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A mathematical model is developed for the oscillatory flowfield arising in a rectangular
geometry where fluid is injected uniformly through flat, parallel and permeable walls.
Linearization of the Navier-Stokes equations rests on two fundamental assumptions, namely,
of a small oscillatory pressure amplitude in addition to a small injection Mach number.
Field decomposition into mean and small fluctuations about the mean precedes extracting a
steady, two-dimensional, rotational solution which dictates the bulk fluid motion.  Time-
dependent velocity decomposition into irrotational and solenoidal parts allows splitting the
field into pressure and vorticity driven terms that are coupled through existing boundary
conditions.  Separation of variables and multiple scale expansions allow extracting an
accurate, uniformly valid formulation for the rotational velocity that captures key physical
elements, disclosing a nondimensional grouping that has a profound impact on the solution.
Flowfield characteristics are interpreted via existing dynamic similarity parameters,
including injection Strouhal and Stokes numbers.  For meaningful physical settings, results
are shown to agree very favorably with numerical predictions.

 I. Introduction!

HE focus of this paper is to derive an analytical
solution to the oscillatory velocity field occurring

between two porous plates in the presence of an
incoming mean flow from the sidewalls.  Much effort
has been expended, in the past, to analyze oscillatory
flows which do not include injection, or to flows which
include injection yet do not exhibit any oscillatory
behavior.  The reader is referred to, for instance, to the
work of Uchida,1 and the references therein, where an
exact solution for the pulsating viscous flow of an
incompressible fluid is derived in a circular pipe, for
arbitrary pressure gradients and imporous walls.
Solutions to various types of steady flowfields that
allow injection or suction through permeable walls are
also available.  See White,2 for example, and the
references therein.

The present work is unique in that it combines
injection of a mean flow through permeable walls with
longitudinal oscillations in a rectangular geometry.  In
order to achieve a solution, the Navier-Stokes equations
are linearized following a fundamental assumption
requiring the oscillatory pressure amplitude to be small
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by comparison to the mean pressure.  Another
restriction of a small injection Mach number through
the porous walls must also be tolerated.  The general
procedure utilized to manage a uniformly valid solution
is described below.

First, the system parameters such as geometry and
principal variables are defined.  The range for
meaningful physical settings is addressed as well.
Second, the governing equations are established along
with pertinent assumptions starting with the full Navier-
Stokes equations.  The equations are linearized by
separating the flow into a steady or mean component,
and a corresponding time-dependent fluctuation
(oscillatory component) that is small by comparison to
the mean.  Third, the solution to the steady flow
component is presented in cartesian coordinates.
Fourth, the unsteady flowfield is separated into two
independent and linearly superimposable solutions
using velocity synthesis: an irrotational and an
incompressible, rotational parts.  The solution to the
irrotational, or so-called lamellar component of the
flow, is readily identified.  The rotational or so-called
solenoidal component of the flow, becomes the central
element in the remaining analysis.  Fifth, the two-
dimensional time-dependent viscous solution is
formulated.  The approach invokes a perturbation
technique which was first introduced by the author3 for
solving flowfields in cylindrical geometries.  Sixth, a
comparative analysis using reliable numerical
predictions is undertaken by way of verifying the
accuracy associated with the final formulation.

T



AIAA-98-2977

 2
American Institute of Aeronautics and Astronautics

 II. Problem Definition

A. Basic Geometry

The velocity field is investigated in a low aspect
ratio, rectangular chamber, of length L , width W , and
height 2 H  (W H"" 2 , L H"" 2 ), where sidewall
injection of a Newtonian fluid (of kinematic viscosity
# 0 ) occurs at a steady injection rate Vb .  As

represented schematically in Fig. 1, the chamber is
closed at one end and attached to a choked nozzle at the
downstream end (not shown).  The head-end and lateral
walls normal to the x  axis are impenetrable. Since the
chamber width is larger than its height, variations in the
x  direction are ignored.  Fluid entering the chamber in
the normal direction ( y ) is led to change course,

swerve, and head for the nozzle.  Under idealized
conditions, the flow is perfectly symmetrical about the
central plane, and subjected to neither swirling nor
separation.  Due to symmetry, the field investigation
can be limited to half of the domain extending from the
wall to the central plane.

