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for a longer time, resulting in a lower velocity. In a turbulent flow large-
amplitude fluctuations do occur so that this phenomenon is often observed.

A second source of the time variation of p, is the integral quantity. The
fluctuations in ¥ are a result of the turbulent eddy structures in the flow, and
these structures have characteristic length (s, — 5,); this leads to a nonzero
value for the integral

Example 8.2

Although the measurement of the pressure at a solid boundary is one of the
most reliable measuremen®s in fluid mechanics, it is subject to errors resulting
from the presence of burrs *i ‘he lip of the hole. Explain the influence of a
burr on the upstreany and the '+~ nstream edges of a hole used for a static tap
measurement.

Salution. The presence of a burr will cause the fluid to deflect vertically
upward with a maximum point of the arch slightly downstream of the burr.
This will cause a low pressure region in the separated wake behind the burr
and a high pressure region in front of the burr. A characteristic streamline
pattern is shown by the sketch. In Fig. E8.2(a) the streamline curvature
indicates an outward-pointing normal vector so that from Eq. 8.11, for steady
flow,

; e i

% =p % or Ap=p % An
From this we note that p, < pg. The reading would be low. From Fig. E8.2(b}
the streamline curvature indicates 2 normal vector pointing toward point C so
that p~ > pp. A high reading would be recorded.
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Fig. EB.2

8.3 EQUATIONS OF POTENTIAL FLOW

Initially, nonvortical or irrotational fluid may become rotational

under the direct action of viscous diffusion or noninertial acceleration
effects. Consequently, there are entire flows, which are driven by

gi -:
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pressure or gravitational forces, in which the bulk of the flow is
irrotational, that is, a flow in which each fluid element may accelerate
or deform but not rotate. In general, the fluid near a solid boundary,
where the viscous effecs cause a no- -slip condition, will not be
approximated by an irrotational flow. A necessary and sufficient condi-
tion for identifying a flow as irrotation.! (%

VX V=0 (8.14)

This means that the velocity field V is a conservative vector field given
by the gradient of a scalar potential function ¢ (see Art. 1.3); that is,

V=9 (8.15)

Note that the vector velocity is obtained from a knowledge of the scalar
function ¢. In scalar form, Eq. 8.15 includes the three equations

dg

x

oo
e (8.16)

d¢
oz

The continuity equation for an incompressible flow is

Vo= 040 (8.17)

Using Egs. 8.16 the continuity equation, in terms of the velocity
potential, becomes

4% o' 9%
— + — + 8.18
ax? 3?3zt LSH1R)

which is Laplace’s equation.
The momentum equation (3.52), without the viscous term, which is

negligible in the inviscid flow, and with the use of Eq. (1.61) is

- —- Y2 _ vk (8.19)

2

where h is the vertical dimension and we have used ¥ % ¥V = 0. Using
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V = Vo, this becomes
d¢ p2 p

v Br+T+p+gk =0 (8.20)
at every point in the potentia] ﬂ{}w, This means that
dd p
T _j_ + 1 + gh = const (8.21)
For steady flows the Bernoulli equation results,
A ;
B + g/ = const (8.22)

This equation is valid everywhere, not just along a streamline.
To solve for a potential flow around a body we must first determine
¢ such that Laplace’s equation (8.18) is satisfied, then find the velocity

field from Egs. 8.16 and the pressure field from Eq. 8.22. The pressure |

field can then be integrated over the area of interest to give a force.

" This would be the technique followed to determine the lift on an airfoil.”

The immediate problem is the determination of the potential func-
tion ¢ for a particular problem of interest. The general three-
dimensionat problem will not be studied in this text because conven-
tional methods are restricted to either plane, two-dimensional flows or
axisymmetric flows. For both of these special classes of flows it is
possible to define a function {(x, ) called a stream function which is
constant along a streamline. Since the flow is tangential to a solid
surface, y is constant along a body. For the two-dimensional plane
problem, the continuity equation is

du do
e + B_y 0 (8.23)
If we define
_ dy oy
H—a—y, E-—E (824}

then continuity is automatically satisfied for an inviscid or a viscous
flow. Using the equation for a streamline (Eq. 1.30) with V=wui+uvj
and dR = dx | +dy j, we see that v dx — u dv = 0 along a streamline.
o d 2

This is exactly & = a—; dx + a—jf dv = 0, using Eqs. 8.24. Hence, we
conclude that ¢ is constant along a streamline. For a plane irrotational
flow the first two components of vorticity, £ and », are identically zero;

the third component gives

do du
§ dx T 0
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or
[

ﬁ - & = {8.25)

dx? dy?
Consequently, the stream function also satisfies Laplace’s equation in
an irrotational flow; therefore, if we can determine the stream funciion,
the velocity can be obtained from Eqs. 8.24 and the r:zs=ure frcm Eq.
B.22,

Two techniques may be employed to determine the potential func-
tion ¢ or the stream function . The first technique is to solve directly
Laplace’s equation with the appropriate boundary conditions, using
either a numerical technique or, possibly, the separa* it of variables
method. The second and often utilized technique is to imvestigate some
simple functions that satisfy Laplace’s equation and then to superim-
pose these simple functions, which is allowable because Laplace’s
equation is linear, to provide the flow around the body of interest. This
second method will be emphasized since it is the most commonly used
procedure for potential-flow considerations. ;

It should be emphasized that we need only determine the ¢ function
or the ¢ function to within a constant, since a constant can be added to
either of these functions and it will not effect the velocity field or the
pressure distribution.

A note on boundary conditions for potea:al flows is in order.
Laplace’s equation is second-order and require: boundary conditions
on the complete boundary enclosing a particular region of interest; that
is, the stream function (or the velocity potential) or its derivative must
be known over the entire surface. Consider a flow around a body
shown in Fig. 8.6. The dotted surface and the body form the surface
surrounding the region of interest. The condition at large distances
from the body would be

um [J o=() or
The no-slip condition is no longer required on the body's surface since
the effects of viscosity are neglected. Hence, we need not require the
tangential component on the surface to be zero. The body is a stream-
line and along a streamline the stream function is constant. Thus, on
the body we can choose the constant to be zero (it is arbitrary) so that
¢ =0 on the body and the stream function is specified on the entire
surface. The condition at the body for the velocity potential is more
difficult to specify so the stream function is generally used.

Another observation for plane irrotational flows is that

. AR (8.27)

y  9x’  ax

b= [ (R 261
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Surface surrounding
region of
interest

Fig. B.6. Flow around a body.

