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1 Introduction

The study of boundary layers is important for many reasons, some examples are;

e Skin friction drag (eg. on a ship or aeroplane)

Separation (external and internal flows)

Pressure distribution on a body

e Atmospheric boundary layers

Some References;

Meost fluid mechanics text books will have chapters on boundary layers, eg.
e Gerhart and Gross “Fundamentals of Fluid Mechanics”, Addison Wesleyv.
e Munson, Young and Okiishi “Fundamentals of Fluid Mechanics”, Wiley.
e White “Fluid Mechanies”, MeGraw Hill.
¢ Smits “A physical introduction to Fluid Mechanics”, Wiley.

Maore advanced texts:
e Schlichting “Boundary Layver Theory”
¢ Hinze “Turbulence”

e Knudsen & Katz “Fluid Dynamics and Heat Transfer”

2 Background

Fluid flow is governed by the Navier-Stokes equations (developed in the early 19th cen-
tury). The Navier-Stokes equations are non-linear and difficult to solve. only a few par-
ticular solutions have been found.

If we ignore viscosity (ie. fluid is frictionless) the N-S equations simplify to the Euler

equations. Treating the fluid as frictionless is known as classical hydrodynamics [3rd year).
Euler
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Actual flow / Vortex street

— a

Vorticies are shed

Large drag due to large wake

heory, I:J eaks down
e td 1n uence
vlSCD'Slt‘n

For the two most common fluids (air and water) v is relatively small. People could
not understand why Euler failed to agree with experimental observations (d’Alembert
paradox) and fluid dynamics was divided into two separate camps.

Hydraulics Classical Hyd i

_ . ydrodynamics
(ExPerlmentallf Empirical) (Euler’s equations)
Engineers Mathematicians

Prandtl (1904)
Boundary Layer Theory

Prandtl brought together the two divergent fields of fluid dynamics. He showed that flow
about a solid body can be divided into two regions. In a thin region adjacent to the body

the viscous terms play an important part and this is termed the boundary layer. Beyond
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the boundary layer the flow can be considered inviscid and hence is approximated by
Euler. However it should be noted the that the boundary layer has a strong influence on
the boundary conditions for the inviscid (Euler) region.

3 Complete Navier-Stokes equations

Momentum equations
If we consider incompressible flow (ie. uniform density) and constant temperature fluid
= p = const, ¥[T] = const

_E.,.ua_“.ﬂ.@J,wﬁ:_l?ﬁq(fﬁﬂL@Jr@)
ot dr oy az por drz  ay? 8zt
; du du du du 13p Fv Pv v
y-dir : §+HE+U%+WE=_ES_F+M(@+@_'E)
Pw  FPw Bzw)

92 T By | 9

r-dir :

z-dir : @+HB—EL:J-L'§E+1UEE£—_1§E+U(
T 3 dr Ay dz  poz

By applving continuity we can also obtain the
Continuity equation

Ju v OBw
ot ot et PR 4
59:+5y+32 )
Az
NB:
Aw

The above can be written more concisely in vector form

du

—

=1 2
Bt +{E ‘G"}E— p?p+u?3 (5)

Veu=0 (6)
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where

] a a
= 11 vj+wkand V=1i— f— + k— .
E u1+L£_w~a11 iﬁx+£ +~z

Or alternatively in tensor form

Oui Oy 1 dp (ﬂﬂus)

BT Mps 505 ABeE

and for continuity

S
b e
3.1.‘.'
where
i=123
i=1,23.
Here we use the coordinate system;
"l. I3
A
\ Uz Iy
Ty
g

Repeated subscripts = summation (Einstein’s convention), for example for i = 1;

duy E?ul . 1 3]3 32“1
Bt TYE; T pom T \ Bz
: Bm B"E.L] 5"1.:1 Eml 1 ﬂp y(ﬂzm 32u| 7 52‘1.:1)

ettt Uy = ——— + }
gt | '8z, | ‘0z | 8z;  pom 8z ' 03 = ox3

4 Steady [2] flow

Consider flow over a thin aerofoil:

(9)



LECTURE 1 5

/ _-_-_-_-_-_-_-_-___-_____-_-_'_

Right at the wall Wall freestream velocity
velocity is zero U=Ulz)
= no slip conditiion.

If v = 0 N-S equations become the [2] Euler equations;

) du 1dp

ua—'z-ﬂa—y:-gﬁ {]-D)
ov v 1dp

UETUay— pay [ll:l
du v

7t =0 (12)

When boundary conditions are irrotational we have potential flow, that is
V2% =0and V¢ =0

It turns out that over most of the flow Euler's equations are a valid approximation,
ie. over most of the flow viscous forces are negligible compared with inertia forces and
pressure gradient forces. Only in a thin layer close to the wall are the viscous forces as
important as the pressure and inertial forces. In this region the velocity drops from the
freestream velocity U () to zero on the wall, owing to the action of viscosity. We will call
this region the boundary layer and we will denote its thickness by 6. Prandtl’s boundary
layer hypothesis states as v — 0, § — 0.