In addition to the bulk fluid motion, small amplitude
harmonic oscillations (of frequency $ 0  and pressure

amplitude Ap ) are introduced.  These oscillations

superimposed on the mean flow can be either externally
induced or naturally occurring as a result of acoustic
pressure oscillations.  In cold flow experiments, a
rotating valve inserted externally near the fore or aft
ends,4 a piston with a slider crank mechanism,5 or a
Scotch yoke mechanism,6 can be used, for instance, to
induce oscillatory waves traveling in the longitudinal
direction that approach natural system frequencies.  In
combustion chambers, acoustic wave motion can be
self-induced due to inherent imperfections in the
combustion process which lead to wave disturbance
propagation.  These intrinsic disturbance waves, in turn,
give rise to an internal acoustic environment.  In the
foregoing analysis, the physical source of oscillations
will not be of concern.

B. Fundamental Assumptions

The analytical derivation to be pursued will rest upon
a fundamental assumption of a low injection Mach
number of O( )10 3% .  In cold flow experiments
characterized by a typical speed of sound of about 350

m/s, a limit of 2 m/s on the injection speed must be
imposed in order to satisfy the low Mach number
criterion.  Practically, this limit of 2 m/s is not too
restrictive as, in many physical settings, it could be
rather high.  A second basic assumption constrains the
oscillatory pressure amplitude Ap  to remain small by

comparison to the mean stagnation pressure p0  at the

chamber head-end.  A third assumption of a constant
mean pressure within the chamber will be found to be
contingent upon a geometrical restriction of L H/  <
60.  When these criteria are met, the foregoing analysis
will be applicable everywhere except in the nozzle
vicinity.

 III. Governing Equations

A. Fundamental Equations

For constant viscosity, negligible bulk viscosity
coefficient, and no body forces, the conservation of
mass and momentum equations can be written as:
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where density and pressure are normalized by their
mean stagnation values, * 0  and p0 , at the inert head-

end, velocities are normalized by the speed of sound
a0 , spatial coordinates are normalized by H , and time

is made dimensionless by reference to the average time
it takes for a pressure disturbance to travel from the
porous sidewall to the centerline, ( H a/ 0 ).  The

Reynolds number Re  in Eq. (2) is a H0 0/# , +  is the

ratio of specific heats, and u( , , )y z t  is the total

velocity, including both steady and unsteady
components.  Determination of the latter constitutes the
central purpose of this article.

B. Strategy

In what follows, the internal flowfield is decomposed
into a steady and a time-dependent or oscillatory part.
This is accomplished by writing each of the
independent variables (pressure, density, and velocity)
as a sum of their steady and time-dependent
components.  A small parameter perturbation scheme is
justified by virtue of the original premise requiring the
time-dependent part to be a small fluctuating quantity
relative to its steady counterpart.7  In order to break the
analysis into digestible pieces, an assumption that must
be tolerated is that the presence of time-dependent
oscillations does not affect the bulk fluid motion.
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y

Fig. 1  Chamber geometry showing mean flow
streamlines.
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Fortunately, this assumption is shown to be accurate, in
detailed analyses of the mean flow solution in similar
physical settings.4,8  Since superposition of the coupled
elements is sought, a detailed knowledge of the steady
flowfield becomes an essential prerequisite to a
successful assault on the time-dependent formulation.
Equations governing both steady and time-dependent
components are developed next.

C. Variable Decomposition

The total pressure can be written as the composite
sum of its steady and time-dependent parts.  Using
asterisks to denote dimensional variables, and
superscripts for perturbation orders,

p p y z p y z t- - -) '( ) * * ( ) * * *( , ) ( , , )0 1

) '-p A f y z tp
( ) * * *( , ) cos( )0

0$ (3)

where the steady part of the pressure p-( )0  will be

taken to be a constant and later verified to be true.  In
the time-dependent part of Eq. (3), Ap  represents the

amplitude of the oscillatory pressure component, and
f  is a normalized spatial function of the order of unity.

Normalizing by the mean stagnation value p0 , and

using p p- .( )0
0 , one gets
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where, / w pA p) / 0 , is the gauge parameter that

provides a scale to which other terms can be compared.
For example, terms that are similar in size to / w  will

be described as of “first-order in / w .”  This

nondimensional wave amplitude, being the smallest in
magnitude, is selected as the primary perturbation
parameter.  Other fluctuating variables can be expanded
in a similar fashion:
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Velocity decomposition needs to be addressed carefully
since its mean value is far from being a constant.  It is
proposed for now that the steady velocity will have the
form V y zbU ( , ) , where U ( , )y z  is a function of O( )1

to be derived in Sec. IV.  On that account, we expand
the total dimensional velocity as

u U u* *( )( , , ) ( , ) ( , , )y z t V y z y z tb) ' 1 (6)