These follow from Egs. 8.16 and 8.24. They are the famous Cauchy-
Riemann equations and enable us to use the theory of complex variables
in our two-dimensional, plazc problems. The functions ¢ and ¢ are
harmonic functions and form an analyric complex function (¢ + ) called
the complex velocity potential. Conformal transformations, along with
all the complex variable theory, can thus be used for this class of
problems. We will not use complex variables in this text but it is
interesting to note the restricted class of problems for which it is useful
in fluid mechanics, namely, plane, incompressible, irrotational flows.

Example 8.3

Show that in a two-dimensional incompressible flow the difference in the
stream function between any two streamlines represents the flow rate per unit
of depth between the two streamlines.

Solution. The infinitesimal flow rate per foot of depth flowing past the
elemental distance 4/ (Fig. E8.3) is

dg=udy —vdx

where the negative sign results since to go from ¥ to ¢ + &) we must move in
the negative x-direction. Substituting for v and v from eqgs. (8.24) gives

. W
=dj
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dg = diy + day

diy = wdy l\)d:(
e

L
L‘?z = p(—dx)
Fig. E8.3
If we integrate this from streamline @ to streamline @ we obtain
g=1y3— 4

for the incompressible, two-dimensional flow.

Example 8.4

The streamfunction for a particular flow is given as (x, y) = x° - '}'1. Is this
flow irrotational? If so, calculate the velocity potential. '
Solution. The velocity components are

u=%==—2y

and

ﬂ-—E-—Z..t

The vorticity components are then

£=0, w=0 {=-242=0

The flow is irrotational, since all vorticity components are zero. A particle
would not rotate, it would only deform.
The velocity potential is found as follows. From the first equation,

3

e —23}’
so that

¢= -2+ f(»)
Differentiating the above with respect to y gives

de af

—_ = 2y =

vy T Yy
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FEquating this to v = —2x gives f= C where C is a constant. The velocity
potential is then
o= —-2xy+ C

The constant C is not important since it does not affect the velocity or pressure
fields. Hence, it is often set equal to zero.

Example B.5
Show that the potential lines and the streamlines for a two-dimensional,
incompressible, inviscid flow intersect one another at right angles, with the
resti-  hat a curvilinear grid is formed.
Sowwivon. Two contours intersect at right angles if their slopes form negative
reciprocals at each point in the flow field. The local slope of a constant-y line
can be expressed in terms of the ratio of the velocity components; that is

Slope of constant-y line = v/u

Along a line of constant ¢, d¢ = 0, so that

d
dpm 3 b
dx T
Hence, the slope ?—x of a constant-¢ line is given as
dy —d¢fdx
dx |gmconst de/ dy /

This slope of a constant-¢ line is seen to be the negative reciprocal of the slope
of a constant-y line. Hence, the two lines are orthogonal everywhere their
slope is defined. This feature of the ¢- and y-lines results in the formation of
an “orthogonal grid” of curvilinear squares. Such a grid is shown in Fig. E8.5.
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Example 8.6
Write the viscous term for a Newtonian incompressible, homogeneous flow
in terms of the vorticity and show that vorticity always accompanies viscous
effects. Then show that for a potential flow the viscous term vanishes.
Solution. The viscous term for an incompressible, homogeneous fluid is
i V2. We can use a vector identity which states that

Vx (VX V)=%V-V)—(V-V)V

This can be verified by expanding both sides in cartesian coordinates.
The quantity V-V is zero because of continuity; hence,

VW= -V x (Vx V)

Thus, the viscous term can alternately be written as — pA X @, so that if this
term is not zero then the vorticity cannot be zero. We see then, that viscous
effects are non-zerc only in regions of vorticity. The converse is usually, but
not necessarily, true; that is if vorticity is non-zero the viscous term is
non-zero (unless & ¥ w = 0). Using

puVIV = —uV x w

we see that if @ is everywhere zero then the viscous term vanishes.

Extewsror 86,1, Assume that a potential-flow solution exists for flow
around a body. Viscous effects are confined to a thin boundary layer
surrounding the body. Does the potential flow solution satisfy the complete
Navier-Stokes eguations for the flow external to the boundary layer?

Ans. Yes

Extension 86.2. Identify whether the bulk flow in the following problems
would or would not be adequately discribed as a potential flow: the flow
exiting from a bellows, the flow inside a journal bearing, the flow over an
airplane, the flow which escapes from a closet as the door is closed.

8.4 SOME SIMPLE PLANE POTENTIAL FLOWS

We will now investigate some rather simple functions which satisfy
Laplace’s equation, V*y = 0. Any function satisfying this equation
represents a potential flow. Whether it is of particular interest to the
engineer depends on the streamline pattern represented by (x, )
constant; that is, whether such a function includes a form of an object
of interest. Some functions which give streamline patterns of interest
are considered in the following sections of this article.



1. Uniform FAow

Since Laplace’s equation is second-order, a first-order dependence of
Y on x and y represents a possible stream function. Specifically,

¥ = Ax + By (8.28)
The velocity components are
_ N _
U= E e B (8.29)
and
ae i
£ s S (8.30)

This represents a uniform flow as shown in Fig. 8.7. If 4 =0, the
uniform flow is only in the x-direction.

Fig. B.7. Uniform flow.

The velocity potential for this uniform flow can be shown to be

¢ = Bx — Ay (8.31)
2. Stagnation Flow
Another simple function which satisfies Laplace’s equation is
¢ = Axy (8.32)

e i T Y
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The velocity components are

dy
u= 5 =Ax (8.33)
and
o= - %‘é = — Ay (8.34)

The streamlines represented by 4 =0 are the x-axis and the y-axis.
Since any streamline can be replaced by a solid boundary we can
consider this to be flow in a corner or flow against a wall, as shown in
Fig. 8.8. Both velocity componeuls are zero at the origin; hence this is

Dividing
streamline

. WWWWW?
Stagnation point
Fig. 8.8 Stagnation flow.

often referred to as stagnation flow. The velocity potential can be
found, using Eqgs. 8.16, to be

o= (x*—y?) (8.35)

An interesting feature of a stagnation flow is that the siicau.ie
passing through the stagnation point divides the flow so that part of the
flow proceeds in one direction and part in another. For flow around an
airfoil the dividing streamline separates the flow that proceeds over the
top of the airfoil from that which travels underneath the airfoil.