If we magnified the boundary layer thickness then in the mean we have something like
this;

Let us consider a very gentle slope = ¢ « 1 and hence curvature = 0,
P i
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Consider a laminar boundary layer which is [2] with a steady freestream flow. The equa-

tions which describe the flow are:

du  Bu 1dp & u az-u.)
—_— e — = — = — — o — 13
Yoz Lc’i‘y pﬂx+y(5‘$2 oyt (13)
du v 1dp 3 321:)
i e S 14
Yz T Vay T Tody “(axi+ay2 (L4
du dv .
—_ — {} & 1t
%=t (15)
With boundary conditions;
r=0, u=IL(0)
y=0, w=v=10
y}’ﬁ =00, U= L'rl (ﬂ.’:}
g pdh_ _1om
b Yar p g
1U,z + B — const
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=1

5 Order of magnitude argument

The above equations still present mathematical difficulties. To progress we will apply
Prandtl’s order of magnitude argument. The argument looks very rough and approximate
but it gives us an idea of the relative importance of the various terms in the equations.
However for Re — oc the argument becomes asymptotically exact.

. Uy (x) Uy(z) = O(Us)

yT ;

= l

ie 0.1U < Uy(z) < 10U

¥ =
H

For a typical streamline a representative change in velocity = O(U,) over a length O(I)

hence
du Us
b 0 (T) :
A representative value for velocity gradient
du Uy
5-°(7)-

The maximum change in y for a streamline is O(d) over a length [ which gives a repre-

sentative streamline slope
T\ .U
/’-‘—‘ a
l
=

u

from the above a representative value of v is then given by
v )
5z=2(1)
&
oru=0 (Uxf) :

The above result can also be obtained using continuity

o ov _
dr 8y

o(%)+0(3) -
rea{ud).

0
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Note we are interested in magnitudes so we ignore the sign.

Higher derivatives

similarly

Now substitute all of the above into the Navier-Stokes equations;

o UZ\ . (UR\ _ . ( 1dp B B

in z-dir O(E)*D(T)—O(—EE)—D{U(F.?)}
—— U8\ L o (Vs 10p Usd . Use
]ny'dlr_“O(E—E)'?‘G(E—z)—D(—;a—y)-FO{V(E—S'FE)} ;

Divide by U2 /i

: ; —ap/pUZ, 1 s
in r-dir — G{l} + G{l} =) (_Eﬁ?!_ +0 @ + O g—z
. : 8§ ] —dp/pU2 : 14
- _ 4 — = "
Inertia force terms  pressure gradient force terms i o terme
The Revnolds number is given by
Ut
Re = —

I

and it expresses the ratio of inertial forces to viscous forces. Consider the equation in the

r-dir as Re — oo,

0(1) + 0(1) = (%)+D+G(%%)
)?

Sl

What is the order of the viscous term, ie. O (ﬁ
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Case (a)

12
0 (Eﬁ_z) » 0(1)

Here the viscous terms dominate over inertia terms. This leaves us with a balance of

pressure gradient and viscous forces ie.

o) =0 (=5)

Such a situation would exists for fully developed flow in straight parallel pipes and ducts.

s 3 k1 Y A

Case (b)

o (iﬁ) < 0(1)
Re 2

This leaves a balance of inertia and pressure gradient forces ie. inviscid or Euler equation

flow.
Case (c)

1P
o) (Eﬁ) = 0(1)

In this case inertia, pressure gradient and viscous forces are all of the same importance.
This is the case Prandtl chose to represent boundary layers. It implies that

ol
sam0(he)

Substitute the above back into the momentum equations

inz-dir - 0(1)+0(1)=0 (:a%ﬁ—i) +0 (é) + 0(1)

in y-dir —’O(ﬁ%)+a(ﬁ) ED(%)-FO(ﬁ)qEO(V%)
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Again consider Re — o0

in z-dir — O(1) + O(1) = O(PGT) + 0+ O(1)
iny-dir =0+0=0(PGT)+0+0

We have identified the important terms in the momentum equations. it can be seen that
for the y-dir the above implies

dp
_55 =0
— p#fly)

Therefore the approximate equations that govern the boundary layer flow are;

du  du ldp u
e L0 L O 16
Momentum u e v By : s (16)
du v
inuit; —_——— = 17
Continuity 32 - 5 0 (17)

the above are often referred to as Prandtl's boundary layer approximations. However for
Re — oo they are exact.

Boundary conditions

Ui(x)

L] u(z,y)

y=0, v=u=10

ally
— =] —— T —
y=co, u=Ulj(z) and [ 52
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6 Zero pressure gradient flat plate boundary layer

Consider;

e laminar B/L

e zero pressure gradient

often called the Blasius layer.
y A

] U;(z) = const =

The boundary layer equations become;
du . ~du *u

ou v

A is a length scale which is proportional to 4 and will be defined later. Boundary condi-
tions;

u=v=0 at y=0
u=U; at y>A (3)
u=0U; at z=0

Prandtl suggested that a similarity solution may be valid ie.

5= (&)

|
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This assumes all results can be non-dimensionalised such that they fall on one universal

curve, independent of v, p, U; and z. Put n=y/A, u=UF(n)

Boundary conditions require
F=0 at n=0
F=1 a n=o0

du _ dF 9
Jz dn

Using (2)

/%ﬂm
-L1——~ r_;F "dn
=U1£{[nFJﬂ - [ Fan
d& "
=22 (ar— | Fa
v (o0~ [ 7o)
Change variables to get rid of integrals
X / f'
Fdp== ie, F==
.[u n=73 le 5
therefore

?..L=U]--

Bu —U dA f”
ar A dz!




LECTURE 3 13

Substitute above into (1)

_U?gﬂ+ﬁﬁnfffﬂ B Eéf_f_ﬂ B VUlfm

A dr 4 Adr 4 Adr 4 A? 2

= 9 fur
La%‘é = ! 5 (4)
v G fr

function of z alone  funetion of n alone

The above is only possible if both sides are equal to a constant (ie. separation of variables).

