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Multiple-Scales Solution to the Acoustic Boundary Layer
in Solid Rocket Motors
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The acoustic boundary-layer structure is investigated in a cylindrical tube where steady sidewall in-
jection is imposed upon an oscillatory � ow. Culick’s steady, rotational, and inviscid solution is assumed
for the mean � ow. The time-dependent velocity is obtained by superimposing the acoustic (compressible,
inviscid, irrotational) and the vortical (incompressible, viscous, rotational) velocity vectors. A multiple-
scales perturbation technique that utilizes proper scaling coordinates is applied to the axial momentum
equation by retaining the viscous terms and ignoring the axial convection of vorticity. A closed-form
expression for the time-dependent axial velocity is derived that agrees well with the corresponding nu-
merical solution, cold-� ow experimental data, and Flandro’s near-wall analytic expression. A similarity
parameter that controls the thickness of the rotational region is identi� ed. The role of the Strouhal
number in controlling the wavelength of rotational waves is established. An accurate assessment of the
amplitude and phase relation between unsteady velocity and pressure components is obtained. Increasing
viscosity is found to reduce the depth of penetration of the rotational region.

Nomenclature
a0 = mean chamber speed of sound, m/s
f = oscillation mode frequency, Hz
k = dimensionless wave number or frequency, vR/a0

L = internal tube length
Mb = blowing Mach number, Vb/a0

P0 = mean chamber pressure
p = dimensionless pressure, p*/P0

R = effective radius, volume/half of porous area, m
Re = Reynolds number based on sound speed, a0R/n
Rea = acoustic Reynolds number, k/d2 = vR2/n = 2 2R /d s

r = dimensionless radial position, r*/R
r1 = radial scale, magni� ed or compressed
Sp = penetration number, =3 22 22 3 22 21 21M k d V v n Rb b

St = Strouhal number, k/Mb = vR/Vb

t = dimensionless time, t*a0/R = t̄/k
U = Culick’s steady � ow velocity vector, (Ur , Uz)
Ur = Culick’s steady radial velocity, 2r21 sin u
u = dimensionless velocity, u*/a0

u 9z = acoustic velocity, sin(kz)exp(ikt)
Vb = injection velocity at the porous boundary, m/s
Y = penetration control parameter, Sp <n (100)
y = radial distance from the porous wall, (1 2 r)
yp = penetration depth, (1 2 rp)
z = dimensionless axial position, z*/R
b = unsteady velocity-to-pressure phase angle
g = mean ratio of speci� c heats
ds = Stokes layer thickness, n/vÏ
d2 = inverse of Reynolds number, n/(a0R)
e = inverse of acoustic Reynolds number, n/(vR2)
u = pr 2/2
l = inverse of the Strouhal number, 1/St
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n = kinematic viscosity, m2/s
v = dimensional angular speed in rad/s, 2p f

Subscripts
b = condition at the transpiring boundary
0, 1 = order of perturbation terms

Superscripts
* = dimensional quantity
˜ = rotational time-dependent part
9 = acoustic time-dependent part

Introduction

T HE structure of the laminar, time-dependent boundary
layer associated with an oscillating velocity � ow� eld in

cylindrical chambers including steady sidewall injection plays
an important role in combustion stability assessments in solid
rocket motors.1– 3 Recent numerical solutions,4– 8 cold-� ow ex-
periments,9,10 and theoretical analyses11,16 have contributed to
the general understanding of the boundary-layer character,
which is a constant companion of the velocity � eld. Tradition-
ally, in combustion stability predictions, the oscillatory veloc-
ity is assumed to be irrotational and inviscid with an associated
quasisteady boundary layer that is con� ned to a thin viscous
region near the transpiring surface. Computational predictions
of the velocity � eld by Roach et al.,4 and Vuillot and Avalon,5

