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Abstract!

This paper investigates the structure of the
boundary layer in cylindrical rocket motors in
light of two recent analytical solutions to the time-
dependent axisymmetric flowfield that have been
shown to agree with numerical and experimental
predictions in the forward portions of the motor
where the flow remains laminar.  To that end,
closed form expressions that define the character
of the oscillatory boundary layer are obtained in
order to bring physical details into focus.  The
short flowfield solution published recently
(Majdalani, J., and Van Moorhem, W.K.,
“Improved Time-Dependent Flowfield Solution
for Solid Rocket Motors,” AIAA Journal, Vol. 36,
No. 2, 1998, pp. 241-248) makes it possible to
arrive at analytical expressions that elucidate the
intricate features of the boundary-layer zone; the
latter is found to encompass a relatively large
portion of the combustion chamber in most
rockets for low acoustic modes.  The depth of
penetration is found to depend on the size of the
penetration number, the acoustic mode, and the
distance from the head-end.  An assessment of the
location and size of the Richardson overshoot is
also pursued.  Closed form expressions are
provided for the penetration depth, speed of
propagation, wavelength, amplitude and phase
relation between unsteady velocity and pressure
components.  Increasing viscosity is found to
reduce the size of the rotational region.  By
comparison to the acoustic boundary layer
assumed in one-dimensional acoustic theory, the
actual character of the rotational region is quite
dissimilar. Finally, analytical results are verified
numerically against a modern and reliable,
compressible Navier-Stokes solver.
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Nomenclature
a0 = stagnation speed of sound, " #p0 0/

fm = dimensional frequency for mode m, Hz
km = wave number, m R L R a$ %/ /& 0 0

L = internal chamber length
Mb = wall injection Mach number, V ab / 0

p0 = mean chamber pressure, # "0 0
2a /

p = dimensionless pressure, p p' / 0

r = radial position, r R y' & (/ 1a f
R = dimensional effective radius
Rek = kinetic Reynolds number, % )0

2
0R /

Sr = Strouhal number, % 0 R V k Mb m b/ /&
t = dimensionless time, t a R'

0 /

Ur = radial mean flow velocity, ( (r 1 sin*
u ( )1 = total unsteady velocity, u a'( ) /1

0

Vb = radial injection speed at the wall
y = distance from the wall, y R r' & (/ 1a f
z = axial distance from the head-end, z R' /
+ w = normalized pressure wave amplitude
" = mean ratio of specific heats
, = spatial wavelength of rotational waves
) 0 = chamber fluid mean kinematic viscosity
* = characteristic variable,  2$r / 2
# 0 = chamber mean density
% m = dimensionless frequency, m R L$ /

% 0 = dimensional frequency, m a L$ 0 /

- = viscous parameter, S R Vp b
( &1

0
2

0
3% ) /

Subscripts
m = refers to a maximum or a mode number
p = refers to a depth of penetration
w = refers to the wall
b = refers to blowing or burning at the wall

Superscripts
* = asterisk denotes a dimensional quantity
~ = tilde denotes vortical oscillations
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Introduction
In recent years, the boundary-layer structure in

solid rocket motors has received much attention in
the rocket combustion stability community.  This
might be attributed to the important role that it
plays in understanding a number of combustion
mechanisms that occur in the vicinity of the
burning surface.  Since understanding the
structure of the boundary layer can help
understand pressure coupling, velocity coupling,
transition to turbulence, and the flame zone
interaction with the internal flowfield, several
researchers have undertaken analytical,1-9

numerical,10-19 and experimental investigations20-21

aimed at elucidating intricate field interactions
near the propellant surface.