From inspection the constant must be negative, so put

=0, dA
—_— A — ]
] dx " (5)
2 (/3
i %)
Where  is a positive constant, further it is a universal constant since ﬁ%}%% is a universal

function. However the value of k is arbitrary and the choice for x simply fixes the definition
of A eg. y/A =1 when u/U; = 0.5. For historical reasons we put £ = 2. Note we have
gone from a p.d.e to an o.d.e with the simple assumption of u/U; = F(n).

Solution
=L dA
i i
Fi\ r
f AdA = E_rvf dz
0 U Jo
A2 - Eux
2 L,
VT
A=2 =
o
or
=¥ _y /%
AN 2V ex

This tells us the growth of the boundary layer.
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From (6)

"+ ff"=0 3rd order non linear ode

14
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Zero pressure gradient flat plate B/L (c’ont)
We will attempt to find an analyvtical solution (alternative is to solve numerically). Have

N [y— .
rll_z L H_L121 f{ﬂ}_

'

Boundary conditions

u=0 at y=0— f(0)=0
u=l; at y> A flloo)=2
u=l, at z=10

We wish to determine the skin friction coefficient where
To A S

5 T=fa—, To=4§
%F’le Oy 33";.::;

Cr =

r vl
2A
_ vUy f"(0)
2&

o |d o)

S Cr=Tmi———
= 1luga 212

The Reynolds number is given by R, = 1 hence

|l £70) 1
=" (R:)? X

Because f is a universal function f"(0)/2 is a universal constant and if we could solve
(7) we can find f"(0) and hence obtain the local skin friction formula, for a z.p.g laminar

boundary laver ie.
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Rl
The problem is to find f"(0). Expand F into a Taylor series
C: 2 c 3
f=co+em+ S+ k4o 9)
.. 2em  3cn® | ey’
fl=c+ SRR toqg oo (10)

From BC™ f(0) = f(0) = 0 hence ¢y = ¢; = 0. Substitute (9) and (10) into (7) and

collect like powers,

cs+¢4n+(§+%)n2+-u=ﬂ

This must converge (ie. = 0) for all values of n,

It turns out that all non-zero coefficients in the series can be expressed in terms of cp,

f= or _gr  Uanr _375gnt
2! 51 8l 11!

Boundary conditions

The constant ¢ is unknown but we can evaluate it from the freestream boundary condi-

tions ie. f'(o00) = 2.
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cle

L0 m——

f'(n)

s
2 U

\ .
Slope gives
7(0)

Using trial and error method chose ¢, until we get a solution that satisfies the boundary
condition ie.

LN

(e2)4 correct value

Further details of this method can be found in Schlicting ‘B/L theory’ p. 126, Duncan,
Thom & Young ‘Mechanics of Fluids' p. 260 and Knudsen & Katz ‘Fluid dynamics and
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heat transfer’ p. 253. Blasius got ¢ = 1.32824, = f"(0)/2 = 0.664, substitute into (8}

Ch=0664(R,)7#| first successful B/L equation (1930s)

We have now also obtained the universal velocity profile in the form of a Taylor series
expansion

i r 5
L
e \
Y = Oog%
L
ie u =0.990]
0O S e—— X 3o

1
YN
n_Q(u:ﬁ)

The relation between the length scale A and the boundary layer thickness § (99% thick-
ness}, for the case when we chose x = 2 is then

)

ﬂﬂ‘:ﬂ.

We can also evaluate the average skin friction (Cy) for a plate of length !

Note the difference between:

To
3PUT

e Local skin friction coefficient, C} =

D
o Average skin friction coefficient, Cy = +—=;

U] where D =drag/unit span
2P
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7 Effect of pressure gradients

In general all bodies have streamwise pressure gradients (except a flat plate aligned with
the flow, Blasius soln.).

Region of favorable

pressure gradient | Region of adverse pressure gradient

The momentum equation says
uﬁ'u N Uﬂ'u _ ldp Uﬁ'zu
dr dy  pdr Oy’

To get a feeling for what goes on at the wall consider y — 0 (ie. v = u = 0) therefore

1d &
0o--2Z2(5)

Now shear stress 7 = Iu.g—: actually 7 = p (% + %) but from the order of magnitude
argument it was found 2 < 2.

dy
dp (ﬂzu) (37‘)
Close to the wall —=pul=— =|= (11)
dx ayz y=0 ay y=0
We also know
du
In the freestream % =1 =10 (12)

Using (11) and (12) lets deduce the shape of the velocity and shear stress profiles for
different cases.

Case (1)

70 = 0 ie. (g—;) = 0, there are two possibilities.
¥=0

la) A favourable pressure gradient

dp
=>E{[}
::-a‘z—ul: <0 e i <
dy y=0 ayFa
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vt v v

a-

i I
A =0 a—yy_u*’“{_h__h
& u

¥ E_fﬂ‘{ﬂ =
u.‘_ Tﬂl T

This is termed a healthy profile and maximum shear stress is at the wall.

1b) An adverse pressure gradient

d
= ;ﬁ =0
iy T
= ) EI ie; == - D
ay y=0 ay y=0
¥ 1 U[ - i !'
a-
]
Maximum shear stress
Y b e .
ou/ u " R
a =0 a.,|
=0 - =10
8u Wiy
- =0
a2, g

This is a sick profile and the maximum shear stress is not at the wall.

