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1 Introduction

Remarks: The method leads generally to asymtotic series as opposed to convergent series. It is
not restriced to periodic solutions.

Averaging Method. Put the equation

ẍ + x = εf(x, ẋ)

into Lagrange stardard form and do the averaging.

Example 11.1
ẍ + x = ε(−ẋ + x2).
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2 The Lagrange standard form

Unperturbed Equation is Linear.

ẋ = A(t)x + εg(t, x), x(0) = x0.

Remarks: (1) The procedure is called “introducing co-moving coordinates”. (2) If the unper-
turbed equation is nonlinear, the variation of paramters techniques still applies. In practice, how-
ever, there are usually many technical obstructions while carrying out the procedure

3 Avaraging in the Periodic Case

Asymptotic Validity of Averaging Method. Consider equation (11.17)

ẋ = εf(t, x) + ε2g(t, x, ε), x(0) = x0.

We assume that f(t, x) is T -periodic in t and we introduce the average

f0(y) =
1
T

∫ T

0
f(t, y)dt.

Consider now equation (11.18)
ẏ = εf0(y), y(0) = x0.

Theorem 11.1 Consider the initial value problem 11.7 and 11.8 with x, y, x0 ∈ D ⊂ Rn, t ≥ 0.
Suppose that

1. f, g and ∂f/∂x are defined, continuous and bounded by a constant M in [0,∞)×D;

2. g is Lipschitz-continuous in x for x ∈ D;

3. f(t, x) is T -periodic in t with average f0(x) where T is a constant independent of ε;

4. y(t) is contained in the interior of D.

Then we have x(t)− y(t) = O(ε) on the time-scale 1/ε.
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Remark on Example 11.1: The estimates are not valid if we start near the saddle point x =
1/ε, ẋ = 0.

Example 11.3 Consider
ẍ + x = εf(x, ẋ)

and the van der Pol equation

ẍ + x = ε(1− x2)ẋ.

4 Averaging in the General Case

Theorem 11.2 Consider the initial value problem

ẋ = εf(t, x) + ε2g(t, x, ε), x(0) = x0.

with x, x0 ∈ D ⊂ Rn, t ≥ 0. Assume that

1. f, g and ∂f/∂x are defined, continuous and bounded by a constant in [0,∞)×D;

2. g is Lipschitz-continuous in x for x ∈ D;

3. f(t, x) =
∑N

i=1 fi(t, x) with fi(t, x) being Ti-periodic in t where Ti constants independent of
ε;

4. y(t) is ths solution of the initial value problem

ẏ = ε

N∑
i=1

1
Ti

∫ Ti

0
fi(t, y)dt, y(0) = x0.

and y(t) is contained in the interior of D.

Then we have x(t)− y(t) = O(ε) on the time-scale 1/ε.
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Theorem 11.3 Consider the initial value problem

ẋ = εf(t, x) + ε2g(t, x, ε), x(0) = x0.

with x, x0 ∈ D ⊂ Rn, t ≥ 0. Assume that

1. f, g and ∂f/∂x are defined, continuous and bounded by a constant in [0,∞)×D;

2. g is Lipschitz-continuous in x for x ∈ D;

3. the average f0(x) of f(t, x) exists where

f0(x) = limT→∞
1
T

∫ T

0
f(t, x)dt;

4. y(t) is ths solution of the initial value problem

ẏ = εf0(y), y(0) = x0.

and y(t) is contained in the interior of D.

Then we have x(t)− y(t) = O(δ(ε)) on the time-scale 1/ε with

δ(ε) = supx∈Dsup0≤εt≤C ||
∫ t

0
[f(s, x)− f0(x)]ds||.

5 Periodic Solutions

Theorem 11.5 Consider equation (11.48)

ẋ = εf(t, x) + ε2g(t, x, ε)

with x ∈ D ⊂ Rn, t ≥ 0. Suppose that

1. f, g, ∂f/∂x, ∂2f/∂x2 and ∂g/∂x are defined, continuous and bounded by a constant M in
[0,∞)×D, 0 ≤ ε ≤ ε0;

2. f and g are T -periodic in t.

If p is critical point of the averaged equation

ẏ = εf0(y),

with |∂f0(y)/∂y|y=p 6= 0, then there exists a T -periodic solution φ(t, ε) of equation (11.48) which
is close to p such that

limε→0 φ(t, ε) = p.

4



Theorem 11.6 Consider equation (11.48) and suppose that the conditions of theorem 11.5 have
been satisfied. If the eigenvalues of the critical point y = p of the averaged equation have all
negative real parts, the corresponding periodic solution φ(t, ε) of equation (11.48) is aymptotically
stable for ε sufficiently small. If one of the eigenvalues has positive real part, φ(t, ε) is unstable.

Example 11.9 (autonomous equations) Van der Pol Equation.
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