and Vuillot,6 and cold-� ow tests by Brown et al.,10 have shown
that the rotational region in such � ows, sometimes referred to
as the acoustic boundary layer, is actually distributed over a
signi� cant portion of the chamber radius. Recent analytical and
numerical predictions of the transient evolution of the velocity
� eld prescribed by harmonic endwall11 and sidewall12 distur-
bances have also indicated the important role played by the
rotational component of the time-dependent velocity.
Flandro,13– 16 using analytical means, attempted several ap-
proaches to solve this problem. His � rst approach used vis-
cosity to explain the damping of shear waves generated at the
porous surface.13,14 To attain a solution, the axial convection
of vorticity had to be sacri� ced in the momentum equation.
The radial convection of vorticity also had to be approximated.
In his second approach, the axial convection of vorticity was
included while viscous terms were neglected.15 In his third
approach, all of the important terms in the momentum equation
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were included to attain a solution using regular perturbations.16

Since analytical approaches are always attractive in their abil-
ity to provide a deeper level of understanding and a detailed
physical interpretation of the phenomena at hand, one of the
goals of this article is to establish a simple analytic expression
for the time-dependent velocity and to clarify the dependence
of the oscillatory boundary-layer structure on the various con-
trol parameters. Another goal will be to show that a multiple-
scales perturbation approach can be successful in treating the
resulting momentum equation governing the oscillatory � ow-
� eld. A viscous and rotational model requiring satisfaction of
the no-slip boundary condition at the sidewall and the sym-
metry condition at the centerline will be adopted here, remi-
niscent of the earlier approach used by Flandro.13,14 A multiple-
scales perturbation technique that uses the proper variable
transformations will be applied to the unsteady, viscous, ro-
tational momentum equation to extract a closed-form expres-
sion for the unsteady velocity. This multiple-scales solution
will be found to be in fair agreement with recent experimental
data by Shaeffer and Brown,10 Flandro’s near-wall solution,14

and, to a certain extent, with the more recent results by Flan-
dro.15,16 It predicts a maximum velocity overshoot of twice the
acoustic wave amplitude in the vicinity of the wall (otherwise
known as the Richardson effect,17 which is a characteristic of
oscillating � ows), and it yields an exact expression for the
phase angle between velocity and pressure at the wall. Another
ascertainment is that of a single similarity parameter, which
we have termed the penetration number, which controls the
depth of the rotational region. In addition to the added knowl-
edge that this number furnishes, it allows signi� cant simpli� -
cations to be made in the expressions for existing models.
While the penetration number controls the shape and size of
the outer boundary-layer envelope, the Strouhal number will
be found to be the agent in control of the rotational wavelength
in the radial direction.

Analysis
Following the usual assumptions used in unsteady internal

� ow� eld modeling and combustion instability,1 the total ve-
locity is separated into two parts, u = MbU 1 u(1): 1) a steady,
mean � ow component (MbU) that is well modeled by the Cu-
lick pro� le,18 and 2) an unsteady velocity � eld that is small in
amplitude by comparison to the steady Culick pro� le.18 It is
this unsteady velocity � eld that we propose to investigate here.

Fundamental Equations

The � rst-order unsteady motion is governed by the viscous
momentum balance equation13,15:

(1)­u (1) (1) (1)
1 M {=[u ?U ] 2 u 3 (= 3 U) 2 U 3 [= 3 u ]}b

­t

(1)4 =p2 (1) (1)= d =[= ?u ] 2 = 3 [= 3 u ] 2 (1)H J3 g

The total unsteady velocity vector can be broken up into
acoustic, irrotational, and so-called vortical,1 rotational parts

(1) (1)˜ ˜u = u 9 1 u and u = u 9 1 u (2)z z z r r r

where the acoustic part is obtained from the plane wave so-
lution.1 After splitting the velocities into rotational and irrota-
tional components, the governing equation for the rotational
velocity can be isolated:

˜­u
˜ ˜ ˜1 M [=(u ?U) 2 u 3 (= 3 U) 2 U 3 (= 3 u)]b

­t

2 ˜= d [= 3 (= 3 u)] (3)

Since the time-dependent radial velocity has been shown to be
negligible, 1,4– 6,13– 16 both analytically and numerically, the un-
steady axial component of the equation will be the focus here.