. (g_:)y; 0

this only occurs in the case of an adverse pressure gradient

:d—P}D,ie. ﬁ

0.
dx dhy =

y=0
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du

-

y=0

u

—— =0
Y | ymo

Separation profile

Case (3) p <0

. (fﬁ){ 0

again this is for an adverse pressure gradient

#d—p}ﬂ, ie ﬁ >0
dr |0

e =0 "
A | yuo

u|
@1":0} 0

This is a separated profile. note a region of flow reversal near the wall.

Therefore overall picture is something like this

21
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healthy ~ Sick ~ Separation ¢
To = U

On leading edge of body pressure gradient is favourable and on trailing edge pressure
gradient is adverse. The resulting streamline pattern is more like

separation

_-—— —

Low base pressure
Wake (unsteady)

BB
—_—

Because the base pressure is low. drag is large. To reduce drag we want separation points
to move to the rear of the body — gives a higher pressure recovery and higher base
pressure. This can be achieved by a long tail piece (ie. streamlining) which reduces the
strength of the adverse pressure gradient thus delaying separation.
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8 Falkner and Skan similarity solutions

Finding solutions for the case with pressure gradients (ie I/; = U;(z)) is a more difficult
problem. A class of similarity solutions has been found for flow past a wedge.

A

this is consistent with a freestream velocity distribution given by

Ul = azx™
Governing equations;
du ) Iﬂu e dUl Epu
HE == T‘E = -1d—1l +U@ — momentum
o continuity
dx Ei‘_y o :
Note
1d /
_EEP = Ul% where U; = Uj(z)
Try to find a similarity solution ie. put
L. g i ¥
T F(n) where 7 X
also note that
on _ ydA  npdA
EUTRErecEy. W
an 1
gy A

and A is a length scale yet to be defined.

Find expressions for each term in the momentum equation;

u=ILUF «— we are assuming a similarity solution
n =4 ¥

du dly Uydi
oot S
(i e dr Adzx

Note the extra term because we now must include derivatives of [Ty .
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Substitute above into continuity,
al’ al,
[ Fdn a—l + Ul— nmn

To simplify notation put [ Fdn= f or F = f' hence u = Uy f'

Ju B dlly RIET: Fa
N f nf’ Adz

dr
f U1—~— (nf' = f)
AT e et

dU1
after integrating by parts

du _ Upf"
dy A
Pu Uy f”
a2 Al

Now put it all into the momentum equation,

ropr dl i J-.I-I-"rldlﬂl ; d'Ul f” l:;”:”1 I"'U e
U f (E‘f -nf m)—( f+U1—['-'?f .-"])Ulﬂh =l

& i

v dr \v/ v dr

Universal functions of n alone

i'.t dl/. _ Al dA A2 dU
I 1 ffn_ _1+

v drx

= coefficients must all be constants for a solution

A2 dU AU dA
Fut —d—; = 11 where x; 12 a universal constant. But what about —:— 17 Fora

L
similarity solution to exist (work) this must also be a constant. QQuestion: is it possible

Al dA A?dl
for ——— to be a constant when — — = x, = const ?
v dr v dr
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Answer;

Have U; =az™
dU, m-1
L = amx

dr
: ﬂz Ky
v amzm!
; &2 0 K

amx™-!

_@_\/F(ﬁ)
“dr Vam dr

dL\ nlul— I[ETN__]_J

Al da |||PG1U Lo az™ r.;lul— L(12-1)
Ty dz N

. AlhdA _ mmir— g-10m (1 —m)
: 2

v dz.'_ﬂm v
()
1T dr '\ om

Al dA ——
So the answer is yes —— — is a constant provided the velocity distribution is U; = az™.

v dz
In other words a similarity solution exists (or is permitted) for this velocity distribution.

So the equation to solve can be written as,
' " L= 1 05
sl = maf = () 117 =i+ f
. 2m+l=-m " -
skl = m (—) ff'=rm+f

2m

P = (T ) I =
7+ (”“'”)ff + (1= (F)R) =0

Let x4 (%1] = 1 for historical reasons. Note &, is an arbitrary universal constant and

depends on how we define 7 (ie. how we define A). To be consistent with text books we

put k; = 8.

™+ 8 (”‘ * 1) "+ 81— (%) = ni Non-linear 3rd order ODE (1)
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with boundaryv conditions

n=0—f=f=0

T}"—"CC‘—’fI';l

Here we have converted a non-linear partial differential equation set to an ordinary
differential equation by assuming a similarity solution, as we did for the flat plate Blasius
solution. The ODE can be solved numerically or by a series solution.

It can be shown that U; = azx™ corresponds to flow over a wedge of semi angle=

mm
m+1

= 2. Consider the following cases;

e For a flat plate m = 3 = 0 and we get the Blasius equation as obtained in previous
lectures.

o If we put m =1 (ie § = 7/2) we get plane (ie. [2]) stagnation point flow and this
happens to be one of the few exact solutions to the N-5 equation.

Also with m =1,

.. = const hence §= const

The velocity profiles within the boundary layer would look like this
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______ o . o T

I
e :f//ﬂf:{"///f////f///fﬁ e

L]
[}
]
i
1

T

Such a solution would apply at the stagnation point on an aerofoil eg.

_ -~ Local solution applies here

T R E note: boundary layer starts off with a finite thickness
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Family of Falkner and Skan solutions
m = 4 wedge = favorable pressure gradient

m = 0 flat plate
il A m = 1 stagnation point

m = —{.09 separation profile

B
Reversed flow profile

m < —0.09

i Diffuse flow = adverse pressurc gradient
Inflection poidt 0<m<-0.09

| l I

20 3.0 g ({m-L 1)&'])%

2ur
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9 Viscid-Inviscid interactions
So far we have considered analytical solutions to the boundary layer equations, the alter-

native is to solve numerically.

y A

u(z,y
.