The main focus of this paper will be to analyze
the boundary-layer structure resulting from two
recent analytical models for the flowfield that
have been shown to agree very favorably with
available numerical and experimental data.3  The
first model was derived by Flandro7 using the
vorticity transport equation and regular
perturbations.  The second was derived by
Majdalani and Van Moorhem2-3 using a novel,
composite-scale perturbation technique.  Both
models have been shown recently to concur over a
large range of physical parameters despite their
dissimilar analytical formulations.  One appealing
feature of the composite-scale model3 is that it
offers a short expression for the velocity field
which allows extracting information about the
boundary layer in closed analytical form.  The
current paper will exploit this feature to elucidate
the character of the oscillatory boundary layer and
explain the influence of various flow variables on
its structure.  In the process, several related issues
will be addressed individually.  These include the
boundary-layer thickness or penetration depth of
the rotational region, the peculiar Richardson
overshoot,22 the spatial wavelength and speed of
propagation, and the controversial phase
difference between oscillatory pressure and
velocity.  Since the present analysis is only
applicable to laminar fields, it is hoped that the
information provided here will be used in
developing a working analytical theory for
turbulence, which recent work by Yang and co-
workers has shown to appear in the aft portion of
the rocket chamber.23  Finally, analytical results

are further validated through comparisons drawn
against reliable computational data acquired from
a modern Navier-Stokes solver developed by Roh
and co-workers.23

Analysis
Wave Characteristics

Using the exact same notation as previously, the
current analysis begins by considering the total
time-dependent velocity obtained from Ref. 3 [Eq.
(63)], which is known to the order of the Mach
number:

u r z t k z k tw
m m

(1)
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The radial velocity component has been
deliberately ignored in Eq. (1), being smaller in
magnitude than the axial component.  The total
time-dependent velocity consists of a linear
juxtaposition of inviscid-acoustic-irrotational and
viscous-solenoidal-rotational fields.  The
rotational component represents a harmonic wave
traveling radially toward the centerline; this wave
suffers from exponential damping with increasing
distance from the wall.  From Eq. (1) it can be
inferred that the vortical wave amplitude is
controlled by two terms: 1) an exponentially
decaying term (made possible by inclusion of
viscous effects) that diminishes with increasing
distance from the wall, and 2) a sinusoidal term
(made possible by inclusion of downstream
convection of unsteady vorticity by the mean
flow) which, in addition to its monotonic decrease
with increasing distance from the wall, varies
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harmonically with the distance from the head-end.
Since the exponentially decaying wave amplitude
term depends directly on - % )& 0

2
0

3R Vb/ , it is clear
that large viscosity causes the amplitude to decay
more rapidly.  Viscosity is hence identified to be
an attenuation factor whose role is to impede the
inward penetration of vorticity.

Equation 1 also indicates that the axial variation
in the wave amplitude along the centerline is
controlled exclusively by the acoustic field, while
the radial variation is prescribed by the rotational
field which plays a crucial role in the accurate
assessment of the boundary layer envelope.  On a
separate note, recalling that the phase of the
rotational wave is uniform along lines where
k tm .0b g  is constant, Eq. (1) allows solving for the

radial speed of wave propagation which is
determined to be equal to Culick’s radial mean
flow velocity.24  This reassuring result is evidence
that the solution exhibits the correct coupling
between mean and time-dependent elements and
that the time-dependent field is indeed driven by
the mean flow.  More details are furnished below.

Unsteady Axial Velocity Profile
Results from the regular perturbation solution

by Flandro7 and the composite-scale technique
(CST)3 are found to concur substantially with the
numerical solution which is achieved with a high
order of accuracy (using a 9-stage Runge-Kutta
scheme, and a step size of 10-6, with an associated
global error of order seven).25  It follows that the
agreement between analytical and numerical
predictions is so remarkable that graphical results
are visually undiscernible.  The periodic velocity
distribution at evenly spaced times is shown in
Fig. 1, for one full cycle of oscillations, and for
the first four acoustic oscillation modes.  The
control parameters are chosen from typical values
associated with a tactical rocket motor, as
classified by Flandro (Sr & 51m, Rek &2.1mx106

from Table 1 in Ref. 7).  The profiles are
displayed at the axial position corresponding to
the location from the head-end of the first (Figs.
1a-d) and last (Figs. 1e-g) acoustic velocity
antinode.  A key feature captured remarkably by
the analytical solution is that of the rotational
velocity amplitude vanishing m times at the mth

velocity antinode.  As shown in Figs. 1e-g, the

rotational amplitude decays prematurely to zero
somewhere between the wall and the centerline
corresponding to lines of zero unsteady vorticity.
This peculiar effect, which is attributable to the
downstream convection of zero unsteady vorticity
lines by Culick’s mean flow,24 is further evidence
that the influence of the mean flow on the time-
dependent field has been correctly incorporated.

