Second-Order Linear Differential Equations

Modeling: Free Oscillations
(Mass-Spring System)

Homogeneous linear differential equations with constant coefficients have
basic engineering applications. In this section we consider an important
application from mechanics (a vibrating mass on an elastic spring). We model
the system (i.e., set up its mathematical equation), solve it, and discuss the
types of motion, which—interestingly enough—will correspond to Cases
[-IITin Secs. 2.2 and 2.3. Incidentally. our mechanical system has a complete
analog in electric circuits. as we shall discover later (in Sec. 2.12).

Setting up the Model
We take an ordinary spring that resists compression as well as extension
and suspend it vertically from a fixed support (Fig. 32). At the lower end of
the spring we attach a body of mass m. We assume m to be so large that
we may disregard the mass of the spring. If we pull the body down a certain
distance and then release it. it undergoes a motion. We assume that the body

moves strictly vertically.
We want to determine the motion of our mechanical system. For this
purpose we consider the forces® acting on the body during the motion. This
will lead to a differential equation. whose solution y(r) will give the displace-
ment of the mass as a function of time 1.
We choose the downward direction as the positive direction and thus
regard downward forces as positive and upward forces as negative.
The most obvious force acting on the body is the attraction of gravity

(1) F, = mg

where m is the mass of the body and g (= 980 cm/sec?) is the acceleration =8

of gravity.
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Fig. 32. Mechanical system under consideration

SFor systems of units and conversion factors, see inside of front cover
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We next consider the spring force F, acting on the body. Experiments
show that within reasonable limits, its magnitude is proportional to the change
in the length of the spring. Its direction is upward if the spring is extended
and downward if the spring is compressed. Thus,

(2) F, = —ks

(Hooke’s” law),
where 5 is the vertical displacement of the body (recall that the upper end
of the spring is fixed), the constant of proportionality & is called the spring
modulus, and the minus sign makes F, negative (upward) for positive s
{extension of the spring) and positive (downward) for negative s (compres-
sion of the spring).

If s = 1, then F, = —k. The stiffer the spring, the larger £.

When the body is at rest (motionless), gravitational force and spring force
are in equilibrium, their resultant is the zero force,

(3) Fi,+F,=mg — ks; =0
where s, is the extension of the spring corresponding to this position, which
is called the sratic equilibrinm position.

We denote by y = yi(r) [r time] the displacement of the body from the
static equilibrium position (v = 0), with the positive direction downward
(Fig. 32). This displacement causes an additional force — kv on the body.
by Hooke's law. Hence the resultant of the forces on the body at position
y(t) is [see (3)]

(4) F; + Fg =1y = —=kp

Undamped System: Equation and Solution

If the damping of the system is so small that it can be disregarded. then (4)
is the resultant of all the forces acting on the body. The differential equation
will now be obtained by the use of Newton’s second law

Mass x Acceleration = Force
where force means the resultant of the forces acting on the body at any

instant. In our case, the acceleration is ¥" = d2v/dr? and that resultant is
given by (4). Thus

my' = —ky.

Hence the motion of our system is governed by the linear differential equa-
tion with constant coefficients

(5 my + kv = 0. !

TROBERT HOOKE (1635—1703], English physicist, a forerunner of Newton with respect
to the law of gravitation,




EXAMPLE 1

82 Second-Order Linear Differential Equations Chap. 2

By the method in Sec. 2.3 (see Example 3) we get the general solution

(6) : y() = A cos wyt + B sin wyf wy, = Vkim.

The corresponding motion is called a harmonic oscillation. Figure 33 shows
typical forms of (6) corresponding to some positive initial displacement y(0)
[which determines A = vi()) in (6)] and different initial velocities v'(0) [each
of which determines a value of B in (6), since ¥'(0) = w,B].

By applving the addition formula for the cosine, the student may verify
that (6) can be written [see also (13) in Appendix 3]

i i _l‘_'__- H"'.
(6*) Y1) = C cos (wyt — ) (c=VA%+B% tns=")

Since the period of the trigonometric functions in (6) is 2m/w,, the body
executes wy/27 cycles per second. The quantity wy/27 is called the frequency
of the oscillation and is measured in cvcles per second. Another name for
cycles/sec is hertz (Hz).®
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Fig. 33. Harmonic oscillations

Undamped system. Harmonic oscillations

If an iron ball of weight W = 89.00 nt (abourt 20 Ib} stretches a spring 10,00 cm (zbout 4 inches),
how many cycles per minute will this mass—spring svstem execute? What will its motion be if
we pull down the weight an additional 1300 cm (about 6 inches)?

