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In the combustion stability assessment of solid propellant rocket motors, several new
destabilizing terms are introduced when rotational flow effects are properly accounted for.
Such effects must be included when the wave motion is parallel to the burning surface.  A
normal fluctuating velocity component then appears in a careful resolution of intrinsic fluid
dynamics, including acoustico-vortical interactions that must satisfy mass and momentum
conservation principles while accommodating the no-slip condition at the propellant surface.
The source of this destabilizing term appears explicitly in two separate, independently
derived, analytical formulations of the internal flowfield.  Predictions generated by these
analytical models are shown to agree with reliable computational data produced recently by
a numerical code that solves the unsteady nonlinear Navier-Stokes equations. Verification of
the analytical formulations by means of theoretical considerations, numerical comparisons,
and global error assessments are also undertaken before examining the impact of the new
time-dependent radial velocity correction on rocket stability. The new radial velocity
fluctuations introduce a correction comparable in importance to the classical pressure
coupling at the propellant surface.  This effect along with several companion terms must be
accounted for in the assessment of motor stability characteristics.

 I. Introduction!

N combustion stability assessments of solid rocket
motors, the source of radial velocity fluctuations is

frequently attributed to pressure oscillations at the
propellant surface which, through the pressure coupling
mechanism, viz., ! ~m pn , can induce an oscillatory

component in the radial direction.  This is done without
considering certain fluid dynamical interactions within
the motor.  In particular, effects related to the
production of unsteady vorticity are lost in the
assumption that the unsteady flow is a perturbed
acoustic wave, and hence irrotational. This drawback is
removed in two multidimensional formulations of the

                                                          
*Assistant Professor, Department of Mechanical and

Industrial Engineering.  Member AIAA.
†Boling Chair Professor of Mechanical and Aerospace

Engineering.  Associate Fellow, AIAA.
!‡Post-Doctoral Scholar, Mechanical Engineering and Jet

Propulsion Center.  Member AIAA.
Copyright © 1998 by J. Majdalani, G. A. Flandro, and T. S.

Roh.  Published by the American Institute of Aeronautics
and Astronautics, Inc., with permission.

time-dependent field which correctly satisfy applicable
conservation laws. As derived independently by
Flandro1 using regular perturbations, and Majdalani and
Van Moorhem2 using multiple scale expansions, two
explicit formulations for the time-dependent field are
now available that satisfy all appropriate conservation
principles.  In addition to satisfying applicable laws of
physics, these expressions agree very well with
computational predictions obtained from full,
compressible, nonlinearized, Navier-Stokes solvers.3

An important consequence of introducing the
unsteady rotational flow corrections is the appearance
of new terms in the stability assessment of the
chamber.1 One of these is a radial velocity fluctuation
with an amplitude proportional to the mean flow Mach
number.  Hence, it has the same importance in the
system stability as the pressure coupling effect, which
has similar influence. In this paper we demonstrate that
this term arises in two separate formulations of the
problem.  A careful numerical verification is also
undertaken, so that any doubts regarding its origin can
be resolved.  This article begins by reviewing briefly in
Sec. II the two distinct analytical formulations of the
unsteady rotational flow in a rocket chamber.  Since the
correctness of either model depends largely on how
accurately it can replicate reality, a careful verification
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process is undertaken in Sec. III.  This verification is
threefold and includes theoretical, computational, and
global error validations. The theoretical verification
consists of insuring that flowfield components satisfy
continuity.  Computational validations involve thorough
comparisons to recently acquired CFD data from a
nonlinear Navier-Stokes solver.  These comparisons
illustrate the remarkable agreement between analytical
and computational results.  The global or total error that
accompanies each individual formulation is carefully
determined in addition to the order associated with each
method.  Having established with certainty the reported
accuracy, Sec. IV focuses on a key flowfield
component that produces a destabilizing effect of the
same order of magnitude as the pressue coupling.  The
characteristics of this radial velocity fluctuation are
described, emphasizing the nonzero value it assumes at
the propellant surface (edge of the combustion zone).
The direct impact on stability is covered in Sec V.

 II. Analytical Models
Following Flandro’s nomenclature,4 the total velocity

is expressed in two-dimensional axisymmetric
coordinates after normalizing by the speed of sound:

u U u( , , ) ( , ) ( , , )( )r z t M r z r z tb" # $ 1 (1)

where U ( , )r z  denotes Culick’s well-known mean flow

profile,5 Mb  is the injection Mach number at the wall,

and $ %" A pp / ( )0  is the normalized pressure-wave

amplitude representing the primary perturbation
parameter used to linearize the Navier-Stokes
equations.  From the axial and normal components of
the velocity, the total unsteady component is

u e e( ) ( ) ( )( , , )1 1 1r z t u ur r z z" # (2)

A. Regular Perturbation (RP) Formulation

Since the details of the derivation are presented in
separate papers,1,4 the goal now is to focus on the
results.  The time-dependent expressions for the
velocity field are repeated here for the reader’s
convenience, as originally published:
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These results are accurate to O S( / )1 , the reciprocal of

the Strouhal number ( S R Vb" , 0 / ), which is always

smaller than about 10% since S 0 10 .  The global error
thus decreases at higher oscillation frequencies, larger
effective radii, and smaller injection speeds. It
approaches the exact solution at higher oscillation
modes, which are very difficult to resolve numerically.