Boundary Layer Thickness or Penetration Depth
In recognition of the fact that both regular

perturbation and CST models exhibit similar
velocity profiles, their penetration depths are
expected to be similar as well.  A typical
comparison obtained from the aforementioned
models is drawn in Fig. 2 at two axial locations,
for a large range of dynamic similarity parameters,
Sr  and Rek .  Remarkably, the entire family of
curves shown in Fig. 2 collapses into a single
curve per axial location, when plotted versus the
penetration number, Sp &

(- 1 , revealed by the

analytical derivation.  This appealing discovery
allows us to represent the complete solution for
the boundary-layer thickness on one single graph
per oscillation mode.  As shown in Fig. 3,
characteristic curves of penetration depths at
several axial locations spanning the length of the
chamber are conveniently depicted for the
fundamental oscillation mode.  Having collapsed
the results onto a single graph provides numerous
advantages, including concrete means to explain
and interpret the boundary layer structure.

As could be inferred from Fig. 3, the
dependence of the penetration depth on the axial
location z  is minute in the forward half of the
chamber, and becomes more pronounced in the aft
half.  The increased sensitivity of the boundary
layer thickness to z  with increasing axial distance
from the head-end is attributed to vortical
intensification in the streamwise direction.  For
first mode oscillations, the axial dependence is
found to be only important in the aft-half of the
chamber, when z  becomes relatively large.  For a
range of penetration numbers, the depth of
penetration is found to be dependent only on the
penetration number and, to a lesser extent, on the
axial location.  For small penetration numbers, the
penetration depth is found to be directly
proportional to the penetration number,
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independently of the axial location.  This takes
place when the mean flow injection speed is very
small, resulting in insignificant vortical
intensification in the streamwise direction.
Evidently, this range does not correspond to
rockets characterized by sizeable penetration
numbers and relatively large penetration depths,
especially for fundamental oscillatory modes.

The sensitivity of the penetration depth to
variations in the penetration number decreases at
higher values of the penetration number
corresponding to frictionless flows.  As the
penetration number becomes large, say exceeding
100, the value of the penetration depth becomes
independent of the penetration number, and can be
estimated from an asymptotic solution to the
inviscid formulation.  This maximum possible
penetration depth y pm  that can occur at any axial

location is shown in Fig. 4 for the first four
oscillation modes.  Clearly, the maximum
penetration depth increases with the axial location
and the mode number.  The axial increase is not
monotone, since y pm  reaches a maximum at the

acoustic velocity nodes where the boundary layer
fills the entire chamber.  The numerical and
analytical results shown in Fig. 4 are obtained
from Eq. (4) and Eq. (5), respectively.  These
equations are derived below.

Boundary-Layer Envelope
The outer envelope of the time-dependent

boundary layer depends on the rate of decay of the
wave amplitude.  From Eq. (1), the wave
amplitude that controls the evolution of the outer
envelope of the rotational velocity is easily
recognized to be
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S

rw
m

p

1 3 3&
F
HG

I
KJ

+
"

* *
1

*b g (2)

The point directly above the wall where this
amplitude reaches 1% of its irrotational
counterpart in Eq. (1) defines the edge of the
boundary layer.  In this case, the point must be
calculated by finding the root rp  of
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where 3 & 0 01.  defines the 99% based boundary-
layer thickness.  In general, this penetration depth
will depend on the penetration number, the mode
number, and the axial location in the chamber.
The larger the penetration number, the larger the
penetration depth will be due to a smaller
argument in the exponentially decaying term
arising in Eq. (3).  This establishes the role of
viscosity, discussed earlier, as an agent that
attenuates the strength and penetration of vortical
waves.  Obviously, the smaller the viscosity, the
larger the penetration depth will be.  The upper
limit on the boundary-layer thickness can
therefore be determined from the inviscid
formulation of the penetration depth.  Setting the
viscosity equal to zero in Eq. (3), the maximum
penetration depth is found to be a sole function of
the axial location and mode numbers:
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Inviscid Boundary-Layer Envelope
Equation (4) can be manipulated algebraically to

reveal a closed form asymptotic expansion for the
maximum penetration depth.  This is made
possible by taking advantage of the fact that rpm  is

smaller than unity.  The 99% inviscid thickness
can be evaluated either numerically or from a one-
term expansion of order rpm

6 , extracted from Eq.

