The Dynamics of Fluids

D. Scott Stewart*
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Lecture 11

The doublet

"I'he potential doublet is the derivative of the potential source, i.e.

o

F=% 1)

The doublet can be thought of as a superposition of a sink and a source,
both of equal and infinite strength. placed infinitely close together, how odd.
See figure 1.
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Note that in the above, we have chosen the source strength to be infinite and
the distance between sink and source to be zero by taking the limit as e — 0.
Note that for small ¢ we can expand
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Figure 1: (a) The streamlines for a sink and source of equal strength placed
apart. (b} The streamlines for the doublet.
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Let’s now find the equations for the streamlines of a potential doublet.
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Therefore the streamfunction for the potential doublet is identified as
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In the above equation we complete the square and rewrite the equation for
the streamline as
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which is a family of circles of radius of u/(2y) with its center at (z,y) =

(0, —u/(2¢)). The streamlines are shown in figure 1b.
As an erercise show that the velocity in polar coordinates is given by,

T = _% cost, vp = ——E-?— sinfl. (9)



Potential flow past a circular cylinder

Consider the superposition of a uniform flow and a doublet,
F(z)=Uz+E, (10)

With z = Re'® we rewrite this potential as

F(z) = URE® +Ee®

R
R+ L (vR-2)s
(LR+ R) cosf + i (I, R R) sin f.
(11)
Therefore the streamlines are given by
b= (UR— ﬁ) sinf. (12)
R

Suppose we pick p such that on a circle with a given radius, R = a. is
guaranteed to be a streamline. Notice that if we pick the streamline to be
i = 0, on R = a we have the condition that

e (Ua = E) sin@ =0, (13)
or we must pick u so that
u=Ud® (14)
Thus the potential for flow past a cylinder of radius a is
2
F=U(z+a7). (15)

a plot of the streamlines is shown in Figure 2. Note that for large distances
from the cylinder, R — oo and the potential reduces to that for a uniform
flow.

Now let’s calculate the velocity field, the speed and in turn the pressure

which comes from Bernoulli’s equation. The complex velocity is simply given
by
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Figure 2: Potential flow past a cylinder
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As an exercise, show that
ﬂ-2 az
vp=—U (1+ﬁ) sin @, 1’1':{:"-(1—?)!:05{3. {17:}

So that on the surface B = g we have,

v = 0,15 = —2U sinf. (18)

If the cylinder is placed in such a way that surfaces of constant z, where
z measures the distance upward, intersect the circular cross-section, then
Bernoulli's equation reduces to

1
| §P|V:32~. (19)

where |v|? is the speed squared and P, is the stagnation point pressure. On
the surface of the cylinder v, = 0 and the equation for the pressure reduces
to
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Figure 3: The pressure distribution over a circular cylinder

P = P, — 2pU%sin?(6). (20)

Note that there is a forward and a rear stagnation point on the cylinder since
both components of velocity vanish there and the pressure is F;. Notice also
that plotting the pressure distribution as a function of # say, shows that it is
symmetric with respect to 8 = 7/2.

The pressure distribution on the cylinder is shown in Figure 3. and note
that the pressure acts perpendicular to the cylinder, normal to the surface.
Now let's calculate the total resultant force from the pressure distribution
acting on the cylinder’s surface. Then the differential force is given by

dF = — PnRdf. where, n = —cos(#)i — sin(f)j, (21)

and

Fo= [ (P, = 2pU25in?(8)) (cos(@)i + sin(0)5) Rd6 (22)

Thus the net resultant force is zero, even though there is a nonzero pressure
distribution acting on the cvlinder. This is called D’Alembert’s paradox. But
the paradox is simply resolved by noticing 1) that ideal flow is inviscid, so
that there are no viscous forces that could act on the body and that 2) the



pressure distribution is perfectly symmetric due to the symmetric flow field
generated by the cylinder.

Flow past a circular cylinder with circulation

Here we consider the potential that is created by adding a potential vortex
to the potential that describes a uniform flow past a cylinder, i.e.

5 %
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On the surface z = ae'® we have that the streamfunction is given by
Y= 3 InR/fa (24)
v — z.ﬂ' 1

so that on the cylinder surface where R = a, ¢» = 0 and is seen as a closed
streamnline. However the x — axis is no longer a streamlbine in general.