A shorter version of the RP solution can be extruded
at the expense of a loss in accuracy that is insignificant
at high kinetic Reynolds numbers.  The outcome
consisting of

u r z t k z k tz m m
( ) , , sin sin1 b g b g b g"

# rU k zr
r

o mexp sin sin sin( ' )b g b g (13)

  u r z t M r U k zr b r
r

o m
( ) , , exp cos cos sin1 2 3b g b g b g" ( ' ) (14)

carries a maximum error bound of 18% for
Rek " *5 105  and S " 100 .  The order of the error

associated with Eqs. (13)-(14) approaches 1/S
asymptotically as Rek 12 .

B. Multiple Scale (MS) Formulation

Based on a two-variable derivative expansion
procedure, an alternative solution is furnished by
Majdalani and Van Moorhem:2

u r z t k z k tz m m
( ) , , sin sin1 b g b g b g"

#rU k zr msin sin exp sin) 3 'b g b g 0 (15)

u r z t M r U k zr b r m
( ) , , cos sin cos exp1 2 3

0b g b g b g" ) ' 3 (16)
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where the spatial damping term 3 +4" &Ur
3  is based on

an effective scale function that controls the solution:

  4 " # &&
&

y cy yr c rc1 1
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lnb g ; y r" &1 ; c " 3 2/ (17)

Note that the global error associated with Eqs. (15)-(16)
is of O k( / )1 Re 5 & &O R( )- ,0 0

1 2 .  The latter is a very

small quantity, independent of the injection speed,
being the square of the ratio of the thin hard wall Stokes

layer ( - ,0 0/ ), and the chamber radius.  The error

thus decreases at higher oscillation modes and larger
radii.  By comparison to the Strouhal number, the
kinetic Reynolds number is a much larger quantity
since, independently of , 0 , the ratio
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results in the classic injection Reynolds number, which
is always significant.  From a practical standpoint, the
global errors associated with both models remain too
small to affect the overall assessment by an appreciable
amount.  This will be confirmed in the forthcoming
assessments.

 III. Verifications
In order to establish irrefutably the accuracy reported

in the previous section, we undertake analytical and
computational verifications along with a careful error
analysis to ascertain the order of the global error
associated with both analytical formulations.

A. Analytical Verification

From mass conservation, both steady and time-
dependent components of the total velocity must satisfy
continuity.  Since the steady function U ( , )r z  is clearly
solenoidal (i.e., divergence-free), it is only natural to
expect u( ) ( , , )1 r z t  to be solenoidal as well.  Indeed, one
can easily show that both Eqs. (3)-(4) and Eqs. (15)-
(16) satisfy, in the leading order terms, the continuity
equation written in cylindrical coordinates, namely,
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B. Computational (CFD) Verification

In previous work,2,3 the analytical derivations
mentioned above were found to concur, as they should,
with the numerical solution of their governing,
linearized Navier-Stokes equations.  A recent
comparison with computational data acquired from a

full, nonlinearized, Navier-Stokes solver developed by
Roh and co-workers,6,7 shows remarkable agreement
between analytical and computational predictions.

Comparisons are shown in Fig. 1 for a typical case at
the first two oscillation modes.  The physical
parameters correspond to an average tactical rocket
motor proposed by Flandro.1 Additional test parameters
include a chamber pressure of 5.066*106 Nm-2 (50
atm), a density of 6.586 kgm-3, a kinematic viscosity of
7.69*10-6 m2s-1, a temperature of 2000 K, a ratio of
specific heats of 1.3, a Prandtl number of 0.9, a speed
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Fig. 1  Unsteady axial velocity obtained analytically
(continuous lines) and from Navier-Stokes solvers
(discontinuous lines) overlaid at two evenly spaced
times in a typical tactical rocket motor.  Results are
for the first two oscillation modes evaluated at the
first and last acoustic pressure nodes.
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of sound of 1000 ms-1, and an injection speed of 3 ms-1.
The CFD scheme employs a grid system that includes
60*150 nodes (in the axial and radial directions,
respectively) for mode 1, and 80*240 nodes for mode
2, with a clustering ratio that increases with distance
from the wall.  This is necessitated by the need to
resolve rapid variations that occur away from the wall
as the spatial wavelength of vortical waves diminishes,
being a direct function of Culick’s radial velocity.3

Since the spatial wavelength vanishes asymptotically as
the centerline is approached, an increasingly larger
number of nodes will be needed to maintain a uniform
numerical error.  A highly refined grid quickly becomes
unaffordable due to increased memory requirements
and CPU time.