(4).  This expansion formula is
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Since the minimum possible y pm  is 74.8% at z & 0,

rpm  cannot exceed a value of 0.252.  The

maximum error associated with Eq. (5) can hence
be calculated to be 0.000259, which is an order of
magnitude smaller than the Mach number.  This
maximum error can only affect the depth of
penetration in the third or fourth decimal places, a
practically negligible contribution, which also
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explains the excellent agreement in Fig. 4 between
analytical and numerical predictions.

Unsteady Velocity Overshoot
The phase difference between rotational and

irrotational solutions causes a periodic overshoot
of the total velocity that can reach almost twice
the irrotational wave amplitude.  This overshoot is
a well known effect that is characteristic of
oscillatory flows.  It was first discovered in
experiments on sound waves in resonators by
Richardson22 who first realized that maximum
velocities occurred in the vicinity of the wall.
Theoretical verifications of this peculiar
phenomenon were carried out by Sexl,26 and
additional confirmatory experiments were
conducted by Richardson and Tyler27 on
reciprocating flows subject to pure periodic
motions without mean fluid injection.

The problem at hand is quite original in the
sense that it involves injection of a mean flow at
the wall.  In this case, the magnitude and the
distance ymax  from the wall to the point where
maximum overshooting occurs can be determined
numerically.  The so-called Richardson effect22 of
a velocity overshoot is clearly observed in both
analytical models to be much more intense than
for the hardwall case.

Plots of velocity overshoot and loci of these
velocity extrema are almost indistinguishable
from corresponding numerical predictions.   Note
that the loci are independent of Rek  (i.e.,
viscosity), and only depend on Sr . For the regular
perturbation model of O Sr( / )1 ,7 numerical and
analytical results become discernible when Sr
drops below 20.  Figure 5  summarizes the
observed trends which, in turn, indicate that the
overshoot increases with decreasing kinematic
viscosity and frequency.  As one would expect,
the overshoot occurs in the vicinity of the wall,
roughly, in the lower 25% of the solution domain,
corresponding, indubitably, to the most sensitive
region.  Since this overshoot is not captured by
the one-dimensional model currently in use, the
need to incorporate the multidimensional field,
described here, becomes even more important,
especially when proper coupling with combustion
is desired near the propellant surface.

Spatial Wavelength and Speed of Propagation
Near the wall, the speed of propagation of the

vortical wave can be determined from

k t k t ySr j jm m. 4 ( & &0b g b g 2$ , 1,2,( (6)

or, in dimensional form,
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As expected, the speed of propagation near the
wall is determined by the mean flow velocity.  In a
similar fashion, the dimensional wavelength of
propagation can be calculated to be:
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Away from the wall, the speed of propagation will
not be a constant anymore.  It will decrease with
the radial mean flow velocity.  Using the exact
expression for the phase angle, the dimensional
speed of propagation of the rotational wave in the
radial direction is found to be exactly equal to the
radial mean flow velocity:

a
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Having determined the speed of propagation, the
spatial wavelength of rotational waves can be
deduced easily.  Written in nondimensional form,
the result is

,
$
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$w w b
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a
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Clearly, the higher the Strouhal number, the
shorter the wavelength, and the steeper the wave
crests will be.  Also, as the centerline is
approached, the spatial wavelength diminishes in
direct proportion with the radial mean flow
velocity.  This explains the larger number of
reversals per unit of traveled distance for a fluid
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particle in approach of the centerline.  The
analytical expression for the spatial wavelength
captures very accurately the physical details
dictated in most part by Culick’s mean flowfield.24

Unsteady Pressure Phase Lead
Here 0  is the phase angle of the vortical

velocity component with respect to the acoustic
counterpart at any radial position within the
chamber.  This function is proportional to Sr  and
controls the propagation speed of the rotational
wave.  The angle 5 m  by which the sinusoidal
time-dependent pressure wave leads the time-
dependent velocity can be determined as follows.
First, the time-dependent pressure and velocities
are written as harmonic functions of time

p
k t k z k t k z

w
m m m m

( )

cos cos sin cos
1

2+
$

& & .FH
I
Kb g b g b g

(11)

u A Aw
m m

( ) cos sin1 2 2
1& ( .