_____________________ Profile is curve fitted by a
power series after
each Az step.

PP T T LI T T T T ET T T T T TT T T TP T TTTTT T

= >

Ar

This is called the step by step method. Given;
e a specified pressure gradient — }J% = f(x)
¢ an initial velocity profile

as
— u(zo,y) = a1y + gyz -

az

2y

use the momentum and continuity equations to find %—";. Hence,

du
u(zg + Az, y) = u(ze,y) + aﬂx
and the profile shape evolves with streamwise distance.

However the presence of a boundary layer acts to modify the pressure gradient, hence

we must iterate until we get convergence. Procedure for a given body shape:
Step 1

Lr

=

Given shape =

ITIEAEAR A

o
[
o

V?=0 = ignore boundary layers
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Step 2

Use above to work out surface velocity (ie. inviscid, flow has slip at the wall). This gives
Uy = U,(x). use this freestream velocity in the boundary layer calculation.

Step 3

Perform B/L calculation using the numerical method

Use a plane stagnation point \ New body shape

profile as the initial profile

The outer potential flow ‘feels’ that with the presence of the B/L the body shape is
different. This difference is the displacement thickness

- u
&= l1——|d
L ( Ul) J

(o back to step 1 and repeat until we get convergence

= | Viscous — inviscous interaction |.

This works fine provided B/L are attached and thin.

Unsteady vortex shedding

B/L theory breaks down
must use full N/S equation

10 Momentum integral equation

An alternative approach to solving the boundary layer problem is to consider the integral

form of the momentum equation (Theodore von Karman).
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Have
du  Ou ldp d%*u
b + O =— ——— + V—
fr ' a3y pdz  9y*
dUy 107
=Uy— + ——
Vdr T pdy
A Bu du dly =Tp
- — —-Uj— |dy=—
fu (“a:r”ay ’d:c) =
. T. t. . . ¥ ﬂud
using continuity v= Bz v
bl Bu du Bu dUy —To
_—— =U— | dy=—
= : uﬂx By Eh e Y P
a_.v._-r
integrate by parts
3 du du dl —Th
/{; (Eu-a; === Ul-rjx_) dy = g
h
) dU 7
5 thu(Ul—u]]dy—i- = Eul—ﬂ}dy"—P

Put h = oo, have;

=]
Displacement thickness — 4" = f (1 - -;;) dy
0

oo

S8l = (U — u)dy
0

Momentum thickness — &= f -~ (1 - —) dy
o

. 8UF =f u(Uy — u)dy
0

Hence,
T dU;

. SN B 1 o i STl
> (Ua; U=
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divide by U? and manipulate

df (H+2)8dl C} . .
N . A e von Karman integral momentum equation

dzr Ul liﬂ: 2

where
Jt
B E
C;=
G g.ﬂ-"'Ui
ag
o Inertia term
(H +2)8dl,
T o pressure gradient term
)

—+  wall skin friction term

Hence for the zero pressure gradient layer

p

g Rt P dr
dx Control volume

by
f H‘§

V
////////}//////////////

N
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Balance of mass
h
Mass in through AB = f pudy
uh a 1
Mass out through CD = f pudy + - f pudydz
0 0
h h a h
= Mass out throngh BC = f pudy — ( f pudy + — /. pudydr)
0 0 dx Jy
Momentum balance (r—dir.)
h
Momentum in through AB = [ pu’dy
Dh a h
Momentum out through CD = / pudy + = f pudydz
i i}

h
Momentum out through BC = —Ulﬁ% f pudydz
0

Net efflux of * momentum
5 R 1 a. 11 h
=—U1—f :mdydﬂf pu”dy+—f pu*dydx—f pudy
dr o 0 oz [i] i]

3 [ a ",

d!
Resultant external r component of force = -uh-édr — mpdz
i

Equating above expressions gives

dU, a " 8 ™
hpl/}j =—— = 1y = =)y — d —_ 2d
ﬂldx To '6z£my+ﬂmj;my
Introduce
v
6‘=f (]—i)d
0 0
< u u
a=f —(1——)&
o U1 ) ¥
Hence show

dd  (H+2)8dU;, _ o

& ¥ a2
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11 Turbulence

So far we have considered the laminar boundary layer. However in many practical en-
gineering examples the boundary layver is turbulent. Wall turbulence is one example of

turbulent flow, other examples are grid turbulence, wakes and jets.