In Fig. 1, the expected build-up in numerical error as
the centerline is approached is attributed to the rough
grid resolution used to generate the CFD data.  This
slight discrepancy, owing to unavoidable numerical
errors, does not undermine the remarkable agreement
with analytical predictions.

Another contribution to such deviations can be
attributed to the finite time discretization used in the
numerical scheme which allows producing CFD data at
approximate times.  While analytical predictions are
shown at two instants separated by a phase difference
that is exactly equal to . , (which happens to be an
irrational number), numerical predictions are furnished
at approximate phase differences.

Overall, within computational uncertainty, the CFD
data indicates that, when turbulence is suppressed, the
analytical models do represent the true nature of the
internal flowfield.  Representative data sets used to
generate one time evolution in Fig. 1a are listed in
Table 1 for confirmatory purposes.

C. Absolute Error Verification

In a recent paper on applied mathematics, Bosely8

describes a rigorous technique that can be employed to
verify categorically the error associated with an

asymptotic solution.  His technique serves two
purposes: (1) to evaluate the order of the error, and (2)
to ensure that the final expression is free from human
errors.  His technique is used here to verify the error
associated with both regular perturbation and multiple
scale formulations, in the hope of dispelling any
possible doubts regarding the declared accuracy
reported in the previous paragraphs.

The way this technique works is quite
straightforward.  We start by calculating the maximum
absolute error, defined as the absolute difference
between analytical and numerical solutions:

E u u
r

max max" &
8 80 1 numeric analytic

(1) (1) (20)

Then if Emax  is of O S( / )1 , as determined theoretically

for the regular perturbation solution, one can write

E K Smax ( / )" 1 9 (21)

and show that 9 1 1  for large S .  The order of the
error can be determined from the slope of Emax  versus

1 / S  plotted on a log-log scale.  This slope can be
determined quite accurately by using, for instance, the
method of least-squares.

If, on the other hand, Emax  is of O k( / )1 Re , as

predicted theoretically for the multiple scale
formulation, then one would set

E K kmax ( / )" 1 Re 9 (22)

and show that 9 1 1  for large Rek .

The maximum error is thus evaluated and shown in
Fig. 2 for the regular perturbation (Fig. 2a) and multiple
scale (Fig. 2b) formulations.  For the regular
perturbations case, the error decreases and its order
approaches unity with large Strouhal and kinetic
Reynolds numbers.  It deteriorates for small Strouhal
numbers.  For the multiple scale formulation, the same
occurs for decreasing Strouhal and increasing kinetic
Reynolds numbers.  In a sense, the errors from both
models are complementary with respect to the Strouhal
number.  This is clearly shown in Fig. 3 where errors
from both models are shown at discrete values of the
Strouhal number.  In the same vein, a typical
comparison of maximum absolute errors obtained for a
tactical rocket motor with an Rek  of 2 1 106. *  is

furnished in Table 2 below.

 IV. Nonzero Radial Fluctuations
In this section, we address the character of unsteady

radial velocities obtained from both analytical models.
Before addressing the influence of this velocity

Table 1  Unsteady axial velocity predictions

y RP MS CFD
1.0 1.00000 1.00000 1.00000
0.9 1.00020 1.00020 1.00073
0.8 0.99560 0.99584 1.00069
0.7 0.98662 0.98858 0.99667
0.6 1.04700 1.04160 1.02463
0.5 0.89730 0.88565 0.90050
0.4 0.86056 0.83989 0.82500
0.3 1.30870 1.28400 1.19759
0.2 1.77650 1.78480 1.79982
0.1 0.80323 0.82064 0.83152
0.0 5.00E-5 6.3E-12 0.00688
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component on stability, we first undergo a comparative
verification process to confirm the accuracy associated
with both expicit formulations.

The explicit radial velocities expressed by Eq. (4)
and Eq. (16), derived totally separately, are compared
to each other, and to the corresponding numerical
solution, for three cardinal cases reported in Ref. 1 that
span a wide range of rocket motors.  Without loss in
generality, these comparisons are drawn in Fig. 4 for
the first oscillation mode at z L* / " 15%  where the
flowfield is predominantly laminar.

