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CHAPTER IV

STRAINED PARAMETERS

 In Chapter III we introduced the regular perturbation expansion using the Duffing
equation as an example of a conservative, nonlinear oscillator.  This chapter continues
the study of nearly linear second order differential equations focusing on periodic
solutions of oscillatory equations of the form

?  5 ? œ 0 >ß ?ß ? ßww # w% %a b
where  is either periodic in  or independent of .  We will develop a method of0 > >

rendering the approximate solutions to some of the differential equations mentioned in
Chapter III uniformly valid by introducing near-identity transformations of the
independent variable.  This technique goes back to the nineteenth century when
astronomers, such as Lindstedt 1882 , devised techniques to avoid the appearance ofa b
secular terms in perturbation solutions of equations such as

?  A ? œ 0 ?ß ? ¥ "ww # w
! % %a b,  .

 The fundamental idea in Lindstedt's technique is based on the observation that the
nonlinearities alter the frequency of the system from the linear one, , to .  ToA A! a b%
account for this change in frequency, he introduced a new variable  and expanded7 œ A>

A ? and  in powers of  as%

? œ ?  ?  ? â

A œ A  A  A â

! " #
#

! " #
#

a b a b a b7 % 7 % 7

% %

Then he chose the parameters , to prevent the appearance of secular terms.A 3   "ß3

Poincaré 1892  proved that the expansions obtained by Lindstedt's technique area b
asymptotic.
 Various forms of this idea have been utilized to obtain approximate solutions to
problems in physics and engineering.  The idea is to find a parameter in the problem that
is altered by the perturbations and then expand both the dependent variables as well as
this parameter using an appropriate sequence of gauge functions derived from the
perturbation say, powers of the strength of the perturbation .  The perturbations in thea b
parameter are then chosen to render the expansion uniformly valid.  Thus, this technique
is called the method of .strained parameters
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 The , applies only to the periodic solutions; more generalLindstedt method
methods given in Chapters V and VI can handle the transient solutions as well.  But for
the periodic solutions, the Lindstedt method has a distinct advantage over the other
methods, both in simplicity and accuracy.  The regular expansion will continue to be
referenced for purposes of comparison but the remainder of this paper will focus on
techniques developed specifically to improve on the shortcomings of the regular method.
 We will begin with the Duffing equation.  In Chapter III we found that the exact
solution of the Duffing equation is different from the regular perturbation approximation
because the exact period is a function of  and the period of the regular approximation is%

not. This discrepancy slowly drives  and its approximation of the form? >ßa b%
? >ß œ ? >  ? >  ? > â ?sa b a b a b a b% % % %! " # 8

# 8

apart.  Suppose then that the period is a function , of  and thatX a b% %

? >  X ß œ ? >ß > l l a b a ba b% % % % %for all  and for .!

Associated with the period  there is a frequency .  The idea of theX A œ # ÎXa b a b a b% % 1 %

Lindstedt method is to introduce a new time variable such that the given function works
out to have a period independent of  when expressed in the new variable.  Usually the%

new constant period is constructed to be .  To make this happen, the new time variable#1

must depend on .  We introduce the transformation%

7 % %a b a ba b œ A >.4.1

Where  is called the .  The function  expressed in strained time now7 strained time ?

becomes

: 7 % 7 % %a b a ba ba b ß œ ? ÎA ß4.2a

or

? >ß œ A >ßa b a ba ba b % : % % .4.2b

From the periodicity of  it follows that .  So, by theorem 3.1? >ß  # ß œ ßa b a b a b% : 7 1 % : 7 %

: 7 % : 7 % : 7 % 7a b a b a b ˆ ‰ß œ â S! 5
5 5"  uniformly for all .  Therefore

? >ß œ A > â A >  Sa b a b a ba b a b ˆ ‰a b % : % % : % %! 5
5 5"4.3

uniformly for all .>
 The above expansion is not a Taylor expansion since  appears not only in the%

powers but also in the coefficients of each power.  Such an expansion is called a
generalized asymptotic power series.  A generalized power series such as 4.3 , wherea b
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the coefficient of each  is a periodic function with  entering % %8 only through the
frequency, is called a .Lindstedt expansion
 Sometimes the solution frequency is known in advance and at other times it must
be constructed as part of the solution process.  When the frequency is known, recursive
calculations yield  up to the desired order, and 4.3  provides an: : :! " 5ß ßá ß ß a b
approximation to  which is uniformly valid for all time.  When the frequency is not? >ßa b%
known, the method of strained parameters is a systematic procedure for determining
successively more accurate approximations to The bestA œ A  A  A áÞa b% % %! " #

#

approximation that can be constructed with this information is

? >ß µ A >ßs sa b a ba ba b % : % %4.4

where

: 7 % : 7 %: 7 % : 7

% % %

s ß œ  â

A œ A  A â As

a b a b a b a b
a b

a b
a b

! " 5
5

! " 5
5 .