3. Sources ond Sinks

For many applications it 15 more convenient to use polar co-
ordinates, shown as r and & in Fig. 8.9. Laplace’s equation, in polar
coordinates, is

_1 3 ( 1 3%y
vziﬁ‘—‘;‘ﬁ;(f?)'l':i F=ﬂ {3.36}
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The velocity components are

ay

o 1 o
_,\. Dr- : ﬁ'ﬂ- I";l_;a- = E [33?‘)
which follow from the continuity equation,
13 L 3o _
T (ro,) + T i 0 (8.38)
Consider the simple harmonic function
y = Al (8.39)
Using Egs. 8.37, the velocity components are
o=2  4=0 (8.40)

Since v, is everywhere zero, the streamline pattern must be represented
by radial lines emanating from the origin, as shown in Fig. 8.9. If 4 is
positive a source is represented; if 4 is negative, a sink results.

v

—af

==

y e R
@ = I In r .

Fig. 8.9. Source flow.

The velocity at a particular r is constant for all #. Hence we can
integrate around a circle enclosing the origin to obtain the flow rate g
as )

q= J:’v,r daf

= 2mA (8.41)

= B 2 %g;‘ Nz - - I I i
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m
v, r df

A (8.41)
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In terms of the source strength g, the streamfunction is

g
y=3-0 (8.42)

where g is measured in ft*/sec/ft of depth. _g"';""
& e N —
In cartesian coordinates the streamfunction :s

y=Atn' = (8.43)

and the velocity components are

Ax AY

= U=

xi‘._'_yl’ 12"'}’2

(8.44)

The associated velocity potential would be

¢=AlInyx*+ y* (8.45)

in cartesian coordinates. In polar coordinates, ¢ would be

d=Alnr (8.46)

4. An Irrotational Vortex

Another simple function of interest, because of its resulting stream-
line pattern, is
y=Alnr (8.47)

This satisfies Laplace’s equation everywhere but at the origin, where
r = (0. Hence the flow must be irrotational everywhere, except possibly
at the origin. The velocity components are

6, =0, Uy = — (8.48)

= |

and obviously represent circular streamlines about the origin, shown in
Fig. 8.10. The velocity increases as the origin is approached; a tornado
is a good example of this type of motion.

The circulation T is defined as (counterclockwise is positive)

r=gv-ds (8.49)

For the specific case of the irrotational vortex and for the contour
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SV

Fig. 8.10. An irrotational vortex.

formed by a circle around the origin, I' may be expressed as

2z
P f vp(r df) = —27A (8.50)
(i
The stream function, in terms of the vortex srrength T is
. ‘
Y= 3 Inr (8.51)

The reason why circulation exists in an irrotational flow is that we have
integrated around a singularity. If any path had been chosen which did
not enciose the origin, I’ would have been zero. At the origin there
exists an infinite vorticity, with the vorticity zero everywhere else.

In cartesian coordinates the streamfunction is -

$=AIny*+y? (8.52)
and the velocity components are

Ay Ax
u= v= — 8.53
x*+y? x2+y? (8.53)

The corresponding potential function would be

- _ -1 ¥
¢ A tan -

(8.54)
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¢=—A0 (8.55)

5. A Doublet

We can create another simple function which satisfies Laplace’s
equation by the method of superposition. Place a source at x = — = o=
a sink at x = + ¢, where ¢ is a small quantity (see Fig. 8.11). The stream

function 1s
— =1 ¥ _ wicf F
Y =4 tan P A tan pros (8.56)

Remembering that

31/ 3 = lim Jx+ey)—flx—ey)

2e

we may put Eq. 8.56 in the form
L 9 g JE
¥ =2ed dx [tan x ]
.
=2ed| — —— 8.57
[ x4+ y? ] 8:57)

where € —0 and 4 — =0 so that e4 remains constan . he resultant
flow is called a doublet. Defining the doublet strength p to be p = 2e4,
the streamfunction is

w
[} = — 3.53
v x4+ y? {5:%)

Fig. 8.11. Superposition of o source and sink. If € = 0, a doublet is formed.
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This doublet is oriented in the negative x-direction. It could have
been directed differently if the original source and sink had been
placed along a different line; however, it is most common to orient the

doublet as represented in Eq. 8.58.
In polar coordinates, the streamfunction is

i sin @
¥ r
with the velocity components
p cos @ o sin 8
g, = - = =— ———
r 3

The cartesian velocity components are

. o R
(x2+ %’ (x? + y?)
The corresponding velocity potential for the doublet is
I ... 28
x4yt
or, in polar coordinates,
__ pcosh
T

(8.59)

2.60)

(8.61)

(8.62)

(8.63)

The resulting doublet flow is shown in Fig. 8.12 with both streamlines
and potential lines shown. For ¢ and y constant, Egs. 8.58 and 8.62

Potential
lines

Fig. 8.12. The doublet criented along the x-axls.
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Example 8.7

Determine the velocity potential
Selution. Using polar coording
the velocity potential with

_ 3
0, = E
Hence, from eq. (8.40),
giving
h =

Then, since vy = 0 for a source,

1

=1

Thus, f(#) is at most a constant;
within a constant we simply let th
velocity field or the pressure field.

q

The constant-¢ lines are circles at
the streamlines.
Extension 8.7.1. The function «
that
.¢|. =

Why can we choose C =07 If «
components, and stresses change?
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the construction of more comy
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simple flows are the basic buil
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nction 1s
] : Sin g (8.59)
wsin @
uﬂ‘ R e .?'1 [B,&D}
e
2
| om— P2 _ (8.61)
' (x*+ %
i | for the doublet is
e (8.62)
; P },2
|
B (8.63)
E

i in Fig. 8.12 with both streamlines
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Streamlines

Potential
lines

oriented olong the x-axis.
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show that two families of circles result, all passing through the origin.
Note the orthogonality between the streamlines and potential lines.

Example B.7

Determine the velocity potential ¢ for a source flow.

Selution. U'~ug polar coordinates the velocity components are related to
the velociy poicatial with

Hence, from eq. (8.40),

giving
d=Ad Inr+ f(#)

Then, since v, = 0 for a source,

Thus, f(#) is at most a constant; but, since we only wish to determine & to
within a constant we simply let the constant be zero. This will not aff . the
veiocity field or the pressure field. Finally,

=4 Inr

The constant-$ lines are circles about the origin. They are always normal to
the streamlines, '
Extension 8.7.1. The function ¢, in general, should include a constant so

that
g=Alnr+ C

Why can we choose C =07 If C =10, how would the pressure, velocity
components, and stresses change?