Normalizing by a0 , the nondimensional counterpart is

found to be of the order of the injection Mach number,
which represents a secondary perturbation parameter,
since / w bM0 00 1.  The normalized velocity

becomes

u U u( , , ) ( , ) ( , , )( )y z t M y z y z tb) ' 1 (7)

D. Linearized Equations

Inserting the perturbed variables in their
dimensionless form into Eqs. (1)-(2), one obtains, for
the zero order expansion in the wave amplitude, the set
that governs the steady flow motion:
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The latter can be written in a more convenient form by
making use of U. U U.U U U( ) ( % , (,b g b g/ 2  and

(, (, ) %( '( (U U .Ub g b g2 .  The result is
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Collecting terms that are comparable in magnitude to
the first order in the wave amplitude, the first order
linearized expansion of the fundamental equations is
attained (see Appendix A):
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Equations (11)-(12) incorporate the intricate coupling
between mean and time-dependent flow components.

 IV. Steady Field

A. Formulation

The current procedure follows precisely Culick’s
rigorous approach used to derive a similar solution in
circular chambers with sidewall injection in
axisymmetric, cylindrical coordinates.9  In like fashion,
we start by defining the stream function vector,
S ef x))))1 , and express the velocity in terms of 1 :
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The continuity equation being automatically satisfied
by 1 , the next step is to replace U  by (, S f  in the

vorticity transport equation found by taking the curl of
Eq. (10).  The result is an equation that does not depend
on the steady pressure gradient:
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Since vorticity 3333  is created at the surface and carried
through the chamber by convective mean flow motion
in both normal and axial directions, the role played by
viscous diffusion of steady vorticity remains secondary.
This justifies disregarding the viscous diffusion term in
the vorticity transport equation provided, of course, that
the normal no-slip condition is accounted for in the
derivation process. Since the primary effect of viscosity
is to ensure a normal influx at the porous surface, its
effect will be incorporated as part of the boundary
conditions.

Using the same transformation, steady vorticity is
expressible as
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Equations (15)-(16) show that, in order to obtain 3
and 1 , one must solve simultaneously
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By rearranging Eq. (17) and inspecting the ratio
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 it becomes apparent that the equality will stand if 1
and 3  are directly proportional, or 3 1) C 2 .  The
value of C ) 0  is discarded since it results in an
irrotational solution that does not permit satisfying the
velocity-adherence condition at y ) 0 .  It can be

verified that the solution desired here is possible when
C  is a nonzero constant.  Inserting 3 1) C 2  into Eq.

(18), the two-dimensional Helmholtz equation is
recovered:
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B. The Helmholtz Solution

Letting 1 ( , ) ( ) ( ),y z Y y Z z)  Eq. (20) can be resolved

into two ordinary differential equations (ODEs) by
examining

d Y dy

Y
C

d Z dz

Z
K

2 2
2

2 2

0

/ /
' ) % ) (21)

These can be readily solved by careful application of
four auxiliary conditions.  The first requires the normal
velocity U y , and therefore & &1 / z , to be constant at

the wall for steady, uniform injection; this means
% )Y dZ z dz( ) ( ) /0 constant , or d Z z dz2 2 0( ) / ) , so

that, from Eq. (21), K0 0)  everywhere.  For K0 0) ,

Eq. (21) leads to

1 ( , ) sin cosy z K z K K Cy K Cy) ' '1 2 3 4b g b g b g (22)

The boundary conditions are now applied: (1) The
injected fluid enters normally to the surface when
U zz ( , )0 0) , or & & )1 ( , ) /0 0z y , which is met only

when K3 0) .  (2) Symmetry about the central plane

implies that U zy ( , )1 0) , or & & )1 ( , ) /1 0z z , leading

to K K C1 4 0cosb g ) , or C n) '( ) /2 1 25 , where n  is

an integer.  The only solution which is physically
acceptable corresponds to n ) 0 .  Other solutions
correspond to flowfields with planes of zero U y  for

0 10 0y , causing internal flow reversal.  When flow

reversal is established, the normal flow will be directed
toward the sidewall, and the axial flow will be directed
toward the chamber head-end. (3) At the wall, the
steady velocity component must equal Vb , hence,

U zy ( , )0 1) , or & & )1 ( , ) /0 1z z , giving K K1 4 1) .

