

AEROSPACE

AERO 4970/7970

Rocket Propulsion I Solid Propellants

SET VIII

- 1. Determine the longitudinal growth of a 24-in-long free-standing grain with a linear thermal coefficient of expansion of 7.5×10^{-5} /°F for temperature limits of -40 to 140°F. *Answer*: 0.32 in.
- 2. The following data are given for an internally burning solid propellant grain with inhibited end faces and a small initial port area:

Length	40 in	
Port area	27 in^2	
Propellant weight	240 lb	
Initial pressure at front end of chamber	1,608 psi	
Initial pressure at nozzle end of chamber	1,412 psi	
Propellant density	0.060 lb/in ³	
Vehicle acceleration	21.2 g ₀	
Determine the initial forces on the propellant supports produced by the pressure differential		
and vehicle acceleration.		

Answers: 19,600 lbf; 5090 lbf.

3. A fuel-rich solid propellant gas generator propellant is required to drive a turbine of a liquid propellant turbopump. Determine its mass flow rate. The following data are given:

Chamber pressure	$P_1 = 5 \text{ MPa}$
Combustion temperature	$T_1 = 1,500 \text{ K}$
Specific heat ratio	k = 1.25
Required pump input power	970 kW
Turbine outlet pressure	10 psia
Turbine efficiency	65%
Molecular weight of gas	22 kg/kg-mol
Pressure drop between gasgenerator	
and turbine nozzle inlet	0.10 MPa
Windage and bearing friction is 10 kW. Neglect start	transients.
Answer: $\dot{m} = 0.92$ kg/s.	

4. The propellant for this gas generator has these characteristics:

Burn rate at standard conditions	4.0 mm/s	
Burn time	110 s	
Chamber pressure	5.1 MPa	
Pressure exponent n	0.55	
Propellant specific gravity	1.47	
Mass flow rate	0.257 kg/s	
Determine the size of an end-burning cylindrical grain. Hint: Use $r = r$ σ σ $(T-T_{c})$		

Hint: Use $r = r_{ref} (p \times p_{ref}^{-1})^n e^{\sigma_p (T - T_{ref})}$

Answer: Single end-burning grain is 27.2 cm in diameter and 31.9 cm long, or two endburning opposed grains (each 19.6 cm diameter \times 31.9 cm long) in a single chamber with ignition of both grains in the middle of the case.