+
"

0 0b g b g
2 .sin sink t k zm m m6b g b g (12)

where, from Eq. (1),
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Then, for any axial location, the angle by which
the pressure leads the velocity is simply

5
$

6m m& (
2

(15)

Near the wall, the angle 0  is written in a Taylor
series form expanded about y & 0 :
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The effective composite scale that appears in Eq.
(14) also exhibits an asymptotic form near the
wall.2,3  At y & 0 , the effective composite scale
becomes

1 r ya f & ( (17)

wherefore the vortical velocity amplitude given by
Eq. (14) simplifies to

A r ym & & (exp ( ) exp-1 -b g (18)

and the angle 6 m  , given by Eq. (13), becomes
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To remove the indeterminate character of Eq.
(19), L’Hospital’s rule is invoked.  The result is a
simple expression for the phase angle at the wall:

lim  
y

y ySr Sr y ySr

y ySr Sr y ySr7
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 6 m pSrS& arctand i (21)

5
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m pSrS& (
2
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This exact analytical limit is common to all
rotational models, whether one-dimensional1,4 or
two-dimensional,2,3,6,7 and whether using purely
analytical means,4 regular perturbations,6,7 or
multiple-scale techniques.1,2,3  Additionally, this
limit can be verified very rigorously by numerical
computations.  Near the centerline where acoustic
velocity is the only nonzero component, the
rotational velocity vanishes, 6 m  vanishes, and 5 m

will be 90 degrees.  Thusly, the sinusoidal time-
dependent pressure leads the time-dependent
velocity by an angle that varies from a small value
at the wall to 90 degrees at the centerline.  Not
unlike the velocity profile, there exists a phase
overshoot that can reach 180 degrees or twice the
phase difference between pressure and acoustic
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velocity.  At the wall, an exact analytical expression
for the phase angle is successfully extracted.  By
inspection of Eq. (22), the phase angle depends on
the product of the Strouhal number and the
penetration number.  In dimensional form, this
product scales with the convection to diffusion
speed ratio of the rotational disturbances introduced
at the wall:

5
$
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$ )m
b bV V L

m a
& (

F
HG
I
KJ & (

F
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I
KJ2 2

2

0 0

2

0 0
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(23)

It follows that lower injections, shorter chambers,
higher oscillation modes, higher viscosities, or
higher speeds of sound result in a larger pressure
to velocity phase lead at the wall.  The largest
phase lead will occur, for instance, in a small
SRM.  Practically, this angle is only a few degrees
or less.  Figure 6 shows the phase lead of the time-
dependent pressure with respect to the velocity for
the four typical cases defined in Ref. 6, using two-
dimensional viscous3,7  and inviscid formulations,6

in addition to the one-dimensional near-wall
solution from Ref. 4.  At the wall, the exact
expression for the phase angle given by Eq. (23) is
verified to be common to all three models.

Practical Boundary-Layer Equation
In order for the analytical models to match

corresponding numerical predictions, it is not
necessary to retain all the terms in the rotational
momentum equation that controls the character of
the oscillatory boundary layer.  In reality, of all
the terms appearing in the momentum equation
given as Eq. (9) in Ref. 3,
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only five significant terms need to be retained:
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These terms contribute to the solution in both
models and can be attributed to five physical
mechanisms.  All the remaining terms in Eq. (24)
may be included, but the corrections that will
result in retaining them will be smaller than the
order of the error in the solution itself.  As can be
established by tracking the leading order terms
that influence the solution, the most important
physical mechanisms can be associated with
unsteady inertial forces and both radial and axial
convection of unsteady vorticity by the mean flow.
Second in importance is the viscous diffusion of
vorticity.  Third in importance is the convective
coupling between unsteady velocity and mean
flow vorticity.  It is the balance of these important
physical phenomena that controls the oscillatory
motion of gases inside the chamber.  In essence,
Eq. (25) is the practical, “real world,” time-
dependent boundary-layer equation.