Time-Dependent Viscous Boundary-Layer Equation

The present analysis then begins with the equation govern-
ing the axial rotational velocity derived � rst by Flandro,13,14

where he used the assumption that the axial dependence is of
the same order as the Mach number [Eq. (32) in Ref. 14].
Keeping the viscous term and using cylindrical coordinates,
the axial component of Eq. (3) becomes

2˜ ˜ ˜ ˜­u ­u ­ u 1 ­uz z z z21 M U = d 1 1 2(M ) (4)b r bS D2­t ­r ­r r ­r

By retaining the viscous term in Eq. (4), the partial differential
equation (PDE) is of second order, making it possible to satisfy
both the sidewall no-slip condition and the centerline sym-
metry.

Using the forcing frequency time scale, time is rescaled so
that Eq. (4) can be written in an alternative form

2 2˜ ˜ ˜ ˜­u M ­u d ­ u 1 ­uz b z z z
1 U = 1 (5)r S D2¯­t k ­r k ­r r ­r

where

t̄ = kt = (2p fR/a )t = 2p ft* (6)0

Equation (5) is linear; however, the convective term has a var-
iable coef� cient, Ur, which vanishes at the centerline. Closed-
form analytical solutions to the previous equation appear to be
possible only when Culick’s18 radial velocity component is ap-
proximated by a constant near the injection surface.13,14 For Ur

= 21, Flandro14 derived a useful closed-form analytical solu-
tion that agrees very well near the surface with the numerical
solution to the same equation using the exact radial velocity
Ur. This solution is very helpful in analyzing the internal � ow-
� eld and, subsequently, the accompanying boundary-layer
structure. Because of the approximation, this analytical solu-
tion is limited to a small range of physical parameters. As a
rule of thumb, Flandro’s14 near-wall viscous solution will
match the numerical solution to the same governing equation
(with the exact Culick18 velocity pro� le) as long as the pene-
tration depth is less than about 45% of the chamber radius.
For a larger boundary-layer thickness, the solution deteriorates
rapidly. Descriptively, Flandro and Roach1 and Flandro14,15

state that this solution is valid only for suf� ciently high fre-
quencies or for low injection Mach numbers. As will be shown
later, the limit of validity of Flandro’s14 solution will depend
on a single parameter Sp, which will have to be smaller than
0.1 for the results to be accurate. This parameter, which con-
trols the penetration depth of rotational waves, groups the di-
mensional blowing speed, circular frequency, kinematic vis-
cosity, and chamber radius in the form

3 3 2 2 3 2S = Re /St = M /k d = V /v nR (7)p a b b

It can be clearly seen that either a lower injection Mach num-
ber or a higher frequency can lead to a lower Sp. This coincides
precisely with Flandro’s14 statement.

Improved Viscous Solution

Following Flandro’s suggestion,14 a closed-form perturba-
tion solution that is applicable to a wider range of physical
parameters can be obtained by using the exact Culick velocity
pro� le Ur.

18 Since the highest derivative in Eq. (4) is multiplied
by a small term d2, the methods of singular perturbation theory
seem appropriate. It can be demonstrated that well-known per-
turbation techniques, with the exception of multiple scales, will
fail to yield a uniformly valid solution in this case because the
equation is singular at the centerline. In multiple scales, the
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� rst step will be to � nd the correct local coordinate transfor-
mations that can be associated with the particular phenomena
that dominate in a speci� c region of interest. In this problem,
inertia and advection will dominate near the wall. Away from
the wall, advection will become less signi� cant since the radial
velocity will become increasingly small.