8.5 SUPERPOSITION

The flows that are presented in the previous article are referred to as
“simple flows"”; their flow patterns are easily perceived and their
mathematical descriptions are uncomplicated. These simple flows may
define a flow field of engineering interest but their principal use is in
the construction of more complicated flow fields by the process of
superposition, that is, by ~dding two or more flows. In this sense, the
simple flows are the basic building blocks for two-dimensional plane
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flows. We can now superimpose the y-functions to create the flows of
interest. This superposition is allowable because the governing equa-
tions for the ¢- and y-functions are linear; specifically, V¢ = V2 = (.
We simply add any combination of the stream functions together and
we are assured that the new function satisfies all the basic equations.
The purpose is to create a { or ¢-function which represents a flow field
of interest; numerous examples are given below. It will become clear
that if one streamline can be identified which has a desired geometric
shape, then this streamline will be designated as the “body” and, in
general, the streamlines beyond this region taken as the flow around
the body. Mote that, since no flow crosses a streamline, its role is
identical to that of a solid surface.

1. Flow Past a Half-body

If a uniform flow in the x-direction is combined with a source flow,
the stream function and velocity potential are

A i hie i =] "‘_“ 2 a4y
ey e ‘P Lﬁ’ + Far tan x % ‘4.‘
nolenied — 4= Ux + zi; In Va2 + 2 (8.65)

The streamline which divides the source flow from the external flow
forms a half-body shown in Fig. 8.13. The value of the stream function
on the body would be § = g /2 since ¢ = 0 on the positive x-axis. On

Fig. 8.13. Flow past a half-body.

Ae £E SUF

the negative x-axis, tan~'y />
function as ¢ = g /2.

1t will be insiructive to find ti
the asymptotic dimension of the
on the x-axis at the point where
8.64 with respect to y, we have,

w= L

Setting u = 0 the x-coordinate

X

£

The y-intercept occurs where
y-axis. The value g/2 is chose:
of fluid flowing between the x-
surface is half of the fluid emi
Cxample 8.3. At the ;-mitreep

U= Uy +

kol

giving

The asymptotic dimension A
y = h, namely,

]

y=Uh+

kol

so that

2. Flow Past a Cylinde:

The combination of a unifo!
oriented in the negative x dire
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the negative x-axis, tan~'y/x =« and Eq. 8.64 gives the stream
function as ¢ = g /2.

It will be instructive to find the stagnation point, the y-intercept, and
the asymptotic dimension of the half-body. The stagnation point occurs
on the x-axis at the point where ¥ = 0 and y = 0. By differentiating Eq.
8.64 with respect to y, we have. along the x-axis,

gx =A==
=4+ — 4
u 2 (x? zn____..j_ (8.66)

Setting # = 0 the x-coordinate of the stagnation peint is given by

3 q

=~ 5op + (8.67)

The y-intercept occurs where the ¢ = ¢/2 streamline intersects the
y-axis. The value g/2 is chosen for ¢ since we know that the quantity
of fluid flowing between the x-axis and the curve designating the body
surface is half of the fluid emitting from the source, namely, ¢/2. See
Example 8.3. At the y-intercept point x = 0, so that

'H",‘lz
g .
¥=Upp+ 5 tan~| FP =gq/2 (8.68)
giving
yp=q/4U (8.69)

The asymptotic dimension A would be found from letting x—co and
y = h, namely,

0
q il h
= Uh+ e tan /E- =g/2 (8.70)
so that
q

2. Flow Paost a Cylinder

The combination of a uniform flow in the x-direction and a doublet
oriented in the negative x direction will result in flow past a cylinder,
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shown in Fig. 8.14. The stream function and velocity potential are

sin @
= Ursinf - s

pcos 8

&= Urcos #+

Fig. 8.14. Flow post a cylinder, showing orthogonality between streamlines
and potential lines.

The radius of the cylinder is determined by locating the radius at
which the radial component of velocity o, = 0. The r-component of
velocity, using Eq. 837, 15

ﬂr=(U—£)mﬁE (8.74)

Setting v, = 0 gives the radius of the cylinder, as

ro= % (8.75)
The stagnation points are located by setting ¢, = 0 with r = r,. Making
use of Eq. 8.37, the f-component of velocity is

= — ( r—i £ U)sin 9 (8.76)

The stagnation points on the cylinder are thus located at 8, = 0° and
8, = 180°. At these angles and r = r, both v, and v, are zero.

(8.72)

(8.73)

L3
-

Art, 8.5

The streamfunction, in terr
y= LU

The velocity on the cylinder
8.75 in £.76, namely,

v,

with ¢. - 0. The pressure dist
force el »uis, is found by usit

P =

where p, is the pressure at L
ZETO.

We observe that the press
decreases to a minimum valu
and reaches the same maxims
Because of this symmetrical
simple result has been obtain:
applicable to all non-circular
tional flow around a body, Ui
cylinder, the pressure distrib
tional flow, (part a) and for

() Inviscid flow solution
{zero drag)

Fig. 8.15. Pre:
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m and velocity potential are -. ; ._: The streamfunction, in terms of the cylinder radius, is then
rind 2 riUsin §
g (B2 = Ursin § — % (8.77)

The velocity on the cylinder where r = r; is fcund by substituting Eqg.
8.75 in 8.76, namely,

LB cos 8 (3.73)

v, = —2Usin @ (8.78)

with v, = 0. The pressure distribution on the cylinder, neglecting body-
force effects, is found by using Berno .i::’s equation and is

P, = po — 2pU? sin? (8.79)

where p, is the pressure at the stagnation point where the velocity is

ZETO A
We observe that the pressure is maximum at the stagnation point"{‘-’f-_-/
decreases to a minimum value on the-top and bottom of the cylinder,
and reaches the same maximum value at the opposite stagnation point.
Because of this symmetrical distribution no drag would result. This
simple result has been obtained using a circular cylinder; however, it is :
applicable to all non-circular cylinders in potential flows. In an irrota-
tional flow around a body, the drag is always zero. For the circular
cylinder, the pressure distribution is shown in Fig. 8.15 for an irrota-
tional flow, (part a) and for a real flow with separation (part b). The

' ng orthagonality between sireamlines

rmined by locating the radius at
city v, = 0. The r-component of

A

;- )cos ] (8.74) :

; :i B Streamline

9 patterns
cylinder, as l

=
B 8.75 b
= (8.75) :
settin}g vy = 0 with r = r,, Making miﬁﬁ!ﬁm
velocity is —r)
+U)sin 6 876)

8- fa) Inviseid fhow solution (b} Fiow with separation
i et Tocaned at ﬂ’ = (0° and | 5 (zero drag) {large “pressure” drag)
both v, and v, are zero. £ Fig. 8.15. Pressure distribution on a cylinder.
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pressure distribution predicted from the potential flow analysis is a
good approximation to the real pressure distribution close to the point
of separation. In the rotational wake region the irrotational solution is
no longer an acceptable approximation to the actual flow. If the
Reynolds number associated with the flow is low enough, no separation
will occur; however, then viscous effects cannot be neglected for this
situation and again the potential flow theory is not an acceptable
approximation to the flow. The fact that the potential flow solution is
an acceptable approximation to the flow up to the separation point
makes it important to engineers solving for flows around bodies. In
fact, for streamlined bodies the flow mav not separate even at large

Reynolds numbers; for these aerodynamic bodies the potential flow _,-}(/'
approximates the flow over the whole body. The low-pressure region of ™

a separated flow is, in general, the dominant contributor to the
aerodynamic drag of bluff bodies. Flow around bodies is considered in
Chapter 10.