Comparisons to Computational Predictions
Previously in Ref. 3, analytical results were

shown to be in fair agreement with experimental
observations made by other researchers.
Presently, comparisons will be made against a
reliable numerical code developed totally
independently by Roh and co-workers.23

Sometimes referred to as the “dual time-stepping”
(DTS) code, this compressible Navier-Stokes
solver has recently received wide acceptance in
the combustion stability community by virtue of
its established accuracy and reliability.

On that account, DTS data (shown in dashed
lines) are compared in Fig. 7 to analytical
predictions (shown in solid lines) at
approximately the same time intervals for a typical
case of a cylindrical chamber ( L &2.03 m,
R & 0.102 m).  The injection speed is held constant
at 1.02 m/s (corresponding to a Mach number of
0.003), and the kinematic viscosity is taken to be
2.612 (10 5  m2/s.  The corresponding dynamic
similarity parameters are calculated to be
Rek &2.12105 m , Sr m& 52 6. , and S mp & 1 2.44 / .

As shown in Fig. 7, there is a good agreement
between computational and analytical predictions
for velocity amplitudes and spatial wavelengths
near the wall.  A strong resemblance in the general
structure of the boundary layer may be said to
exist at higher oscillation modes, as shown in
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Figs. 7b-c.  In particular, both approaches predict
the occurrence of m points of zero rotational wave
amplitude at the mth velocity antinode attributed to
the downstream convection of zero vorticity lines
by the bulk fluid motion.  These comparisons were
limited to the first two acoustic modes due to the
rapidly increasing cost of achieving numerical
solutions at higher modes.

The slight deviation of DTS data from analytical
predictions can be attributed to unavoidable
limitations in available computational power.  In
reality, several sources of numerical uncertainties
have been identified as possible reasons for the
observed discrepancy.28

First, due to memory resource limitations, it
becomes unaffordable to refine the grid
sufficiently enough in regions that are distant from
the wall where the mean radial velocity becomes
very small.  The reason for using very fine grid
spacing is necessitated by the need to properly
resolve the vorticity wave whose wavelength
depends directly on the mean radial velocity.  The
analytical model does not suffer from this
limitation and, as shown in Fig. 7, is capable of
resolving very precisely the spatial wavelength
away from the wall even when the mean velocity
becomes infinitesimally small.  In light of this
argument, a progressive deviation from analytical
predictions is to be anticipated as the distance
from the wall is increased, when a slight
deterioration in numerical accuracy becomes
unavoidable.

Second, due to the numerical inability to match
exactly the time intervals required for
comparisons during a cycle (i.e., $ / 2 , $ , and
3 2$ / ), which happen to be irrational numbers,
numerical data is acquired at time intervals that
are closest to the times desired.  This restriction in
the numerical approach is caused by the need for
finite time discretization and is obviated in
analytical formulations.  In the current analysis,
the time period was divided into 100 time steps,
making it difficult to match the prescribed time
intervals which, evidently, brings in additional
errors to DTS data.  This explains the slight
asymmetry in the numerically generated curves,
and their subtle deviation from analytical curves
away from the wall, in the fully irrotational zone.

Third, due to the reliance of numerical
calculations on artificial dissipation, it can
become difficult to refine the artificial dissipation
sufficiently enough.  Needless to say, analytical
models are not dependent on artificial dissipation.

Reducing numerical errors, which is expected to
improve substantially the agreement with
analytical predictions, can be accomplished
through 1) decreasing artificial dissipation in the
numerical scheme, 2) refining the grid, and 3)
decreasing each time step.  Unfortunately, these
improvements can only be implemented at the
expense of increased computational time, cost,
and memory allocation which, collectively, can
become prohibitive.  In conclusion, the analytical
models described heretofore, being exempt from
computational setbacks, appear to capture the key
physical details furnished by the DTS procedure,
for the laminar case, while remaining immune to
numerical restrictions.