Characteristic Scales
Since the solutions are periodic, time can be separated by

introducing complex variables. By so doing, the parabolic PDE
becomes a second-order ordinary differential equation (ODE)
with complex variables. For = and¯ ¯ũ (r, t ) ū(r)exp(it ),z

2 2d 1 n d viscous forcess
« = = = = ’2 2k Re 2p fR R unsteady inertiaa

(8)
M 1 V mean flow advectionb b

l = = = ’
k St 2p fR unsteady inertial forces

Equation (5) becomes the second-order governing ODE:

iū 1
dū

lUr
dr

=
2d ū 1 dū

« 1S D2dr r dr
(9)

Inertia Advection Viscous Dissipation

External Scale

Near the wall, unsteady inertia and mean � ow advection
dominate when the speed of injection is larger than the speed
of diffusion of shear waves. Viscous effects are still present,
but their role is secondary. As a consequence of the injection,
unsteady vorticity is generated at the wall. In an annulus near
the wall of characteristic thickness (1 2 r), changes in the
oscillating velocity are periodic, with almost constant ampli-
tude. To obtain a balance between the dominant forces, a mac-
roscopic spatial length scale must be used to account for these
effects. Instead of stretching the spatial coordinate near the
wall as done customarily in the inner region of steady bound-
ary layers (where the velocity amplitude changes rapidly), a
compression of the scale is required here since the oscillatory
amplitude decays slowly near the wall where the effect of
blowing is appreciable. In contracting the spatial dimension, a
transformation of the independent variable is needed. Intro-
ducing the near-wall transformation variable r1 = «(1 2 r), a
balance between unsteady inertia and advection is achieved
from Eq. (9)

2 2dū d ū « dū3 2iū 2 «lU = « 2 = 2(« ) (10)r 2dr dr r dr1 1 1 1

which explains the large observed velocity gradient of 2(St)
near the wall, since obtaining a balance between the � rst two
terms in Eq. (10) requires that

dū 1 dū 21= 2 or = 2(l ) [ 2(St) (11)S Ddr «l dr1

Physically, this result can be translated into the fact that the
steepness of propagating velocity waves will be dependent
upon St.

Internal Scale

Moving away from the wall, unsteady inertia and viscous
stresses will be in balance when radial advection becomes suf-
� ciently weak. Blowing effects in this narrow region become
secondary since the steady radial component of injection be-
comes small. The amplitude of the unsteady rotational velocity
exhibits an exponential decay that will happen faster at higher
viscosities. Viscous stresses exert forces that tend to damp out
the amplitude of the oscillations. To obtain a balance between

viscous stresses and unsteady inertia, a microscopic spatial
length scale must be carefully chosen. Since the rate of ex-
ponential decay of the unsteady rotational velocity amplitude
increases toward the centerline, an expansion of the region is
required to account for rapid spatial changes in amplitude. In-
stead of compressing the spatial coordinate as done near the
wall, a stretching or magni� cation of the scale is required here.
The inner edge of this region will correspond to the point
where the rotational wave amplitude becomes vanishingly
small. Beyond that point, the unsteady � ow may be considered
to be irrotational. Because of the injection at the wall, the
traditionally thin and highly viscous region, which usually oc-
curs at the wall in no-injection � ow� elds, is blown off the wall
toward the centerline. Under such circumstances, the thin vis-
cous layer becomes a free shear layer separating the highly
rotational � ow from the irrotational � ow. This phenomenon is
very similar to the Blowhard problem that was well described
by Cole and Aroesty.19 This region is also analogous to what
is generally considered to be the thin inner region in steady
boundary layers where the velocity pro� le changes in a rela-
tively short distance to match the outer � ow� eld, which, in
this case, will correspond to the inviscid and irrotational acous-
tic velocity component. In our problem, the penetration depth,
which is de� ned as the distance from the wall to the inner
edge of the viscous zone, will be a measure of the rotational
� eld thickness. In stretching the radial coordinate in the inner
region, a parameter transformation of the independent variable
is sought. Introducing the centerline scale r1 = (r n/«), or its
inverse («r2n), a balance between unsteady inertia and diffu-
sion can be achieved. For r1 = («r2n), Eq. (9) becomes

2d ū dū2 122/n 2(111/n) (112/n)iū 2 n « r 1 r1 1S D2dr dr1 1

dū21/n (111/n)= 2n« r lU = 0 (12)1 r
dr1

which shows that the inertial and viscous force terms will be
of the same order of magnitude in this thin shear layer (where
Ur vanishes) when «122/n = 1 or n = 2. Note that there is a
transitional � eld between the inner and near-wall regions.
When Ur is not negligible, a value of n = 1 in Eq. (12) will
characterize this transitional zone.