Once again (see Currie) one calculates that velocity for this potential by
taking the derivative of the potential and then identifving individual velocity
components using the definition of W. Generally one find that
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On the surface of the cylinder R = a one obtains

r
vr = 0,v9 = —2Usin(6) — o—. {26)

Stagnation points in the flow are found by setting both velocity compo-
nents identically equal to zero, thus doing so we find that the stagnation
points are found on the surface of the cylinder when # takes on values

r
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This shows that finding the stagnation points breaks down neatly into three
separate cases based on dimensionless circulation parameter defined by the
above equation namely,

sin(fl;) = —

(27)

: O (28)

e —— = 1, = - E
drlia "drla dxUa '
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In the first two cases, the stagnation point actually lies on the cylinder, but in
the last the stagnation point does not and lies out in the inerior of the fluid.
This is clear since sin(#) can not take on values that are greater (or less) than
one. Then the location of the stagnation point is found from solving both
equation for v., v = 0, simultanecusly. For very small values of the vortex
circulation the flow looks quite similar to that of flow past a cvlinder, but as
the circulation increases the stagnation points move closer together on the
cylinder, eventually merging and finally lifting off 1he cylinder to move o
the fluid interior. The corresponding streamlines are deformed due to this
addition of the vortex which induces a swirling motion in the flow. Figure
4. shows representative streamline patterns for the cases discussed above.
Unlike flow past a cylinder, the streamlines are not symmetric about the
r — aris and consequently the pressure distribution isn't either. It follows
that the pressure distribution has created a net result force sometimes called
the Magnus force which is recognized as a lifting force. We will sav more
about this below.

As an erercise find the general equation for the stagnation point for large
values of the circulation and show that the stagnation point lies in the interior
of the Huid.

Calculation of the total resultant for closed bodies: Blau-
sius’ Theorem

There are many cases in the study of aecrodynamics, like the very last example
in which we want to calculate the resultant force due to a certain complex
potential that has its singularities inside a closed streamline. The closed
streamline, of course then represents a body, and if the body in asymmetric
or the potential is such that an asymmetric pressure distribution is created,
then there is a nonzero resultant force acting on the body. We can calculate
this force resultant in a simple way by means of Blausius’ theorem

First let’s give the result and calculate its consequence for the last exam-
ple. If X (the drag) and Y (the lift) are taken to be the force resultants created
by the pressure distribution in the r—direction and y—direction respectively
and M is taken to be the resultant moment about the origin created by
the pressure distribution, and if W = F'(z) is the complex velocity, then
Blausius’ theorem states that
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Figure 4: Streamlines for various values of the circulation



X —i¥ =-Ef W2dz, M = —Em{f zwzdz}. (29)
2 Jo 2 c

where (' is any simple, close contour that encloses that body.

Now let's apply this theorem to the last example which is flow past a
circular cylinder with circulation. Note that to use the theorem, our task is
Lo

e First evaluate W?

e Carry out the complex contour integral, which means that we will need
to evaluate the residues of the singularities of the argument of the
integrals, within C.

Circular cylinder with circulation
By taking the derivative of equation (23) and squaring the result we obtain

a?\ a?\ il I?
W2 =2 (1 - —2) +2U (1 - ;—2) e ) (30)
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Note that if we calculate the resultant forces of the pressure distribution on
the cylinder, then we must calculate the contour integral [ W?dz where C
can be chosen to be the circular cvlinder. To do this contour integral we
must find the residues of W2, then multiply the sum of the residues by 27i.
Note that from equation (30) that W? is only singular at z = 0 and that it is
a simply matter to pick of the coefficient of the z~! term in the powers series
expansion of W? about z = 0, (which by (30) is actually a finite expansion).
The residue of W? near z = 0 is clearly,

v
f—, 31
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hence, the integral is computed as
" iU :
f W2dz = 2ri (L) — —2UT. (32)
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Consequently, we have for XY that
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X iy = 323{—2U1"J = i pUT, (33)

or

X=0 andY = plT. (34)

So we find that for a circular cylinder with circulation that the dragie X,
is zero and that the [ift, i.e. Y is related and proportional to the circulation
I'. Note that the lift force is also a function of density, being larger for larger
densities. If you had an airplane with an engine with a certain power rating,
would it be easier to take off in the summer or winter?

As an erercise find the moment M for the circular cylinder with circula-
tion.
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