Grid turbulence Wake

s M2 ———

Jet

Boundary laver Interface between turbulent and non-turbulent

Unstable to
disturbances

R R R R T T T T T TR T | Y W i T T

Laminar B/L 1 Turbulent B/L
— hot wire CR(O
box

The boundary layer starts off laminar but at some critical Reynolds number it becomes

unstable to disturbances (eg. noise, vibration, freestream turbulence) and it becomes
turbulent. The interface between the turbulent fluid and non-turbulent fluid is non-

stationary.
u M

Position A Intermittant turbulent
signal

N

non-turbulent
]
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hu
Fully turbulent
Position B
t
11.1 Boundary layer equations and Reynolds averaging
Here we use N /S equations
D 1ap : 1
5 i —Ea + vVu
Dy 1dp 5
i TR el ; 1
D 5By + vV b (1)
D 1dp 5
T J
and continuity
du v Ow
i T W B 2
dr 8y 8z )
where
D @ a a a s
D8 HE +‘La—y +RE (total derivative)
v?=ﬁi fi_fi
gx?  dy* 8z

Decompose the variables into a mean and fluctuating part;

u=u+4+u
v=0+1
w=T+u 5
p=p+p
p=p+yp )
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it

T >

to to+T

1 to+T
U= ?f udi
|4

i}
Provided the sampling period T is sufficiently large, the result will converge ie. T — o0,
Actually only require T" 3 7 where 7 is a characteristic time scale of the turbulence. (see
Hinze ‘Turbulence’ for details). Note we are considering steady flow in the mean sense.
At moderately low Mach numbers M < 0.2

%’ S MIsi004 for M=02

hence for these conditions ignore density fluctuations.
Substitute (3) into (1) and (2) and take time average of the equations, ie. consider
turbulence as a statistical mechanics problem. When taking averages note the following

o _om
ar Oz
fwis=fﬁds
U+ =uU+7T

v=U+u=T+d

+

U=1u
. to+T
= u' =0 je. lim—f u'dt =0
Hence area of fluctuating quantities must be zero as implied by the decomposition given
in (3). Also,

W= (T+w)(T+v)=TW+T +Tv' + 'V =T0+ u'V'
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Although v’ =0, v = 0 in general u'v’ # 0

same frequency
same phase

VAVA' AUQU{\U }

ﬂivi

sin wave of double frequency

Yo

Special case: phase shift is 7/2 eg. u’ = sin(wt), v = cos(wt) then u'v' = 0.

Writing the result in tensor form;

{ﬁ-.é‘E}=_§ {EF'E}_ duu;
1" 5, oz, "\ 0z,2,f P\ og,

} Osbourne Reynolds equations

B,
=0
c?z.-
(4)
The corresponding laminar flow equations are
5111 3?3 82'11-,'
p{uja_rj} - _5_4“_'_#{3‘33'31' (5)

Laminar equations and turbulent equations are identical if we put u; = T; except for the

extra term
T
i duju;
dz;

'2 2 2
Uu;", g, Ug

The terms
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are called Reynolds normal stresses. While the terms

TRV ARTATA
are called the Reynolds shear stresses. We can construct a symmetric stress tensor

Ty

p
Revnolds stresses for most of the flow dominate over viscous stress terms.

Let us consider a [2] (in the mean sense) turbulent boundary layer. Applying an order

of magnitude argument (details given in Hinze, Schlichting) the boundary layer equations
are found to be;

ou _du_ ldp owv  &u

U + e = ——— — ——
6z 8y pdz By Oy ; n.
o . o . Prandtl’s B/L eq™ for turbulent
dr Oy

Compare this to the laminar case, recall

du  Ou ldp &%u
Ha—+t’8—=——d—+yﬂ
= Y gu = 5 Y" Y Prandtl’s B/L eq™ for laminar.
In the turbulent equation there is an extra term
o7

dy

this is a gradient of a Revnolds shear stress and only this component of the Reynolds

stresses is appreciable. This was discovered by an order of magnitude argument. Hence
we can write the approximate B/L equation as

fu _du ldp @8 { T }

“5: T8y T oz "oy b

;T
where g v— —u't’ for turbulent fow
p Oy
T Ju
— =v— for laminar flow
p Oy

— Is the total shear stress

[
va- = s the viscous shear stress and represents the contribution from molecular
Y
transport of momentum
—u't"  — is the Reynolds shear stress and represents the contribution from large

scale turbulent transport of momentum
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It turns out that —u'v’ is a positive quantity, consider two y levels in the B/L;

A +ve v’ causes a lump of fluid to move from the slow lane to the fast lane. This in turn
causes a —u' perturbation to the fast lane. Hence more often than not the product u'v'
is negative and hence w'v’ is negative, ie. —u'v’ is positive.

Summary of equations

0L B

or By

D
By

Three equations, four unknowns (%, ¥, 7, —u'v’), compare to laminar flow where we do
not have u'tv’ hence 3 equations 3 unknowns.

It can be shown that for turbulent flow the laminar von Karman momentum integral
equation is still valid ie.

d§  (H+2)8dU; _Cj

dr ] dr 2 °
12 Closure problem

When we take an average (ie. when we use a statistical approach) we loose information
and always end up with more unknowns than equations. The problem of having more
unknowns than equations is called the closure problem. To get the missing equation
requires a closure hypothesis. For example use experimental data with interpolation and
extrapolation or use some turbulence model (eg. eddy viscosity).
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' K Interpolation

extrapolation

The alternative is to perform a full direct numerical simulation (DNS), (ie. use full Navier
Stokes equations no B/L approx. no averaging). This requires a supercomputer and the
calculation may take several months. Even with modern computers this approach can

only be applied to low Reynolds numbers.
High Reynolds number boundary layer tunnel

DNS possible
0.35 m _dmjs
——

e

B R RN AR R R NN AN LN ONNRNTONN
i Working section

i:" 27 mi |

The singular unsolved problem in classical physics is turbulence.

13 Prandtl’s law of the wall

y A U, o
j T
| P ¥
:::’i
u(y) j 5
~ T
LSS

Change of notation all u, v are averages (eg u, T)
Prandtl’s law of the wall says u = f(y, 7o, v, p), we have 5 variables and 3 fundamental
quantities

= 5 — 3 = 211 products
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[,JE s Lt
Pl

since the above has dimensions consistent with a velocity call it the friction velocity ie.