Solution. From (2) we obtain the value & = 39.00/0.1000 = 890.0 [atv'meter]. The mass is
m = Wig = 89.00/9.83000 = 9.082 [kg]. This gives the frequency

a2z = VE0.09.08227 = 9.8992% = 1.576 Hz :
or 94.5 cycles per minute. From (6) and the initial conditions, »i0) = A = 0.1500 [meter] 37“",

¥'i0) = wyB = 0. Hence the motion is .

¥ = 0.1500 cos 9.899¢ [meters] or 0.492 cos 9.899r [ft].
If vou have a chance of experimenting with a mass—spring system, don’t miss it. You will beg

surprised about the g.uud agreement between theory and expenment, usually within a fractods
of one percent if you measure carefully,

SHEINRICH HERTZ (1857—1894), German physicist, who discovered electromagnetic
and made important contributions (o electrodynamics.




general solution % Dal‘"PEd System: Equation and Solutions

-— - If we connect the mass to a dashpot (Fig. 34), then we have to take the
corresponding viscous damping into account. The corresponding damping
force has the direction opposite to the instantaneous motion. and we assume

on. Fisure 33 shows that it is proportional to the velocity ¥' = dv/dr of the body. This is generally
ial di :ement ¥(0) a good approximation, at least for small velocities. Thus the damping force
selocities y'(0) [each is of the form

rJJQB]. _ F, = ]

- student may verify :

Let us show that the damping constant c is positive. If ¥’ is positive, the
T _B body moves downward (in the positive y-direction) and —cyv’ must be an
+ B* tand = . * ; T e ;i
A, upward force. that is, by agreement, —cy < 0, which implies ¢ = 0. For
negative ¥ the body moves upward and —cy’ must represent a downward
) is 2m/w,. the body force, that is, —cv' > 0, which implies ¢ = 0.
called the frequency

| Another same for The resultant of the forces acting on the body is now [see (4)]
1.

Fi+F,+F,=—ky — oy
Hence. by Newton's second law,
”,:-1'.” — H_‘.' e, {1}. .

and we see that the motion of the damped mechanical svstem is governed
by the linear differential equation with constant coefficients

(7) my" + oy + kv = 0.

The corresponding characteristic equation is
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Fig. 34. Damped system




Second-Order Linear Differential Equations

Using the short notations

= L Vet - dmk,

2m

(8) o = — and

We can write

Ay = —a+ B and Ay = —a=:p

The form of the solution of (7) will depend on the damping, and, as in Secs.
2.2 and 2.3, we now have the following three cases:

| Case L. ¢ > 4mk. Distinct real roots Ay, A,. (Overdamping)
Case II. cf = 4mk. A real double root. (Critical damping)
Case III. ¢ < 4mk. Complex conjugate roots. (Underdamping)

Let us discuss these three cases separately.

Case I. Overdamping
If the damping constant ¢ is so large that ¢® > 4mk. then A; and A, are

distinct real roots, and the general solution of (7) is

—(=+glt |

f — o p=le=2R L .
(9] W) = ¢y Cof

We see that in this case the body does not oscillate. For r = 0 both exponents
in (9) are negative because & > 0. 8 > 0, and 82 = a® — kim < o®. Hence
both terms in (9) approach zero as r approaches infinity. Practically speaking,
after a sufficiently long time the mass will be at rest at the static equilibrium
position (¥ = 0). This i1s understandable since the damping takes energy
from the system and there is no external force that keeps the motion going.
Figure 35 shows (9) for some typical initial conditions.

Case ll. Critical damping
If ¢ = 4mk, then B = 0, A, = A, = —a, and the general solution is

M) = (¢; + cyl)e™. |

(10)

Since the exponential function is never zero and ¢, + c,f can have at mos
one positive zero, it follows that the motion can have at most one passagcg

through the equilibrium position (v = 0). If the initial conditions are suc_l"

that ¢; and ¢, have the same sign. there is no such passage at all. This 153
similar to Case 1. Figure 36 shows typical forms of (10). e
Case [l marks the border between nonoscillatory motions and oscillatiofiss

this explains its name,

Case lll. Underdamping
This is the most interesting case. If the damping constant ¢ is s0 small

¢? < 4mk, then B in (8) is pure imaginary. say,
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Fig. 35. Typical motions in the overdamped case
{a) Positive initial displacement
{b) Negative initial displacement

Fig. 36. Critical damping

; | e —— &k .2
(11) B = iw* where o*=_—Vimk - - CHN .. = (= 0).
Zm ‘l'n m 4m=

(We write @* to reserve w for Sec. 2.11.) The roots of the characteristic
equation are complex conjugate.