Composite Scales

Nonunique composite scales that are valid in the entire re-
gion extending from the centerline to the wall can be con-
structed. By using r1 = «(1 2 r)/r n, with 1 # n # 2 (n being
a scale stretching coef� cient), the compressed scale «(1 2 r)
near the wall will result (in the vicinity of r = 1), and the
magni� ed scale «/r n will result as the centerline is approached.
This composite scale leads to a closed-form expression that
agrees with the numerical solution in the entire range of the
independent variable with a margin of uncertainty that is
smaller than that associated with the mathematical model itself.

Perturbation Methods
Equation (9), that we propose to solve using perturbation

techniques, contains a turning point at the centerline (where
the advection term vanishes), and a region of nonuniformity
in its vicinity. The boundary conditions can be translated as

ū(r = 1) = 21 (no slip condition)
(13)dūH (r = 0) = 0 (symmetry condition)

dr

The solution type is oscillatory with decaying amplitudes, ex-
hibiting large localized velocity gradients at the extrema. Since
Eq. (9) is singular, no single asymptotic expansion will be
uniformly valid throughout the entire � eld of interest.20 The
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Table 1 Practical range of control parameters

f, Hz R, m n Vb Rea St Sp

10.00 0.025 526 2 104 10.00 0.02
1500 3.000 224 7 108 1700 300

classical techniques of regular perturbation become invalid for
such a singular problem. Methods of strained coordinates are
not capable of yielding uniformly valid expansions either, in
cases in which sharp changes in the dependent variable (ve-
locity) take place in some domain of the independent varia-
ble.21 To obtain uniformly valid expansions, it must be rec-
ognized that the sharp changes are characterized by modi� ed
scales that are different from the scales characterizing the be-
havior of the dependent variable outside the sharp-change re-
gion. The solution will have to be sought separately in the
different regions of the domain, and a composite solution will
have to be constructed such as to match the individual solu-
tions in their respective � elds. For singular problems with a
region of nonuniformity, coincidentally referred to as a bound-
ary-layer region, a matched asymptotic expansion procedure is
generally used to relate the expansions in the scale-dependent
regions. Unfortunately, the matched asymptotic expansion pro-
cedure cannot be used on Eq. (9), since it violates the condi-
tions of existence of a unique solution. Using mathematical
conditions stated by Nayfeh,21 for a second-order ODE with
the smallest term « multiplying the highest derivative, a
matched asymptotic procedure will be successful for this prob-
lem if one of the conditions given next is met

2lU = (1/St)[sin(u)/r] > 0 at r = 0 (centerline) (14)r

2lU = (1/St)[sin(u)/r] < 0 at r = 1 (wall) (15)r

It is clear that neither condition is satis� ed here. The method
of multiple scales appears to be the major technique remaining.

The solution can be written using a two-term perturbation:

2ū(r , r ) = ū (r , r ) 1 «ū (r , r ) 1 2(« ) (16)0 1 0 0 1 1 0 1

The two scales are the base r0 [ r and the modi� ed scale r1

[ «s(r) [ «s(r0), where s(r) is the scale function

1 2 r, near the wall
2ns(r) = r , in the free shear layer (17)H J

2n(1 2 r)r , composite scale

Using the chain rule for differentiation, transforming Eq. (9)
from a function of a single variable r into a PDE dependent
on the two scales r0 and r1, substituting Eq. (16), the perturbed
two-term approximation for ū into the resulting PDE, rear-
ranging and collecting terms of order «0 and «1, two � rst-order
coupled PDEs result