4.5

4.6

The hat in these expressions denotes that the series is truncated after  terms and is5  "

an approximation to the corresponding full series.

Duffing equation.
 EXAMPLE 4.1:  With 4.1  and the chain rule applied toa b
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We note that the actual frequency of the system, , now appears explicitly in theAa b%
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equation and we choose .  We seek approximations for  and  in theA ! œ A œ " ? Aa b !

form of truncated power series in .  From 4.5  and 4.6  we take% a b a b
: : 7 %: 7

% %

s œ 

A œ "  As

! "

"

a b a b
a b

a b
a b .

4.8

4.9

Substituting 4.8  and 4.9  into 4.7  and collecting terms to the first order we obtaina b a b a b
: : % : : : : %! " ! !

ww ww $ ww #
! " "     #A S œ !ˆ ‰ ˆ ‰ .

( .  Applying the fundamental theorem gives the following sequence of IVP'sw .
.³ Ñ7
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4.11

The solution of  4.10  in polar form isa b
: 7 3 7 <!a b a ba b œ cos4.12

where  and  are constants determined by3 <

3 ! "

< " !

œ  ÎA

œ Î A

ˆ ‰
a b

# # #
"
#

tan .

Then 4.11  becomesa b
: : 7 < 3 3 7 <

3
"
ww $

" "

$

 œ  $   #A  
% %

$
cos cosa b a bŒ a b .4.13

Recalling from Chapter III that the resonant term, , produced the secular termcosa b7 <

in the final solution we choose  to suppress it.  Therefore letA"

A œ
$

)
"

#3 .4.14a b
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A particular solution to 4.13  isa b
: 3 7 <"

$œ $ 
"

$#
cos a ba b .4.15

Substituting 4.14  into 4.9 , 4.9  into 4.1  and then 4.1 , 4.12 , and 4.15  intoa b a b a b a b a b a b a ba b4.8  we get our uniform first order approximation free from secular terms

: % % 3 %3 < %3 <
%3

s sA >ß œ "  >   $ "  > 
$ $

) $# )
a ba b ” • ” •Œ  Œ cos cos# #

$

.

As we compute higher order approximations to  the right hand sides of each: % %s sA >ßa ba b
of the DE's producing   will contain a resonance producing term which must be: :# $ß ßá

suppressed by a  proper choice of  .A ßA ßá# $

Nayfeh 8 , pp. 118-120 and Murdock 6 , pp. 160-162.c d c d
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Figure 5.
Exact Duffing Solution vs. Lindstedt Expansion

Error Analysis.  The approximation , (4.4), differs from , (4.3),: % % %s sA >ß ? >ßa b a ba b
containing the same number of terms, in that the actual frequency  in 4.3  isAa b a b%

replaced by , its approximation 4.6 .  Just as we discovered in the case of theAsa b a b%

regular expansion, a discrepancy in the frequency will cause the approximation to drift
away from the actual solution over time.  Thus, we cannot expect 4.4  to retain thea b
accuracy   over all time as 4.3  does.  We clarify this idea in the followingSˆ ‰ a b%5"

theorem from Murdock[6], pp. 162-164, on a general Lindstedt expansion.
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 T  4.1:  If  is analytic,  is analytic andHEOREM ? >ß Aa b a b% %

? >  # ÎA ß œ ? >ß > ß ß ß As sa b a b a b a b a ba b1 % % % % : 7 % : 7 % %  for all  and , and if  and  are defined
by 4.2 , 4.5  and 4.6  thena b a b a b

k k k ka b a ba ba b ? >ß  A >ß Ÿ O >s s% : % % %5"4.16

for some constant .O

 Given , there exists  such thatProof:  !   -  !% %! !

lA  A l Ÿ -sa b a ba b % % %!
5".4.17

Let

j œ ß À ! Ÿ Ÿ # ß 
.s

.
maxœ º ºa b k k:

7
7 % 7 1 % %! .

The maximum exists because the intervals are compact.  Since  is -periodic,  is: 1s # j

maximum over all  .  By the mean value theorem7

k k k ka b a ba b : 7 % : 7 % 7 7s sß  ß Ÿ j " # " #4.18

for all , , and   Thus,  is a global Lipschitz constant for  with respect to7 7 % % :" # !!   Þ j s

7 .  From 4.17  and 4.18  we havea b a b
k k k ka b a ba b a ba b : % % : % % %s s sA >ß  A >ß Ÿ - j >!