Flow around a circular cylinder is often used to illustrate a graphical
method which gives an approximate solution to an irrotational plane
flow. The method is based on the orthogonality which exists between
the streamlines and potential lines. To utilize the method, streamlines
are sketched so that they are equally spaced in regions of uniform flow;
then potential lines are sketched in, equally spaced in regions of
uniform flow and with the same spacing as the streamlines. Near the
body the potential lines are sketched in with the same approximate
spacing as the streamlines. The resulting pattern of streamlines and
potential lines is a flow ner, shown in Fig. 8.16. Potential flow theory
states that streamlines and potential lines intersect at right angles,

¥

4 = const

Fig. 8.16. Flow net for flow around a cylinder.
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hence following the foregoing procedure all spaces in the flow net
should approximate squares, and in regions of uniform flow, the spaces
should be squares. An'initial sketch of the flow net usually results in
regions in which the spaces are elongated or rectangular. This indicates
that either the streamlines or the potential lines are sketched too close
together. A second attempt at the sketch should picduce spaces that
are more nearly squares, and a flow pattern that is mc. - = arly correet.
Iterations are continued until all the spaces approximate squares as
closely as possible. Usually a coarse grid is used to start the process.
After several iterations a finer grid is introduced to give more accurate
results. After the flow net is completed, the velocity ..+ a point can be

approximated by observing the distance between the streamlines in the |
vicinity of the point. The velocity is inversely proportional to the'

distance between the streamlines. For example, if the distance between
two streamlines in the vicinity of a point is one half of the distance
between the same two streamlines in the region where the uniform
velocity 15 U, then continuity can be used to show that the velocity at
the point would be approximately 2/.* The pressure change can then
be approximated with the use of Bernoulli's equation.

3. Flow Around a Cylinder with Circ:!=ton

If an irrotational vortex is added to the streamfunction of Eq. (8.77)
there results

= Ursin§ — - gt e (8.80)
The velocity distribution on the cylinder with radius ro=Vu/U is
given by
Wondt 5 Vo NeelE g
The pressure distribution on the cylinder is
T r |°
Pe=Po—P 5 [2 sin # — Zargl (8.82)

where p,, is the stagnation point pressure. The lift is found by integrat-
ing the vertical component of the pressure force, shown in Fig. 8.17,

*Alternatively, the velocity can be obtained from the approximation A /Ar, where Ax is
the streamwise spacing of the curvilinear square.,
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r=§v - dy
= —2aryi2

Fig. 8.17. Flow around a cylinder with circulation.
and is
2x 1
L= _f.:, P, sin @ r,dd (8.83)
With the expression for the i
: pressure p, from Eq. 8.82,
Wi o P Eq this may be
L=—pur = {WTTr- (8.84)

This simple expression for the lift is also applicable to all non-circular

cylinders. It i
: gm e and the zero drag conclusion form the Kutta-Joukowsky

4. Series of Sources and Sinks

A series of sources and sinks could be situated on the x-axis and
superimposed on a uniform flow to create flow around a streamlined
body, shown in Fig. 8.18a. A series of sources and sinks of various
strengths would be combined with a uniform flow as

X _
Lois 4 =
v=Uy+ - tan o (8.85)

i=1
So that no net flow emanates from the body, we require that
N
.Et g, = 0 {886]

By letting qf—:r_{} at eit.h-:r end of the symmetrical body we can force the
body to be pointed; if g, is finite at an end it will be blunt.

5

G
Pl
4 'J';“?i"r’-‘i:s.-'::‘ AT

Bl s
i

el

L
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|'=§V - ds
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Fig. 8.18. Flow around a streamlined body.

The sources and sinks could be distributed along a line, as shown in
Fig. 8.16b, to give the airfoil an angle of attack. This would, however,
result in a flow as shown. The flow would turn the corner at the trailing
edge with a stagnation point located on the top surface. Of - curse, this
implies a tremendously large normal pressure gradient at the trailing
edge since V¥ # 0 as R—0 in dp/dn = p¥?*/R; hence the fluid would
not turn the corner at the trailing edge but would be as shown in Fig.
8.16c. In order that our potential flow be a good approximation to the
real flow a vortex is superimposed as shown. The strength I' of the
vortex is chosen such that the dividing streamline leaves the rear of the
airfoil at the trailing edge. The condition that the dividing streamline
be located at the trailing edge is the Kuila condition. The resulting Lit
on the airfoil is —pUT, and is a good approximation to the lift on the
actual airfoil.

The technique of superimposing sources and sinks is difficult if we
wish to form a predetermined body. The more common technique used
today is to distribute sources and sinks along the surface of a known
body, for example an airfoil, and then to determine the source and sink
strengths by requiring the normal component of velocity on the body
to vanish. The digital computer is obviously very handy in problems
where a large number of sources and sinks are involved.
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Some 11‘_:t¢r¢$!;ing flows can be generated by the method of images. Fo
exalmp]e, if a source flow next to a plane wall a distance J awa .we .
desired we could generate this flow by placing a source at the pzsit'cfe
(d, _ﬂ}1 and its it!]age, a source of equal strength, at the position (— 4 10]!1
This is shown in Fig. 8.19. Because of symmetry the y-axis becomes a
streamline and hence can be replaced with a solid boundary Thz

combined velocity potential is

=L mx-a)+y? + 2
0= mVx—a +5 + 5L mVlx+ )+ @87

resulting in velocity components

x+d

u=i[ x—d
2n {x_d]2+y2

(x +d) +y? |

¥

27 | (x—d) +y*  (x+d) +)?

(8.88)

Fig. 8.19. Source flow near a plane wall.

—
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On the y-axis, x = 0 and from the above expression for ¥ we see that
u = 0. Only v is non-zero along the y-axis. Thus, the velocity vector is
tangent to the y-axis, and the y-axis must be a streamline. The flow on
the right of the y-axis or the left then represents a source flow near a
wall. The origin is a stagnation point and the flow in the near vicinity
of the origin wouid be guite similar to that near the stagnation point of
the first section o Ari. 8.4.

Various other flows of importance can be formed by the method of
images. A source or sink flow in the end of a channel can be generated
by superimposing an infinite series of sources or sinks along the y-axis.
An infinite series of doublets distributed along the y-axis superimposed
with a uniform flow could result in flow around a cylinder in a
channel.