Ay = —a t it Ay = —a — iw*




Second-Order Linear Differential Equations Chap.

. (Pendulum) Determine the frequency of oscillation of the pendulum of length L
in Fig. 39. Neglect air resistance and the weight of the rod. Assume that @ is
small enough that sin # = #.

. Aclock has a I-meter pendulum. The clock ticks once for each time the pendulum
completes a swing, returning to its onginal position. How many times a minute
does the clock tick?

. Suppose that the system in Fig. 40 consists of a pendulum as in Prob. 9 and two
springs with constants £, and k, attached to the vibrating body and two vertical
walls such that # = 0 remains the position of static equilibrium and 8(1) remains
small during the motion. Find the period T.
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Fig. 39. Pendulum Fig. 40. Problem 11

. (Flat spring) Our present equation my" + kyy = 0 also governs the (undamped)
vibrations of a body attached to a flat spring (of negligible mass) whose other
end is horizontally clamped (Fig. 41); here & is the spring constant in Hooke's
law F = —#k,s. What is the motion if the body weighs 4 nt (about 0.9 Ib), the
system has its equilibrium 1 cm below the horizontal line, and we let it start
from this position with downward initial velocity 20 cm/sec? When will the body
reach its highest position for the first time?

. {Torsional vibrations) Undamped torsional vibrations (rotations back and forth)
of a wheel attached to an elastic thin rod or wire (Fig. 42} are governed by the
equation

[ 87+ Kf = 1.

where @ is the angle measured from the state of equilibrium. [, the polar moment ==
of inertia of the wheel about its center. and K the torsional stiffness of the rod.
Solve the equation for K/, = 13.69 sec™%. initial angle 15° (= 0.2618 rad) and §
initial angular velocity 10° sec~1 (= 0.1745 rad - sec™1).

Fig. 41. Problem 12 Fig. 42. Problem 13
(Flat spring) (Torsional vibrations)

corresponding to initial displacement 1, initial velocity zero. mass I,
modulus 1, and various values of the damping constant, say, ¢ = 0. I, &
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Case |. Overdamped motion

15.

16.

17.

Show that for (9) to satisfy initial conditions w0} = v, and el(d) = g we must
have ¢, = [(1 + a/Bly, + v/BV2 and ¢; = [(1 — a/Bly; — 5, /BIL.

Show that in the overdamped case. the body can pass through ¥ = 0 at most
once (Fig. 35).

In Prob. 16 find conditions for ¢, and ¢, such that the body does not pass through
y = 0at all.

Show that an overdamped motion with zero initial displacement cannot pass
through v = 0.

Case ll. Critical damping

19.
20.

21.

Find the critical motion (10) that starts from y; with initial velocity .

Under what conditions does (10) have a maximum or minimum at some instant
t =07

Represent the maximum or minimum amplitude in Prob. 20 in terms of the initial
values v, and ;.

Case lll. Underdamped motion (Damped oscillation)

7

5.
26.

30.

2. Find and graph the three damped oscillations of the form

y= ¢ " HAcost + Bsing) = Ce~fcos (r — 4)

starting from ¥ = 1 with initial velocity —1, 0, 1. respectively.

. Show that the damped oscillation satisfying the initial conditions »0) = y,,

pll) = g, is

¥y = ey, co5 0™ + :u“_][g.'u + avy) sin @™

24. Show that the frequency w*2+ of the underdamped motion decreases as the

damping increases.

Show that for small damping. ©* = e [1 = (c*8mk].

For what c (in terms of m and k) 15 w®/w, = 99%? 95%7 Calculate (a) exactly.
(b} by the formula in Prob. 25.

. Determine the values of r corresponding to the maxima and minima of the os-

cillation ¥i#) = ¢7" sin . Check vour result by graphing v{r).

. Show that the maxima and minima of an underdamped motion occur at equi-

distant values of r, the distance between two consecutive maxima being 27/w®.

. Consider an underdamped motion of a body of mass m = 2 kg. If the time

between two consecutive maxima is 3 sec and the maximum amplitude decreases
to  its initial value after 20 cycles. what is the damping constant of the system?
(Logarithmic decrement) Prove that the ratio of two consecutive maximum am-
plitudes of a damped oscillation {12} is constant, the natural logarithm of this
ratio being & = 2radw™. (A 1s called the logarithmic decrement of the oscillation. )
Find A in the case of v = ¢~ cos r and determine the values of ¢ corresponding
to the maxima and minima.




