð Ñ

Ð Ñ
Á ! Á !  when  

then  is bounded.  The same argument may be applied sequentially to each .0 B : 0" 8Ð à Ñ

c.  Suppose that (1.3) is uniformly ordered and the last equation of (1.4) holds
uniformly.  Then, since ,0 B :5 5Ð à Ñ œ SÐ Ð ÑÑ$ %

0 B : 0 B : 0 B :

0 B :

Ð à à Ñ œ Ð à Ñ Ð Ñ  Ö Ð à Ñ Ð Ñ  9Ð Ð ÑÑ×

œ Ð à Ñ Ð Ñ  SÐ Ð ÑÑ

% $ % $ % $ %

$ % $ %

"
"
8œ!

5"

8 8 5 5 5

8œ!

5"

8 8 5

uniformly.  And since  we haveSÐ Ð ÑÑ Ê 9Ð Ð ÑÑ$ % $ %5 5"

0 B : 0 B :Ð à à Ñ œ Ð à Ñ Ð Ñ  9Ð Ð ÑÑ% $ % $ %"
8œ!

5"

8 8 5"

uniformly which establishes uniformity of the next to last line of (1.4).  Working up the
list we may similarly establish the uniformity of the remaining lines.
Murdock[6], pp. 70.
 To summarize, if an approximation is uniformly ordered it does not follow that
it is a uniform asymptotic series because uniform ordering says nothing about the error.
But if the last line of (1.4) holds, the rest follows.  We may also remark that the error
estimate of an asymptotic series as defined by (1.4) can be improved from "  of the last9

gauge" to "  of the next gauge" except possibly in the last line.  That is, except for theS

last line, the error estimates in (1.4)

9Ð Ð ÑÑ$ %8

can be replaced by

SÐ Ð ÑÑ$ %8"

except for the last line which must remain

9Ð Ð ÑÑ$ %5 .

 Usually a singular perturbation problem has an asymptotic series solution of the
form (1.3) which holds pointwise in the full domain of but  not uniformly, although itB 
may hold uniformly for in certain subsets of the domain.  In order to find approximateB 
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solutions of singular problems which are uniformly valid in the full domain of , it isB

necessary to use expressions of the form

0 B : 0 B : 0 B :Ð à à Ñ µ Ð à Ñ Ð Ñ â Ð à Ñ Ð Ñ% % $ % % $ %! ! 5 5; ;(1.11)

in which  is allowed to enter through the coefficients  as well as the gauges.  Such% 08

an approximation is called a .  It is only necessary togeneralized asymptotic expansion
require that each ;  remains bounded as  for fixed  and  to extend the0 B :8Ð à Ñ p ! B :% %

previous results to the generalized asymptotic expansion.  We begin treatment of
problems using these types of expansions in Chapter IV.
 E  1.5:  A uniformly valid expansion is given byXAMPLE

sin sin cos cos sin

sin cos

ÐB  Ñ œ B  B

œ B "   â  B   â
#x %x $x &x

% % %

% % % %
%” • ” •# % $ &

Arranged in increasing powers of , we can see that the coefficients of all the powers of%

% are bounded for all values of .  It is the rule rather than the exception that a regularB

expansion in powers of a parameter has regions of nonuniformity defined on the domain
of the independent variable.  Most perturbation techniques were developed to render
nonuniform expansions uniformly valid on larger intervals of the independent variable.
An estimate of the size of the region of nonuniformity can sometimes be obtained by
assuming two successive terms to be of the same order.  Nayfeh[7], pp. 17.
 E  1.6:  Consider the nonuniformly valid expansionXAMPLE

0ÐBà Ñ œ B  œ B "    â
#B )B "'B

% %
% % %È È ” •# $

# $

Each term of this expansion except the first is singular at  and is more singularB œ !

than the preceding term.  An estimate of the size of the region of nonuniformity may
sometimes be computed by comparing the order of any two successive terms of the
expansion.  If we assume that the first two terms are the same order we have

" œ SÐ"Ñ œ S
#B

Š ‹%(1.12)

As  must be  or less to ensure uniformity we see that (1.12) implies% Î#B SÐ"Ñ

B œ SÐ Ñ%

This relation estimates the region of nonuniformity about .  Comparing the TaylorB œ !

expansion of  we see that the series converges for .  Nayfeh[7], pp. 17.È"  ÎB lBl % %
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Operations with Asymptotic Series.  Asymptotic approximations can be naively
added, subtracted, multiplied, or divided resulting in the correct asymptotic expression
for the respective sum, difference, product, or quotient of the approximated functions.
If appropriate to the limiting process, one expansion may be substituted into another.
Asymptotic approximations may also be integrated term by term with respect to %
resulting in the correct asymptotic expression for the integral.  Differentiation of an
asymptotic approximation with respect to an independent variable (coordinate or
parameter) is essential in finding heuristic solutions to most perturbation problems, but
cannot be justified by a general theorem.  The reason is that an asymptotic series is
actually an inequality and inequalities cannot be differentiated.  Differentiation of
expansions which are actually Taylor series may be justified and this is sufficient for
most regular type problems.  Otherwise, differentiation must be regarded as a heuristic
process, justifiable only by an error estimate performed after the solution is obtained.
Hinch[3], pp. 22-23 and Murdock[6], pp. 75-76.

Fundamental Theorem of Perturbation Theory.
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Continuing in this manner we can arrive at the relation
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Simmonds and Mann[10], pp. 12.
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Summary.

Asymptotically equivalent Ðgauge functions)
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Asymptotic Approximation
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and we say
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Generalized Asymptotic Expansion
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