Example 8.8
Determine the angles which locate the two stagnation points on a rotating
cylinder. In particular, if an 8-in. dia. cylinder rotates at 200 rpm in a 10-fps
free stream, locate the two stagnation points.
Solution. The wvelocities, calculated from the streamfunction in eq. (8.80)
are
dy r

R U sin # 5 s
okl ~Etel Ul —Ir—zlifsuzui!ﬂ‘+E

_r.?
u,=%%-[!cosﬂ-—£ﬂms§

On the cylinder r = r, and o, is obviously zero. We wish to find the point
where vy = 0, the stagnation point. Setting v, = 0 gives

The angles which locate the two stagnation pofnts arc thus given from the
EXpression

=gin=t [ _T
i ma dmr, UV )
The circulation is calculated by considering the streamline of the vortex (see
Fig. 8.10) at r = ry to have a velocity of ryf2, where {I is the angular velocity of
the cylinder. The circulation is then (counterclockwise is positive)

200 X 27 _ 2
r=95v~ds= — e (2mrg) = — T" X ?"’ = —14.6 ft*/sec
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so that

b msn (- i) st (0348
Hence,

g, = 200.4°, 339.6°

Extension 88.1. Determine the @ in rpm which would cause only one
Ans. 60 rad/sec
Extension 882 Determine the pressure distribution on the cylinder of

stagnation point to exist on the cylinder.

Example 8.8 and calculate the maximum and minimum values of (p. — p.).
Water is flowing.
Extension 8.8.3. An approximation to the flow described in this example
can be created by the physical situation shown in Fig. E8.8. A flat ribbon,
wrapped tightly around the cylinder from a roll of kitchen towels works well.
Do the experiment. Explain why viscosity is mecessary to approximate this
inviscid flow problem. Explain why the cylinder executes a looping motion.

Jderk
Rl

8.6 AXISYMMETRIC FLOWS

Laplace’s equation in spherical coordinates for the axisymmetric case
is

el 0 1?_?1) 1 i( ﬂ_¢)=
Vi = < ar(r 3 +r2s'mi? 39 Smﬁag 0 (8.89)

The simple potential function

A
'ﬁ"?

(8.90)

satisfies Laplace’s equation and represents a poinf source with stream-
lines emanating along radial lines in all directions from the origin of r.

Ans. 97 psf, —609 psf
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) in=! (—0.348)
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1 o i T
7sind 90 (““”aﬂ] o

4 (8.90)
F

:presents a point source with stream-
in all directions from the origin of r.
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This point source with fluid emanating from a single point is quite
different from the plane source with fluid emanating from a line. An
integration of the velocity around a spherical surface allows us to
introduce the source strength g and write

|-\.._'

for a source,
By combining a source at x = —e with a sink of equal strength at
x = + ¢ the axisymmetric doublet results as e—0 with velocity pntentfal
~ pcos#
=" (8.92)

If we combine a uniform flow and this doublet flow we would have
flow around a sphere. The velocity potential would be

pcos @
-— + Urcos (8.93)

gi;.:

This flow is shown in Fig. 8.20 along with a graphical presentation of
the coordinates r, #, and x.

Fig. 8.20. Flow around a sphere.

The velocity vector would be found from

G d
¢”+l—¢é,

V&t

(8.94)
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where # is measured from the positive x-axis. For flow around a sphere

~ 2pcosé

dg
g = U cos @ 5 (8.95)
1 d¢ . w sin §
uﬁ=?ﬁ=—USmE-— = (8.96)
The radius of the sphere is found to be
‘3 1/3
ro=i- § ] (8.97)

A uniform flow could be superimposed with a series of sources and
sinks or a series of doublets placed along a straight line segment to
create flow around an axisymmetric body, as was shown in Fig. 8.18,
for the plane flow.

It should be pointed out here that a stream function for the axi-
symmetric flow could have been defined with the aid of the continuity
eguation. in spherical coordinates. Bui the wvelocity potential and
streamfunction no longer satisfy the Cauchy-Riemann equations so
that complex variables is not of use in axisymmetric flows. It may be
useful, however, to determine the streamfunction since it 15 constant
along a solid boundary. The continuity equation, in spherical
coordinates, for axisymmetric flows is

L L0+

F rsin @

% (0, sin 8) = 0 (8.98)

The axisymmetric stream function would then be defined from

1 o 1

L= - _ Ly == = - bt
" rging of -4 rsin g dr

(8.99)

Using Eqs. 8.95 and 8.96 the streamfunction for flow around a sphere
would be
usin? @

Y =1Ur’sin’ @ (8.100)

Example 8.9

A point source is placed at x = —a and an equal strength sink at x = +a
(Fig. E8.9). Determine the maximum radius ry of the axisymmetric body
formed if the source and sink are placed in a uniform flow,

Art. B.& 2X1I5Y M

Solution. Using Eq. 8.91 in car
g

¢=Ux-

]

4 (x+a}2+_}

Because of symmetry, the body wi
shown. Une may tind the body ra
that the total mass flux across the &
velocity is

a (x+a
u=—i- L'+

dx 4o (x + a)y +)

Along the x = ( plane

b~

Il
o
fri

il

= [+ -

(%1

The flow rate g through a circle ol

q=j;[u+

=U'ﬂ'i"%—ti"ﬂ

For a particular set of flow param
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x-axis. For flow around a sphere

2 u::;:rs ) (8.95)
e posin & (8.96)
| 2
e

1/3
) (8.97)
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(8.100)
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>

u
o
T -

Fig. EB.9

X

Solution. Using Eq. 8.91 in cartesian coordinates, the velocity potential is
7 ' g

+
rhrﬁx + a}z + i+ 2 4ﬂjl:x - a}z + p? + 2?2

6= Ux -

Because of symmetry, the body will have its maximum thickness at x = (), as
shown. One may find the body radius by integrating from r =0 to r = r; so
that the total mass flux across the area of integration is g. The x-component of
velocity is
x+a o
u=ai=u+ ( : g _— I.’Jc:t alg -
4-rr[{x +a) +y*+ zz] 41?[{): —a) +y*+ z"]

ox
Along the x = 0 plane

u= U+ 29a 35
da{a® + y* + %)

2a(a*+ ri)"*

The flow rate g through a circle of radius ry is

L]
ga
g= Ut ————— 2ordr
jﬂ’[ zw(a=+ﬂ]”‘]

= Uﬂrﬁ—w{

1L 1

For a particular set of flow parameters ry could be determined.
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Extension 8.9.1. Determine the maximum body radius r, if U=
a =4 ft and g = 100 ft*/sec. Ans.