(4) Finally, the axial velocity vanishes at the chamber
head-end, when U yz ( , )0 0) , or Z dY y dy( ) ( ) /0 0) ,

yielding K2 0) .  Substituting back into Eq. (22) gives

1 ( , ) ( ) ( ) cosy z Y y Z z z y) ) F
HG
I
KJ

5
2

(23)

wherefrom velocity and vorticity fields are extracted by
simple differentiation:
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As one would expect, magnitudes of axial velocity and
vorticity intensify in the downstream direction.  Steady
flow streamlines that capture the bulk fluid motion are
shown in Fig 1, for several discrete values of 1 .

C. Corrected Mean Pressure Distribution

Having determined the velocity field from the
vorticity transport equation which is pressure-
independent, one can use the momentum equation to
deduce the pressure associated with the steady field.
Therefore, without loss in generality, one can set
p y z t p y z p y z tc( , , ) ( , ) ( , , )( )) ' '1 1 , where p y zc ( , )

is a correction that takes into account spatial variations
in pressure.  A boundary condition that must be met
specifies that pressure at the chamber head-end must
equal (by definition) the local stagnation pressure
where p pc

( ) ( )0 1 1) ' )1, 0 , or pc ( ) .1, 0 ) 0   The

pertinent spatially-dependent pressure correction can be
obtained from Eq. (2) by direct substitution:
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which, by disregarding the smaller order term for
viscous diffusion of mean vorticity, becomes

( ) % (p Mc b/ ( )+ 2 U. U (29)

Equation (29) can be expressed in scalar form as
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and integrated to obtain
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Imposing pc ( ) ,1, 0 ) 0  the pure constant of integration

is determined.  It follows that the corrected steady
pressure distribution must be

p y z M z yb
( ) ( , ) cos0 2

2
2 21
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where the y -dependence can be safely ignored by

comparison to the z -dependence, the former being of
the order of a Cosine term that is squared, whereas
5 2 2z  is typically of the order of 103.  Additionally,
since Mb  is of O( )10 3% , and z  is less than 60, the

error in assuming a constant steady pressure is
insignificant, being of order M zb

2 2 .   The corrected

pressure distribution is shown in Fig. 2, indicating that
axial pressure variations are indeed negligible except in
long chambers with large Mach numbers.  Since the
Mach number in the majority of cases does not exceed
0.003, the assumption of a uniform mean value needed
to represent the steady pressure distribution is fairly
well justified.  Having, heretofore, established the
steady flowfield character, its impact on the oscillatory
component is studied next.

 V. Time-Dependent Field

A. Flowfield Decomposition

The notion of decomposition is made possible by
virtue of an important mathematical theorem (see, for
example, Lagerstrom10), which applies to continuous
vector fields.  The theorem allows a vector field to be
synthesized out of two different and independent fields
provided that the first is irrotational and the second is
solenoidal.  When applied to the time-dependent
velocity vector, the statement of the theorem can be
translated into an expression of the total velocity field
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Fig. 2  Time-independent pressure component at
some practical injection Mach numbers.
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being a juxtaposition of two distinct components:

u u u u u( ) ! ~1 ) ' ) 'irrotational solenoidal (34)

provided that, in general, (, )!u 0 , and (7 )~u 0 .
Similar decomposition of a small amplitude
“disturbance” into two modes of fluctuations, a so-
called pressure mode and a vorticity mode, has been
accomplished previously by numerous authors,
including Chu and Kovásznay,11 Carrier and
Carlson,12,  and Flandro.13  The fundamental equations
governing the unsteady disturbances to the first order in
pressure wave amplitude can be written for each of the
modes.  The total time-dependent velocity field can be
obtained thereafter by superimposing the solution
vectors linearly.  Denoting the irrotational (acoustic,
pressure mode) component by the circumflex (^), and
the solenoidal (incompressible, vortical mode)
component by the tilde (~), one can express the
corresponding time-dependent variables as

$$$$ $$$$( ) ( ) ~ ~1 14 ( , ) 4 ( ,u u (35)
p p( ) !1 ) (36)

* *( ) !1 ) (37)

Note that vorticity is produced exclusively by the
rotational mode and that pressure is caused
predominantly by the irrotational pressure mode only.
The so-called pseudo-pressure generated by the vortical
mode is proportional to the square of the wave
amplitude parameter and can be safely neglected. In
actuality, both pressure and density associated with the
vorticity mode can be shown to be ~ ~p O w) )* / 2b g , or

virtually insignificant.11

B. Splitting the Fundamental Equations

Substituting Eqs. (34)-(37) into the first order time-
dependent set given by Eqs. (11)-(12), yields the
following two independent sets that are coupled
through existing boundary conditions.