Impact and Implications
The unsteady boundary layer in oscillatory

flows with sidewall injection is an interesting
addition to boundary-layer theory in fluid
mechanics.  It is also of value in the studies of
turbulence in oscillatory flows over transpiring
surfaces.  Fortuitously, this solution can be
verified analytically to be rigorous since it reduces
to Sexl’s solution26 near the wall in the limit of a
very small injection velocity (to be addressed in
our forthcoming work).  In rocket dynamics, it
furnishes a simple yet powerful expression
capable of elucidating the intricate features of the
acoustic boundary layer whose structure has been
the subject of much controversy in the past.

Importance in Fluid Mechanics
A multidimensional analytical solution that

quantifies the Stokes boundary layer in an
oscillatory duct flow with sidewall injection is
exploited here including the axial dependence.  It
appears that this analytical solution, along with
Flandro’s model,7 are the only two-dimensional
axisymmetric expressions pertaining to this type
of flow which have been obtained so far.  Both
offer important steps aimed at a more complete
understanding of the structure of the Stokes layer
over porous surfaces.  Such understanding may be
needed to allow improved formulations in
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aerodynamics, gas dynamics, studies of blood
flow in arteries, and other applications.  In the
studies of turbulence, the availability of a laminar
solution can be used as a basis for investigating
turbulent behavior, which, up to this time, is not
very well understood.  Both experimental and
numerical studies of turbulence in oscillatory duct
flows with sidewall injection can benefit from a
closed form solution of the internal flowfield as
furnished here.  The analytical methodology itself
may be applicable to similar physical settings
involving oscillatory flows.

Importance in Rocket Dynamics
The existence of an accurate, yet simple,

analytical expression for the unsteady flow
component has a major impact on the internal
flowfield modeling strategy and combustion
stability assessment in solid rocket motors.  The
current standard prediction model that is used to
analyze combustion stability of various rockets
assumes the existence of a one-dimensional
irrotational component of the time-dependent flow
and introduces patches to account for three-
dimensional effects.  The current analysis
emphasizes the importance of the rotational flow
component in altering the boundary layer
character.  Evidently, the actual structure of the
boundary layer is quite different from the “thin”
acoustic layer assumed in one-dimensional
models.  By analogy to Culick’s steady flow
solution,7 the present unsteady solution could be
incorporated into existing codes and models to
improve prediction capabilities.  Other
mechanisms that are associated with combustion
instability could also be revisited in light of this
new model.  For example, the flow turning loss
that is used as a corrective term to patch the one-
dimensional imperfection of the model can be
shown to be no longer necessary.7  Flandro has
actually shown that, when his formulation is
used,7 a term will appear —in the resulting
solution— that is identical to the flow turning loss;
the latter being artificially added to the one-
dimensional solution.  In other areas, the velocity
coupling phenomenon can be quite possibly
improved by incorporating an accurate, yet simple
formulation of the time-dependent velocity field.
The same can be said of studies involving

particulate damping, acoustic streaming, acoustic
admittance, erosive burning, turbulence, etc..

Importance of a New Similarity Parameter
By analogy to the Stokes number that governs

the thickness of the boundary layer in oscillating
flows with inert walls, the penetration number is
found to play a similar role in the case when the
walls are made porous.  This number

S
V

R
p

b& &
1 3

0
2

0- % )
(26)

explains what other researchers1-9 have noticed
before; namely, that the thickness of the boundary
layer will depend mostly on the injection velocity
(being elevated to the third power).  The
frequency of oscillations is the second most
important parameter.  Doubling the frequency of
oscillations decreases the penetration number by a
factor of four, which, at sufficiently high
frequencies, reduces the boundary-layer thickness
by a factor of four also (since the penetration
number and the penetration depth are directly
proportional in the lower portion of the domain,
regardless of axial position).  The role of viscosity
is finally established as an attenuation factor.
This is due to the fact that the penetration number
is inversely proportional to the kinematic
viscosity.  In contrast to steady boundary layers,
or to Stokes boundary layers in oscillatory flows
with imporous walls, the role of viscosity when
injection is included is to attenuate rather than
promote the growth of the boundary layer.  The
penetration depth is found to be a measure of the
rotational region of the flow.  Physically,
oscillatory vorticity is constantly generated at the
wall as a result of the oscillatory pressure gradient
which is parallel to the solid boundary at the
injection surface.  Due to the mean flow motion,
vorticity is convected inwardly in an attempt to
contaminate the irrotational fluid with vorticity.
The growth of the vortical region results from the
convection and diffusion of vorticity into the inner
regions of the domain where convective, diffusive,
and inertial acceleration effects stand balanced.
The amplitude of the oscillatory vorticity will
cease to change when viscous dissipation and
downstream convection of vorticity manage to
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annihilate the radial propagation effects.  The
edge of the boundary layer is hence recognized as
a point that is located at a distance y p  from the