Extension 8.9.2.

10 fps,
1.71 1t
Determine the length of the body for these parameters.

Ans. 982 ft

8.7 ROTATIONAL INVISCID FLOWS

In the preceding articles the vorticity was considered zero. It is
appropriate to discuss briefly the governing equations for inviscid flows
which have vorticity. The differential momentum equation, in vector
form, for an inviscid flow, is

aVv
B

VP

+§‘:’V2+mxv-——p——gvh (8.101)

By taking the curl of both sides of this equation we obtain, for a
constant-density flow,

%f‘i’ X V)+70 X (@ X V)= (8.102)

recalling that the curl of the gradient of a scalar quantity is zero. It can
be shown that
VX (X V)=

(This can be verified by expanding both sides.) The momentum equa-
tion, in terms of vorticity, is then

(V-V)e — (- V)V (8.103)

% +(V-V)o = (@ V)V (8.104)
or
%:i = (@-V)V (8.105)

This equation is the inviscid counterpart of the vorticity transport
equation (5.14).

Equation 8.105 allows us to state that if ¢ an inviscid flow is irrotational,
that is @ is everywhere zero, then it mm‘.r remain :rm!afmnal,__[g:—r if
D¢ /Dt = 0 everywhere in the ﬂow tE_i:n ©at the next instant must be

referred to as the persistence uf 1rrm‘anonahejy

:
e
.
L —.

=

S

.I"i

e
Dt B

e s
‘i.-.-_‘: b

e e
S Lih oF

A B L e U
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For a two-dimensional plane f
(E=7n=0), and one velocity
8.105 reduces to

allowing us to state that Et:lg
inviscid flow cannot change as 1
Of course, viscosity can creal
flow, and can cause vorticity -
foregoing, viscous effects havr. !
Returning to Eq. 8.101, if a ¢

Stl.‘ad}': V
v[ =2 F

!
!

Let ¥2/2+ p/p+ gh=®; the
normal to both a streamline and
normai to constant-P lines; nend
VZ
+
g

along a streamline or a vorfex
defined by the family of vor

Smp‘lﬁﬁe ~

d‘@'f-
-4 o
Fig. 8.21. Str
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For a two-dimensional plane flow, two vorticity components are zero
(£=n=20), and one velocity component is zero (w = (). Equation
8.105 reduces to

D{

= =0

= (8.106)

Of course, viscosity can create vorticity in an otherwise irrotational
flow, and can cause vorticity to change in a plane flow; however, in the

foregoing, viscous effects have been neglected.
Returning to Eq. 8.101, if a constant—dens:ty flow is restricted to be

steady,

allowing us to state that the vﬂmc:l y O of a. ﬂu.ui parncl%m a plane
inviscid flow cannot change as s the particle moves along.

g[T+§+gﬁ =VXa (8.107)

Let ¥2/2+ p/p + gh=®; then, from Fig. 821, we see that V& is
normal to both a streamline and a vortex line. But, we recall that V& is
normal to constant-® lines; hence we conclude that

0

T + ~ +gh = const (8.108)

along a streamline or a vorfex line and, more generaily, to the plane
defined by the family of vortex lines that intersects a family of

V=V Xw

Streamline

Fig. 8.21. Streamlines and vortex lines.
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streamlines. Note that Bernoulli’s equation for rotational flows is
therefore more restrictive than for irrotational flows where Eq. 8.108
may be applied to all points in the flow.

8.8 HELE-SHAW FLOW

The Hele-Shaw apparatus uses a viscous-dominated flow between
parallel plates to provide a visualization technique for the study of
inviscid flows. This seeming paradox is at least potentially resolved
when one realizes that the viscous effecis are dominant for ite flow
between the plates (with respect to z) whereas the “irrotational” motion
is in a direction parallel to the plates. The relationship of the two
motions will be shown by the Navier-Stokes equations.

Consider a flow system as shown in Fig. 8.22. The velocity has only
two components because of the small and constant spacing between the
plates. Hence, the Navier-Stokes equations in the x- and y-directions
are

u , du_ _ 19 (0% | 3w 3u
B Lo _ 1 v , b | D
"ax Ty T T o +"( o Hy2+ az=) (8.110)
i
| ]
— ,,
- T
%‘1-‘4‘.1
f'f:{‘l

iﬁw
pdeil |

H
@ l
= |

Fig. 8.22. Hele-Shaw apparatus.

For a viscous dominated flow, involving very slow motion, the obvious
restrictions and assumptions lead to
ap 3 P A%

— = — d

dx 3z2 > 5 P (8.111)

Because the z-spacing is small, the second derivative with respect to z

i
dominates the x- and y-derivati
giving 1

“T
and

o= L
p

Letu= U(x,y)and v = Vi(x,_

ap
iy

and
..
dy

Differentiate Eq. 8.114 with res
x; subtract, and there results

d¥
dx

But this is precisely the con
z-component vorticity since

(v x?

and since the flow between the

U- and V-components, the mu
plane!

Hence, the Hele-Shaw appai
tion which can be used to visu
is often simply a large, flat hori
water flows at very low speed:
free surface. Various objects :
potassium permanganate are (
object. Potential flow streamlir

3 i

f 81 Give several examples of
considered inviscid. Also give exal
inviscid-flow approximation woulc
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to gravity in the Euler-s equation and

ompressible, steady flow. State some
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: appropriate forms of the Euler equa-

. 8.6
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tions, explain the observed form of the pressure distributions. Is the velocity
around the bend higher on the inside or the outside?

8.7 Given: the velocity potential ¢ = x? — 2xy — . Can this represent an
imcompressible-finid flow? If so, find the stream function 4.

88 An aircraft is moving at a speed of 300 mph at an elevation where the
pressuic = 10 psi Jetermine the expected pressure at the stagnation point and
at a powet on the upper surface of the wing where the velocity, from potential-
flow the:ty, 15 calculated to be 400 mph. Assume incompressible flow for a
first approximation.

8.9 Sketch regions of vorticity and regions of zero vorticity for the follow-
ing: (a) entrance flow in a pipe; (b) flow over two-dimensional airfoil; (c) flow
over a sphere, with a separated region; and (d) flow around a Greyhound bus.

810 It is proposed that, to find the potential flow of fluid around a

e cylinder of radius R located in the center of a channel of depth A, the

. governing equations be solved using a finite difference scheme. State the
equation to be solved and the necessary boundary conditions. The flow rate is
ft* /sec,/ft. What is the velocity profile upstream from the cylinder?

