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Developing the Incompressible Thermal Boundary Layer Solution starts with the energy equation from the 2D incom-
pressible Navier-Stokes equations
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When simplified using the incompressible thermal boundary layer assumptions
1. Boundary layer thickness (&) is small, i.e. Re 3 1

e

. Boundary layer is laminar

Lad

. Buoyancy effects are negligible, i.e. Fr 3 |

A

. Energy changes do not significantly effect the fluid density or viscosity
yields the following for the energy equation
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Assuming dissipation effects are negligible (i.e. Eckert number is < 1), then (2) becomes
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Since the Blasius solution is a special case of the Falkner-Skan solution, the solution procedure proceeds with the use
of the Falkner-Skan solution to the continuity and momentum equations. Utilizing the coordinate transformations from the
physical space y-coordinate to the transformed coordinate, 1, the right side of (3) becomes
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In order to address the left side of (3), intermediate results from the Falkner-Skan derivation for u and v are needed.
These are shown here as (5a) and (5b).
u=U.f (5a)
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Utilizing the coordinate rransformations used in (4) as well as (5a) and (5b), the left side of (3) becomes
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which when simplified becomes
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Utilizing the definition of § in the Falkner-Skan solution
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and rearranging terms yields
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Lsing another result from the Falkner-Skan solution, shown here as (10),
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results in (9) becoming
T aT - ;
u-a'?+v—é-;—— viT (11)
Combining (4) and (9) yields the following modified equation for the energy equation:
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The only difference between the Blasius or Falkner-Skan forms of (12) is the choice of f.
With the energy equation developed into a form independent of the x-coordinate and in the form of a homogeneous,
second order ODE, an analytical solution can now be developed. First, the boundary conditions can be established as

isothermal wall: T(0)=T, T(=)=T (13
adiabatic wall :  Tis=) =T, T"{{!I} =0 (14)

Notice that this assumes a constant wall temperature for the isothermal boundary conditions and a constant freestream
temperature for both isothermal and adiabatic boundary conditions.
The solution of {12) is
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Applying the adiabatic wall boundary conditions to find the constants C, and C, results in the following simple equation
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Applying the isothermal wall boundary conditions to find the constants C, and C, yields
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which when applied to (15) yields
M FrFi(g) g
o(m) = o>t (18)
o TR
T—-T.

and  F({) = fu ? fls)ds



Finally, the wall heat flux for the isothermal wall boundary conditions is
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and the denvation is complete.