­ū0
iū 1 lU = 0 (18)0 r

­r0

or

2ū (r , r ) = C (r )exp((i/pl)<n{tan[(p/4)r ]}) (19)0 0 1 0 1 0

2­ū ds ­ū ­ ū 1 ­ū1 0 0 0
iū 1 lU = 2lU 1 1 (20)1 r r 2­r dr ­r ­r r ­r0 0 1 0 0 0

After substituting Eq. (19), the integrated value of ū0 from Eq.
(18) into Eq. (20), the right-hand side (RHS) of Eq. (20) be-
comes a source of secular terms. To avoid secular terms that
cause the solution to break down, a mathematical requirement
that satis� es the centerline symmetry condition is that the RHS
of Eq. (20) be zero. This condition, in addition to the no-slip
constraint at the wall (ū = 21), allows the determination of
C0(r1), and hence, the � rst term of the multiple-scales solution.
The unsteady axial velocity including acoustic – irrotational
and vortical – rotational components can now be constructed
for any scale function s(r).

Letting
21

ds
h(r) = s(r) (21)S Ddr

(1) j¯ ¯u = [sin t 2 e sin(t 1 F)]sin(kz) (22)z

with

3 3 3j = (St /Re )[r h(r)csc u 2 h(1)] (23)a

F(r) = F (r) 1 F (r) (24)0 1

where the inviscid and viscous terms are

F = (St/p)<n tan(u/2) (24a)0

2 2 2F = 2(St /Re )[r csc u(2 2 pr cot u)h 2 2h(1)] (24b)1 a

Here, F(r) determines the propagation speed of the shear
wave, being the phase angle of the rotational axial velocity
component with respect to the acoustic counterpart at a � xed
value of r. On the other hand, j(r), representing the rate of
viscous damping, controls the thickness of the outer wave en-
velope. Hence, it controls the thickness of the boundary layer.
The penetration depth, de� ned by determining the radial po-
sition at which the rotational wave amplitude decays to 1% of
the acoustical amplitude, will only depend on one parameter
Rea/St3, or the penetration number Sp. When measured from
the solid wall, the penetration depth can be found from yp = 1
2 rp, where rp is the root to

3 3 2r h(r )csc (pr /2) 2 h(1) 1 S <n(100) = 0 (25)p p p p

Practical Rocket Range of Physical Parameters
In combustion instability, variations exist in physical pa-

rameters and sizing, ranging from cold-� ow experiments with
low kinematic viscosity to rockets with high temperatures and
pressures. Based on cases exhibiting intermediate to low-fre-
quency instability, Table 1 is adapted from Ref. 22 to de� ne
the range (min, max) of key parameters.

Unsteady Axial Velocity and Penetration Depth
For the unsteady axial velocity, the solution assumes in(1)u z

the form1,14 of Eq. (22) given earlier.

Simpli� ed Version of Flandro’s Analytic Solution

Flandro’s solution14 is restated here to point out its useful-
ness and reformulate it in a more compact form that is a result
of expressing it in terms of Sp. The simpli� cation takes advan-
tage of the fact that Rea, being the square of the ratio of the
tube radius to the Stokes-layer thickness, is a large number,
exceeding 104 in practice:

1/3 2/3j = S Re [1 2 0.5(1 1 C )]( y/2) > 2(y/S ) (26)Ïp a p

1/3 2/3F = 2S Re 0.5(21 1 C )( y/2) > 2St y (27)Ïp a

24/3 22/3 1/2 24/3 22/3C = (1 1 16S Re ) > 1 1 8S Re (28)p a p a

from which the boundary-layer thickness can be derived

21/3 22/32 <n(100)S Rep a
y = > Y (29)p

21 1 0.5(1 1 C)Ï

This solution is valid when Sp # 0.1, corresponding to a pen-
etration depth that does not exceed 0.46R. Equation (22), when
simpli� ed, can be used to retrieve valuable information about
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Fig. 2 Penetration depth function of St and Rea.