8.11 Can the stream function ¢ = 4 (x? — »%) be used for a potential flow?
. If so, sketch the streamline pattern. Also, determine the potential function and
~ sketch several potential lines.

8.12 Show that ¢ = Ar™/=sin (vf#/a) represents flow in a corner, as
/\ shown. Show also the following: (a) if a = = /2, stagnation flow resulis; (b) if
. o =7, uniform flow results; and (¢) if @ = 2+, flow around a semi-intir.. ‘lat
pote results. Sketch some streamlines for the flow of part c.

%’ R

Preb. 8.12

/" 813 A velocity potential function is given by ¢ = 10x + 40x /(x? + y?).
?}a} Verify that ¢ satisfies Laplace’s equation, V¢ = 0. (b) Determine the

stream function and sketch the streamline corresponding to ¢ = 0. (c) Find the
- pressure distribution in the water along the x-axis, assuming the pressure at
“¥'= —co is 10 psi. (d) Locate any stagnation points.

8.14 Derive the expression for the velocity potential for (a) a plane vortex

2

1
1

and (b) a plane doublet.

8.15 Using Egs. 8.53, show that, for a vortex flow, the velocity vector is
normal to a radius vector and hence in the #-direction. Determine the magni-
tude of the velocity vector and compare with Eq. 848,
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J\; 8.16 Show that the vorticity of an irrotational vortex is everywhere zero
except at the origin, where it is infinite.

. 8.17 Superimpose a source of strength g =8 at x = —2, a sink of equal
strength at x = 2, and a uniform flow in the x-direction of I/ = 10. Does this
represent flow around a closed body? If so, determine the maximum thickness
of the body. What is the value of the stream function all along the x-axis and
on the body?

.~ 8.18 Place a source at (0, — ¢) and a sink of equal strength at (0, €); let €
approach 0 and the source and sink strengths approach infinity. Derive an
5xpressinn for the stream function of a doublet oriented along the y-axis.

¥ 819 A uiniform flow of 20 fps is combined with a doublet of strength

= 80 ft*/sec situated at the origin to give flow around a cylinder. (a) Sketch

the velocity along the y-axis. (b) Determine the deceleration at the point

{(—4, 0). (¢) Find the force of the water on the front half of the 20-ft-long

cylinder if the stagnation-point pressure is 5 psi.

8.20 Air flows around a 2-ft-dia., 100-ft-high pole at 50 fps. Assuming a
potential flow over the front half and a separated flow at constant pressure
over the rear half, approximate the pressure drag on the pole. See Fig. 8.15b.

8.21 Air flows over the symmetrical plane body shown. Using a flow net,
approximaie ibe sUeawiine patiern, assuming no- separation. Estmate the
minimum pressure on the body if the pressure in the free stream is 15 psi.

Prob. 8.21

8.22 Sketch the streamline patteru with the use of a flow net for the plane
contraction shown. Assume the streamlines are equally spaced downstream of
the contraction. Estimate the pressure at the point (1, 1) if the pressure
upstream is 20 psi and the flow rate is 100 ft* /sec/ft of water.

¥

an°
oty ’ ///}//// e L l: it
2ft
; i = — X
[::,WW%W
T_
an°

FR

823 Determine the rotational sp
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\__,/'X 8.23 Determine the rotational speed O at which a 2-in.-dia. cylinder would

have to rotate in a 20-fps fres-stream flow so that only one stagnation point
would exist on the cylinder. Sketch the streamline pattern.

824 A 2-ft.-dia. cylinder is rotated at 400 rpm in the flow moving at 10 fps.
Locate the stagnation point (or poiuts), and sketch the streamline pattern.
Hins: Be careful; the st=gration point may not be on the cylinder.

825 Gas 15 stored in an unlerground storage and pumped out as needed.
The streamline pattern in porous media can be approximated by a potential
flow. A well is placed in the plane layer containing the gas, next to two
impervious rock layers which intersect at right angles. The well extracts the gas
uniformly throughout the layer. For an extraction rate of 5 ft*/sec/ft, deter-
mine the velocity that would be expected along the x-axis. (Hinf: Use the
method images.)

{20 fr, 10 f)

Prob. 8.25

826 We wish to determine the potential-flow field around a cylinder in a
channel, with the channel height large compared with the diameter of the
cylinder. Superimpose a uniform flow and a large number of doublets and
show with the use of a digital computer that such a flow results.

827 A potential flow mnto a sink in the end of 2 channel is desired.
Superimpose a large number of sinks to give the desired flow. Determine u(x)
along the x-axis.

h

A A J’/

r

Prob. 8.27
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828 Derive an expression for the stream function for a point source and
sketch a streamtube containing two neighboring streamlines. Also sketch a
potential surface for the point source.

8.29 Determine the velocity at distances of 2 ft and 2 inches from a point
sink if fluid is being withdrawn from a reservoir at a rate of 10 ft®/sec. The
sink is removed from any solid boundaries.

830 Determine the cartesian components u, v, w of the velocity vector for
a point source. Show that they satisfy the continutiy equation du/dx +
do/dy +dw/dz = 0.

831 A point sink ‘< placed 2 ft from an impervious boundary. Determine
the wvelocity distribution =z'ong the stagnation line from the sink to the
boundary. The extraction =te is 6 ft*/sec.

832 Verify the expression (8.100) for the streamfunction  for axisym-
metric potential flow around a sphere. Determine the maximum velocity on a
8-in.-dia. sphere placed in a 20-fps uniform flow.

833 A point source of strength g is placed in a uniform flow. Determine
the y-intercept of the half-body formed, the location of the stagnation point,
and the asymptotic dimension of the axisymmetric body. Use U/ = 10 fps and
g = 200 cfs.

8.3 Alr flows over 2 large spherical weather balleon. Extimate the pressrrs
drag if the flow can be approximated by a potential flow on the front nau. [The
flow separates at the position of lowest pressure, and this low pressure is
assumed to exist over the entire rear area of the sphere. See Fig. 8.15b for a
similar type of flow. Use I/ = 50 mph, r, = 10 ft, and p = 0.0024 slug/ft*.

835 Start with the differential momentum equation written in component
form and, using rectangular cartesian coordinates, show that for a two-
dimensional plane flow D{/ D¢t = 0. (Differentiate the x-equation with respect
to y and the y-equation with respect to x and subtract the resulting equations).

836 Using Eq. 8.106, argue that inviscid flow after a two-dimensional
contraction cannot exist as shown. What's wrong with it? Assume that the
parabolic profile is generated by viscosity but that through the short contrac-
tion viscous effects are negligible. Sketch the probable velocity distribution at
section 2.

£

i

H iy)
s parabolic

wmiry=71

Prob. B.36
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