Introduce a new velocity ‘scale’

) f % = [, « the friction velocity .

Hence Prandtl’s law of the wall can be written as u = f(y, U, v), we have 4 variables and

2 fundamental quantities

= 4 — 2 = 2] products

u yU;
T (:,—)

forming the II products gives

u :
U ’?‘ = One universal curve g 5 ?
]
]
log (=)
u
— N\
7
Viscous zone E =
vEE > —u'y fully turbulent region
— fu
i -'-uf A
= By
i

V

buffer zone
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In analogy with laminar flow

T &
K i PO fully turbulent region

p Oy
¢ is the ‘viscosity’ due to the large eddies = Eddy viscosity. Unlike v this is a function

of the fluid motion.
Let us assume € = f(7/p,y) not a function of v this assumption is called Reynolds

similarity hypothesis je. turbulent motions are independent of 1.
Number of variables = 3

3-2=111
Number of fundemental quantities = 2

Since there is only one II product this means;

f(Il;)=0

=>fl-—=-]=0
uy/%

=k where k is a universal constant

€

ie,

oy

Y

But T = 7 at y = 0 therefore T = 7 for small y. Hence

£

=K
o
y\/: for small ¥
€
R/
Now the closure equation is
T EEJu
p Oy
but for small ¥
E “"H'FUT%
Uf =ﬂyU,%
Cou U
oy wy
Lu=—Iny+¢
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where ¢’ is a constant of integration

u. =—Iny+e¢c
T v
L &
h ==Inp—
ENce ¢ ﬁln = + .A
universal

43

The eddy viscosity closure hypothesis therefore implies the existence of a logarithmic law

of the wall

u 1 U
= [T,__K.ln

+ A| Prandtl’s logarithmic law of the wall
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14 Alternative derivation of the log-law

The logarithmic law of the wall can also be obtained using dimensional reasoning. This is
a more rigorous approach since it does not rely on the eddy viscosity assumption. Again
assume a law of the wall ;

u=f(y,Urv)
u yU, ; :
= g — Law of the wall - verified by experiment (1)

Far from the wall the mean relative motion;

Uy —u=gly, U, 4)

0y —
]U 2 =g (%) Velocity defect law - verified by experiment (2)
If there is a region of overlap then
du du

3 from (1) & 3 from 2

Sty (yil)

Ju A U
— =U.f (y f) f (where ' means the derivative w.r.t the argument)

From (1)

i

Equating (3) with (4)
U-E ’ yU‘r _"U‘r e U
(L) - (4)

T - O
—

function of yU, /v alone function of y/6 alone

A
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This is possible only if both sides = a universal constant = 1/x.
Take the L.H.S;

df (%) 1
d(¥=)  x(%E)
()1 ()
v K v
u 1 . : ;
— =—In|=—|+4 logarithmic law of the wall
B v

Take the R.H.S;

—dg(}) _ 1
d(¥) ~(})

1
9(5)=—xlmg+e
Uy —u 1, vy
U,

- In 5 +¢  logarithmic velocity defect law

45

(6)

# k is the Karman constant, it is a universal constant and from experiments x = 0.41.

e A is the universal smooth wall constant and experiments have found A = 5.0.

s ¢ is a characteristic constant which depends on the How geometry, ie.

pressure gradient ¢ = 2.3.

for zero

Note there is much debate about the exact values, more recent experiments suggest £ =

0.44, A=6.3.

y‘U‘J’ +

+

g
(e .
E— =u Often use the notation

¥ _
E—-’G‘
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equation (2)

= T

i |
| I T lIII| I II!IIJ| I I II|||| i ! |'|—|'r'|'l —

1 10 100 1000 10000

i & Many different equations have been
u =y derived for this region

If we plot several profiles with different Reynolds numbers we get a family of profiles that
all collapse onto the law of the wall and the region of collapse increases with increasing
Reynolds number.

Increasing Reynolds numbe

Viscous zone Deviation which shifts bodily

upwards on the log scale
with increasing Reynolds number

A
- -

Viscops sublayer
- —— — =

P L.
y Iy

—_——
] | —
1 Buffer zone

] IIJIIII| ¥ I IIII.II| L] I.IIIII| 1 IIJIII-I ‘j

1 10 100 1000 10000
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Data belongs to vicous zone

Ul —Uu
U- Ul —u 1 y
=-Iln=+¢
o, el
Region of overla
grows with Reynolds !
number '
'. 1
d s
I
' Region of overla
= gl P =
I
C e
T (¥
In (-)
| ;
y
-
8

15 Fully developed turbulent pipe flow

Flow in a pipe is a form of wall turbulence. Hence the law of the wall and defect law
are equally valid except we replace 4 with the pipe radius a and the constant ¢ will be
different since this is a characteristic constant dependent on the flow geometry. But &
and A are universal so they are the same for fully developed turbulent pipe flow as for
turbulent boundary layers, in fact their numerical values are most easily determined from

pipe flow experiments.

u 1 yUs
E—Hln(ﬂ')-l'-A {5}
LS AL R (6)
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_=_--""|-|.|_“‘
Ue
y
Ay
—="'"'.’l

—
Us

A

U, =center line velocity

1
Uy =bulk velocity = — f UdA
A

Note fully developed means there is no freestream, the ‘boundary layers’ extend all the
way to the center line.