Clearly, both regular perturbation and multiple scale
formulations coincide everywhere with the numerical
solution.  The same level of agreement persists at

higher oscillation modes, and at different locations
within the chamber (not shown here).  The modulus of
the rotational radial velocity expressed in complex
notation, which is plotted in Fig. 4, is largest (in
absolute value) at the wall, and decays as the centerline
is approached.  This is to be expected since the
vorticity-coupled axial counterpart decays and vanishes
when approaching the centerline as well.  In particular,
note that the nonzero value of the radial velocity at the
wall negates traditional one-dimensional flowfield
predictions which attribute velocity fluctuations to the
pressure coupling response while ignoring internal flow
interactions.  This value for ur

( )1  can be determined

from either Eq. (4) or Eq. (16).  The result is

u z t M k z M m z Lr b m b
( ) , , cos cos * /1 1b g b g b g" & " & . (23)
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Fig. 2  Maximum absolute error associated with (a)
Flandro’s1 regular perturbation and (b) Majdalani
and Van Moorhem’s multiple scale formulations.2 Table 2  Maximum error for a tactical motor

S R

Vb
" , 0 RP MS

10.000000 0.1285786 3.39398E-5
12.589258 0.0946560 5.61192E-5
15.848941 0.0876632 8.44848E-5
19.952633 0.0723662 1.31394E-4
25.118875 0.0547265 2.22025E-4
31.622753 0.0458222 3.54939E-4
39.810661 0.0359189 5.99515E-4
50.118782 0.0290877 0.0010290
63.095862 0.0236003 0.0017954
79.432534 0.0195297 0.0032031
100.00000 0.0167755 0.0057601
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Fig. 3  Comparison of maximum absolute errors
associated with Flandro’s1 and Majdalani and Van
Moorhem’s formulations.2
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which, for z L* / " 15% , is &0 891. Mb .  In Fig. 4, this

value of the radial velocity amplitude at the wall is
indicated for further emphasis. The graphical agreement
shown in Fig. 4 is presented in tabular format for one
case in Table 3 where data corresponding to the shuttle
rocket booster are listed at 10 evenly spaced points.
Note that the agreement with computational data is very
good near the wall and deteriorates as we approach the
centerline due to progressive build up in the numerical
error for reasons already stated in Sec. III(B).  The
agreement between regular perturbation and multiple
scale predictions is remarkable and includes, in some
cases, matching digits up to the eighth decimal place.

 V. Stability Implications
Three different methods have been employed to

determine the part of the radial velocity fluctuation that
is created by the rotational flow corrections.  In
assessing the motor system stability characteristics, this
radial velocity component must be added to others that
arise in the irrotational (acoustic) part of the problem.
In particular, terms that appear as a result of pressure
sensitive combustion effects represent separate
elements of the radial velocity fluctuation.

It should be apparent that the three separate
calculations of the radial rotational velocity fluctuation
are in substantial agreement.  What is most important is
that the predicted value of the radial velocity at the
surface, & : ;M m z Lb cos * /. , is proportional to the

mean flow Mach number as already described. That is,
it is of the same order of magnitude as other important
parts of the system gain/loss balance. The velocity
fluctuation is in phase with the pressure fluctuation.  It
therefore has the same significance as pressure coupling
in the stability of the motor, since the response function
is also proportional to the mean flow Mach number.

The new destabilizing term was discussed in detail in
Reference 4, which also demonstrates that its inclusion
improves the agreement between stability predictions
and experimental data for motor systems that exhibit
linear stability behavior.

 VI. Concluding Remarks
What has been accomplished here is the verification

that a new destabilizing term must be included in linear
stability calculations for cases with wave motion
parallel to the burning surfaces.  The new findings are
not the result of “double bookkeeping” as some critics
contend.  They represent natural gas motions that must
be present when the no slip boundary conditions at the
surfaces are accommodated.  They arise in the same set
of interactions that lead to the much discussed “flow
turning” damping effect.
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Fig. 4  Modulus of radial velocity fluctuations from
both regular perturbation and multiple scale
formulations compared with numerical predictions.
Comparisons correspond to m = 1 and z*/L = 0.15.

Table 3  Unsteady radial velocity amplitudes (SRB)

y RP MS Numerical
1.0 0.00000000 0.00000000 0.00000000
0.9 8.53137E-8 8.52946E-8 5.63200E-8
0.8 2.81421E-6 2.81590E-6 2.46140E-6
0.7 2.12909E-5 2.12990E-5 1.95797E-5
0.6 8.75767E-5 8.75969E-5 8.21043E-5
0.5 2.53138E-4 2.53175E-4 2.40537E-4
0.4 5.70289E-4 5.70344E-4 5.49830E-4
0.3 0.00104740 0.00104750 0.00102800
0.2 0.00159440 0.00159450 0.00159710
0.1 0.00200820 0.00200830 0.00204940
0.0 0.00204930 0.00204930 0.00210990
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