Fig. 1 Unsteady velocity-to-pressure phase lag.

the unsteady velocity amplitude, wavelength, and phase lag
with respect to pressure:

(1) 2y/Spu = [sin(kt) 2 e sin(kt 2 St y)]sin(kz) (30)z

Equation (30) shows that Sp controls the thickness and St, the
wavelength of . Both control the phase of the velocity rel-(1)u z

ative to the acoustic pressure.

Near-Wall Solution

21 3 3s(r) = 1 2 r, h = 2(1 2 r), j = 2S r (1 2 r)csc u (31)p

2 2 2F (r) = (St /Re )[r(1 2 r)csc u (2 2 pr cot u)] (32)1 a

To obtain yp, one solves: (1 2 1 [ 0,3 3 2r )r Y sin (p/2)rp p p

knowing that yp possesses an asymptotic solution, for small Sp,
which approaches Flandro’s near-wall result14

2 3y > Y(1 1 Y 1 4Y ) > Y(1 1 3Y ) (33)p

For practical purposes, the near-wall perturbed and Flandro’s
linearized solutions14 match very well.

Inner Solution

22 21 4 3s(r) = r , h = 2(r/2), j = 2S [(r csc u 2 1)/2] (34)p

2 2 2 2F (r) = (St /2Re )[r csc u(2 2 pr cot u) 2 2] (35)1 a

Yielding 2 (1 1 2Y ) [ 0, with a very accurate4 3 2r sin (p/2)rp p

asymptotic solution, near the centerline

32 p arccos 26 3/2Ï4 1/2r > sin 2 1 (36)p Î H F GJ2 23p 6 3 p (1 1 2Y)

Composite Solution

(1 2 r)r2ns(r) = (1 2 r)r , h = (37)
r (n 2 1)2 n

where

4(1 2 r)r
21 31 # n # 2, j = 2S csc up

n 2 r(n 2 1)

2 2St r (1 2 r) 2 2F (r) = csc u (2 2 pr cot u) (38)1
Re n 2 r(n 2 1)a

with a penetration depth that can be computed from

4 3 2r (1 2 r ) 1 Y [r (n 2 1) 2 n]sin (p/2)r [ 0 (39)p p p p

to which an expansion of can be derived; n > 1:62(r )p

e p arccos h
r > 2 2g sin 2 (40)p F S DG33 6 3 2g

where

2n 8 e
e = , f = , g = f 1Î3n 2 1 3p (n 2 1)Y 9

2 2n 2 33h = e 2 f
27 n 2 1

which, for n = 1, a particular case arises having an expansion

3 3r > (4/p Y)( 1 1 p Y/2 2 1) (41)Ïp

Flandro’s New Inviscid Solution

Recently, Flandro15 derived an inviscid solution that includes
the axial convection of vorticity. Accordingly, the damping of
the rotational velocity wave amplitude is attributed to the
weakening of unsteady vorticity resulting from the axial,
downstream convection caused by the steady � ow motion to-
ward the chamber exit cone. This solution has the advantage
of including the axial dependence. Its limitation is that it is
inviscid.

Phase Angle Relative to Pressure
At the wall, F has an exact analytical limit that is common

to all solutions in Eqs. (27), (32), (35), and (38). The unsteady
velocity-to-pressure phase angle can be derived (see Fig. 1) as
b = Arctan(St Sp) 2 90 deg. This result, of a small phase at
the wall, agrees with conclusions drawn from numerical so-
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Fig. 7 Typical solutions at z*/L = 0.5.

Fig. 6 Simpli� ed version of Flandro’s solution.14

Fig. 3 Penetration depth as function of Sp.

Fig. 4 Flandro’s penetration depth14 as function of Sp.

Fig. 5 Comparison of analytic and numeric yp.

lutions.1,5,6 Near the centerline where the acoustic velocity is
the only nonzero component, b will be 290 deg.