5" .4.19

From 4.3  there exists  such thata b -  !"

k ka b a ba ba b ? >ß  A >ß Ÿ -s% : % % %"
5"4.20

for all .  From 4.19 , 4.20 , and the triangle inequality we conclude> a b a b
k k k ka b a ba ba b ? >ß  A >ß Ÿ -  - j >s s% : % % % %" !

5" 5" .4.21

Now we may determine the range of    for which the error remains .  If  is a> S Pˆ ‰%5"

positive constant then

k k a ba b a ba b? >ß  A >ß Ÿ -  - jPs s% : % % %" !
5"

for  and | | .  Thus the approximation is uniformly of order  for!   > Ÿ P S% % %!
5"ˆ ‰

P Ÿ > Ÿ P > œ PÞ.  From 4.21  we can see what happens to our estimate beyond   Upa b
to  the error is   Thus the> œ PÎ Ÿ -  - jP Ÿ -  - jP œ S Þ% % % % % %" ! " ! !

5" 5 5 5a b ˆ ‰
approximation is uniformly of order  for .  This time interval isS PÎ Ÿ > Ÿ PÎˆ ‰% % %5

called an  of order  since the interval increases as    decreases.expanding interval Sa b% %"

So, as    decreases the estimate improves in two ways:  The bound for the error%
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decreases and the range of time for which it is valid increases.  Thus the approximation
on the expanding interval of order  is .  This illustrates theS Sa b ˆ ‰% %" 5  trade-off
property of accuracy for the length of the uniform interval.
 In summary, the Lindstedt method attempts to approximate a periodic function by
another periodic function with a period as close to the original period as possible.  If the
periods are equal the approximation is uniform for all time.  If the periods are different
the approximation is only valid on an expanding interval.  We can now more precisely
characterize problems for which singular perturbation methods are appropriate.  These
problems have the property that an expansion in powers of a suitable small parameter,
with coefficients depending only on the independent variable, are not uniformly valid for
all relevant values of the independent variable.

Damped Linear Oscillator.
 E  4.2:  In Chapter III we determined that the regular method failed toXAMPLE

produce a uniform expansion for the damped linear oscillator because it did not account
for the dependence of the frequency on .  To include the fact that the frequency is a%

function of   we strain the time with the view that frequency, , is a function of .% %A

Substitute

7 % %a b a bœ A >

in
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.> .>
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"
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a b3.19

and obtain

A  # A  ? œ !
. ? .?

. .
#

#

#
a b a ba b % % %

7 7
.4.22

Next, we try expanding  and  in powers of .? A %

? œ ?  ?  ?  S

A œ "  A  A S

! " #
# $

" #
# $

a b a b a b ˆ ‰
a b ˆ ‰

a b
a b

7 % 7 % 7 %

% % % % .

4.23

4.24

Note that the first term in 4.24  is unity which will give us the unperturbed (undamped)a b
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frequency.  Substituting 4.23  and 4.24  into 4.22 , expanding for small  anda b a b a b %

equating like powers of  yields the following sequence of IVP's:%
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4.27

( The general solution of 4.25  is thenw .
.³ ÑÞ7 a b

? œ ! 3 7 <cosa b
where  and  are constants determined by3 <

3 ! "

< " !

œ  ÎA

œ Î A

ˆ ‰
a b

# # #
"
#

tan .

Then 4.26  becomesa b
?  ? œ # A   # "
ww

" "3 7 < 3 7 <cos sina b a ba b .4.28

To eliminate secular terms from the particular solution of 4.28  we need to suppress alla b
resonance producing terms on the right.  But this means that

# A œ ! œ !3 3" and4.29a b
producing

?  ? œ !Þ"
ww

"

Equations 4.29  cannot be satisfied simultaneously unless , in which casea b 3 œ !

? œ ! Ê ? œ ! Ê ? œ ! Ê! " # the trivial solution.  Nayfeh[8], pp. 140.
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 The above development shows that the Lindstedt expansion fails to yield a
nontrivial uniform solution in the presence of damping.  The reason is clear.  Our zeroth
approximation, which under the conditions of uniformity may be only slightly corrected
by higher order terms, has a constant amplitude.  Since the amplitude is  in the exact3/ >%

solution

? œ / "  > 3 % < > #% cos’ “Èa b ,3.33

the only constant amplitude solution is one obtained after a long time (i.e. steady state).
Therefore, although the Lindstedt expansion is effective in determining periodic
solutions, it is incapable of determining transient responses.