wall, above which the propagation of vorticity is
negligible.  The flowfield above this depth of
penetration can be said to be irrotational.  The
boundary-layer region is, in the context described
here, a region of highly concentrated vorticity.
Finally, the chamber geometry appears to have a
direct effect on the penetration number also.
Decreasing the motor’s effective radius causes the
penetration depth to grow proportionately larger.
This is to be expected because the effect of
blowing becomes more appreciable when the
cross-sectional area is reduced.

Conclusions
The classical concepts of boundary-layer theory

regarding inner, near-wall, and outer, external
regions are almost reversed for the case of an
unsteady flow over a transpiring surface.  Near the
wall, instead of observing the thin, inner, viscous
layer as in unsteady Stokes or steady flows, a
thick rotational layer is established near the solid
boundary when sidewall injection is incorporated
because of vorticity convection in the radial
direction.  The penetration depth is simply a
measure of the vortical region.  The thin layer
where viscous friction is important is removed
from the wall to the edge of the Stokes boundary
layer.  The penetration depth is a direct function
of a similarity number that is proportional to the
cube of the injection speed, inversely proportional
to the square of the frequency, and inversely
proportional to the viscosity and chamber
effective radius.  This dependence is in total
agreement with empirical observations as well as
numerical analyses.  Accordingly, the role of
viscous diffusion is to attenuate the amplitude of
shear waves and to reduce the depth of
penetration.  The role of frequency is similar to
viscosity, only twice as important.  Injection
velocity is the most important variable affecting
the boundary-layer thickness.  Higher combustion
temperatures in rockets lead to higher kinematic
viscosities and, therefore, to smaller penetration
numbers.  Higher oscillation modes (and,
therefore, frequencies) have a similar effect.  The
axial location in the chamber also affects the

boundary-layer thickness depending on the
acoustic mode.  The role of the Strouhal number
as the controlling parameter for the vortical-to-
acoustical phase angle has been elucidated.  The
current analysis clearly shows that increasing the
Strouhal number steepens the vortical wave crest
and reduces its wavelength.  The pressure-to-
velocity phase at the wall is found to be controlled
by the ratio of the convection-to-diffusion speed
of the vortical waves.

The key elements defining the structure of the
boundary layer are accurately captured by the CST
solution which, unlike computational predictions,
does not suffer from limitations imposed on grid
resolution, time discretization size, artificial
dissipation, and so forth.  It is hoped that this
technique be further explored in related
combustion stability research, taking advantage of
the scaling synthesis verified to be accurate in this
investigation, and which can be particularly useful
in pursuing models for turbulence. Analytical
development of a turbulent flow model can now
evolve from the established knowledge of
similarity parameters and agents in control of the
laminar boundary layer.
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Fig. 1  Velocity evolutions from numerical, regular perturbations,7 and CST3 models shown at 13 evenly
spaced times in a typical tactical rocket motor for the first 4 acoustic modes at the first (a-d) and last (e-g)
acoustic velocity antinode.
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Fig. 6  Unsteady pressure to velocity phase lead
using CST,3 regular perturbations, viscous7 and
inviscid6 models, and the one-dimensional model,4 all
at m = 1 and chamber midlength; the four typical
cases span the range of solid rocket motors.
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Fig. 7  Comparison of time-dependent velocity
evolutions at 4 evenly spaced times acquired from
analytical predictions3 (shown by solid lines) and
Navier-Stokes data23 (shown by dashed lines) for the
first 2 modes of oscillations evaluated at the axial
location of the first (a-b) and last (c) acoustic
velocity antinode.
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