Numerical Solution
Equation (4) can be solved numerically. Being a highly stiff

equation, superposition will be required in addition to a shoot-
ing procedure that starts at the wall, and integrates back to the
centerline. A family of curves can be generated that depends
on two controlling dynamic parameters, St and Rea. This fam-
ily of curves collapses into a single line (see Figs. 2 and 3)
when Sp is used as the independent variable. This dependence
on Sp becomes even stronger at higher Rea (when « ® 0).

Analytic and Numeric Penetration Depth Solutions
Figure 4 shows clearly that Flandro’s viscous solution14

matches the numeric solution in the bottom half of the domain.
Figure 5 shows the validity of multiple-scales solutions in their
regions of applicability. Note the accuracy of the internal and
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Fig. 8 Comparison to experimental data at z*/L = 0.1.

Fig. 9 Comparison to experimental data at z*/L = 0.2.

Fig. 10 Comparison of solutions at z*/L = 0.82.

external scales in extracting the solution in the upper and lower
quarter domains, respectively. Also, note the usefulness of the
composite scale solution in the upper half of the domain where
Flandro’s14 approximate solution deteriorates.

Unsteady Velocity Pro� les
Figure 6 shows that the agreement between Flandro’s vis-

cous solution14 and the simpli� ed solution (30) is dramatic.
Figure 7 shows a fair agreement between existing models at
the axial midpoint. Figures 8 and 9 show a good agreement
with experimental data near the chamber fore-end. In every
case, the depth of the rotational region is slightly overpredicted
by models that do not incorporate either the axial convection
of unsteady vorticity by the mean � ow or the viscous effects.
Figure 10 shows a disagreement between existing models and
Flandro’s inviscid solution15 when approaching the aft end of
the chamber. It appears that both the axial dependence and
viscous effects are important to achieve an accurate description
of the boundary-layer structure.

Conclusions
The classical concepts of boundary-layer theory regarding

inner, near-wall and outer, external regions are not applicable
for the case of an oscillating � ow over a transpiring surface.
Near the wall, a thick highly rotational layer is established near
the solid boundary when hard blowing persists because of vor-
ticity production and convection. The thin layer where viscous
friction is important is blown off the wall to form a free shear
layer (that cannot be localized), separating rotational and ir-
rotational � ow� elds. The penetration depth, or acoustic bound-
ary-layer thickness, is a measure of the region where rotational
effects are important. It is function of a similarity parameter
that is proportional to the cube of the injection speed, inversely
proportional to the square of the frequency, and inversely pro-
portional to the viscosity and chamber effective radius. This
dependence is in total agreement with empirical observations
as well as numerical analyses. Accordingly, the role of viscos-
ity is to attenuate the amplitude of propagating shear waves
and to shorten, rather than extend, the penetration depth. The
role of intrinsic or imposed frequency of oscillations is similar
to viscosity, only more important. Quadrupling the viscosity
requires half the frequency for the same pro� le thickness when
all other parameters are held constant. Higher acoustic modes
(and therefore oscillation frequencies) in the chamber will
lead, naturally, to smaller penetration depths. The role of the
Strouhal number as the controlling parameter for the vortical-
to-acoustical phase angle has again been demonstrated. The
scaling analysis clearly shows that increasing the Strouhal
number will steepen the rotational wave crest and reduce its
spatial wavelength. Pertinent to this type of asymptotic expan-
sion problems, the method of multiple scales appears to be a
powerful tool in extracting analytic solutions. It appears that
neglecting the axial dependence is a good approximation only
near the chamber head-end. Inclusion of the axial convection
of vorticity is needed for a more accurate solution. Finally, the
phenomena of importance in the rotational time-dependent mo-
mentum equation have been identi� ed to be 1) unsteady in-
ertia, 2) radial convection of unsteady vorticity by Culick’s
radial velocity component, 3) viscous diffusion of vorticity,
and 4) axial convection of vorticity caused by downstream
convection by Culick’s axial velocity component. Since the
present analysis did not include the latter term, it is hoped that
a more complete solution based on the perturbation approach
outlined here can be achieved including the axial dependence.
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