For high Reynolds numbers it is valid to assume (5) goes all the way to the wall.
However in the region of the center line the velocity profile will deviate from (3), so
introduce a deviation function ie.

u 1 yU- y
Ur_;ln(y)_i_A_FH(E) (7)
Deviation function, goes to zero for small ¥
Put y=a
U 1 1
L—,T—;]n(v)-rﬂ.H(I) (8)
Subtract (7) from (8) to give
Ue=u_ 1 iy y
- =—h(})+H0-#(3) (9)

The above is only a function of y/a

which is consistent with (2).
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15.1 Friction formula

49

We wish to determine the skin friction for smooth pipes. From control volume analysis,

— 1, -
L'?T?ﬂ.‘]"ﬂ:{p] -_pzlm-a'z P —_— === ) 4
1]
L. P pa — e 70 -
Define the friction factor f;
5
8 Uf

I U
=>T:;=§IEJLE,

Note f is analogous to C} for a boundary layer, recall

C; _U;
A
Hence
1 2 _ 41— P
fEﬂLb = d_L

Using (2} a expression for f as a function of Reynolds number can be found.

Up=Uy 1 Ue—u
=— dA
w =il (7
et f fetfufl —H (¥
_AL( ~in (%) + H() H(ﬂ))dﬁ
—_— e
neglect contributions from these terms
U.—Us _3
U,  2x
Substitute (8) into (10)
Uy 1. al, -
L—rf—;].]] 2 -'4.-H|:1]—E
h 1. al, 3

d‘ .'
Re = % Pipe Reynolds number

D = A universal constant

(10)
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16 Turbulent boundary layers

U Profiles deviate from ——
o T8 the logarithmic law of the wall i
30.0 _;
Profiles collapse onto the x

universal law of the wall B o
20.0 - \ .

£ + A
i
10.0 s
P
A yU-
| gt —— ol g el e ¥
10 100 1000 10000

The amount of deviation from the logarithmic law depends on the large scale flow geometry
(ie. the pressure gradient) as well as the Reynolds number. We can characterise the
deviation from the logarithmic law by the wake function w(y/é) ie

Deviation = %w (g)

Where I is called the wake factor and is a function of z. w(y/d) is a universal function,
that is. it is common to all [2D] turbulent boundary layers.

()

2.0

I S B T T T

= ol
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al

Hence we can express the velocity profile in terms of a law of the wall/ law of the wake
U

U~

LD L SO
K L

Law of the wall Law of the wake

\ Wake component

Wall component

U
I:

16.1 Zero pressure gradient layer

(a)

There are layers where II = constant and such layers are called equilibrium layers. An
example is the zero pressure gradient layer, where

IT = 0.55 + this gives us closure.

For this case it is possible to derive a law of skin friction, using the integral momentum
equation in conjunction with the law of the wall, law of the wake. The von Karman skin
friction law is one example.

Now for a zero pressure gradient [/; =constant, so the integral momentum equation

becomes

At y =4, U = U, hence (a) implies

G _d8
2 dr
d(%
=d|:"'_[:1
C; _dR,
"2 dR,
v, 1, 8U.

. k v

=29
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Subtract (a) from (2)

Byl =l Yy o II ry
= (E) +—u(l) - —w %) (b)
This represents a similarity solution, ie. it is of the form
Uy -
3
= 1) 3)
Put
2 U
— — T — 4
AT, )

Use (b) to find expressions for §* and #;
P 1 I
7=f (=)
Uu. i =-U
-7 | ( o)
1 1
~5 | senan
L P

definite integral of a universal function = universal constant

=— actually we don’t use this result, its just included for completeness

8 ol 7 U
i=[ 7 ()
e (Y
= dn — d
fu( U " 0 Uy "
o, -u o, -u
Sf( o) - s=f( 72 )‘i”

6 C G
i 5§ s2 &)

where

1 .

N i 2 S £ P(n)dn .

o
From (2)

i LA S

Lr [ K

() < (5-4-2u0)
. tET-re::q::-{m (S—A—%wl{l])} (6

o
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53
From (3)
oW U (GG
TR G
Cp U (C1 Gy
etis(3-9
Hence from (6)
Cs I
Ry = (U} = ?) EX]-"-'{R (S‘ A- ;w[l})}
Put A+ %w{l] = ¢(1)
4R _(C2 ., .~ s b
"ﬁ'(sf“‘(‘l 5 )exp{H{S o(1))} (7)
Now (1) implies
dRy 1
T ®
Hence using (7) and (8) we obtain the differential equation;
dR, _dR, dRq
dS ~dR; dS

_s? (-g—g RO "T":"“) exp {k (S — 6(1))}
. "*;?; =(C3 + KC1S* — KC3S) exp {k (S — 6(1))} .

Initial conditions are R, = 0, 5 = 0. Solving by integration gives

| B= {clsi- (gﬁﬁ +cg) S+ % (% +Gz)}exp{ﬂ (§—o(1))}

Since in practice S is large (eg. 20 < § < 30) we retain only the S* terms giving

R; = Ci5%exp {x (5 - ¢(1))}

:>S=e5[1}+%ln (C‘TS‘?)

hence

EE

— = A’ + B'log,y(R:C}) — Karman law of skin friction

With # = 0.51, A = 5.1 and I = 0.55 get

A =415 B'=1T.
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| 3 z R.C;
DI' E} = AH + B’ 1Ug1u (Tf)

f
f Laminar boundary layer
C} = 0.664R; }

Turbulent boundary layer

V& =4+ B logy (%2)

log;p R=
I

R

Tt

Transition Reynolds number
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