1. Irrotational Set

& & ' ( ) % (! / ! !* *t Mb.u . Ub g (38)
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2. Vortical Set
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C. Auxiliary Conditions

In order to determine the composite or total unsteady
velocity u ( )1 , the irrotational and vortical components
will have to be determined separately using the
appropriate models described above.  After the
solutions for both parts are extracted, they must be
superimposed in a manner to correctly satisfy two
existing boundary conditions:  Velocity adherence at
the sidewall demands that the total axial velocity
vanishes at y ) 0 , yielding a Dirichlet-type condition

u zz
( ) ( , )1 0 0) , or ~ ( , ) ! ( , )u z u zz z0 0) % .  In addition,

symmetry at y ) 1  means that & & )u z y( ) ( , ) /1 1 0 .

D. Irrotational Solution

Equations (38)-(39) exhibit a classic solution
presented in most textbooks treating pressure waves
and acoustics.  An additional routine assumption that
can be later justified is that the viscous terms in Eq.
(39) are negligible.  By proper manipulation of Eqs.
(38)-(39), it is possible to eliminate one of the two
dependent variables.  The resulting second order
hyperbolic partial differential equation (PDE) becomes:
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8 9 8 92ˆ
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p
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t
+ +

: & ;< =) % ( % ( ' ( ,> ?@ A&B CD E
. U u.U . u 3333 (42)

A solution to Eq. (42) that is accurate to the first order
in the Mach number is manageable by applying
separation of variables and the rigid wall boundary
conditions.  Since our original premise requires that
H L/ 00 1 , the lowest naturally excited frequencies
will correspond to axial oscillation modes, making it
safe to neglect transverse modes of higher frequencies.
In practical settings, it is always the case that chamber
oscillations tend to be controlled by low oscillation
modes because lower modes require less energy to
excite and are encumbered by less damping than higher
modes.  For axial waves in a chamber with constant
cross-section, a multidimensional solution reduces,
conveniently, to its one-dimensional form, which is a
sole function of the axial coordinate.  The result for
! ,p z tb g  is expressed, for convenience, in complex

variable notations with meaningful real parts:

! , cos expp z t k z ik tw m mb g b g b g) %/ (43)

where the wave number is given by
k m H L mm ) )5 / ,  1, 2, 3," , m  being the mode

number.  The corresponding velocity can be determined
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directly from the momentum conservation Eq. (39) of
order Mb .  The result is

! , sin expu ez t i k z ik tw
m m zb g b g b g) %

/
+

(44)

E. Fundamental Vortical Equations

Using Euler’s notation to express rotational velocity
and vorticity components, namely,

~( , , ) ( , ) expu Vy z t y z ik tm) %b g (45)
~( , , ) ( , ) exp$$$$ FFFFy z t y z ik tm) %b g (46)

where 

V e e( , )y z V Vy y z z) ' (47)

!!!! ) ( , )V eF x (48)

the vortical mass and momentum conservation
equations, given by Eqs. (40)-(41) are expressed as:
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!!!!
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Equation (50) can be further rearranged, giving
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are naturally arising similarity parameters representing
the reciprocals of the Strouhal and kinetic Reynolds
numbers, and satisfying / G #/ / ( )) 000 1V Hb .

Indubitably, Rek  is another form of the Stokes number,

H S , which plays a fundamental role in oscillatory

flows.  Equations (49)-(51) can be expanded into
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&
'
&
&

)
V

y

V

z
y z 0 (54)

iV
y

V U U
V

z
V

U

zy y y z

y

z

y)
&
&

'
&

&
'

&

&
L
NM

O
QP

G d i

%
&

&
%
&
& &

F
HG

I
KJ/

2

2

2V

z

V

y z
y z (55)

iV
z

V U U
V

y
V

U

yz z z y
z

y
z)

&
&

'
&
&

'
&
&

L
NM

O
QPG b g

%
&
&

%
&

& &

F
HG

I
KJ/

2

2

2V

y

V

y z
z y

(56)

which reveal that closed form analytical solutions to the
coupled set are not tractable without exploiting an
important result that can be demonstrated numerically,
and proven theoretically, only a posteriori.  Subject to
later verification, the normal vortical velocity amplitude
is assumed to be of O Mb( )  by comparison to the axial

component.  Being a small quantity, ignoring Vy  at the

first perturbation expansion level of V  will not affect
the solution which, let us recall, is only accurate to the
first order in the Mach number.  On that account, Eq.
(56) becomes

iV
z

V U U
V

y

V

y
O Mz z z y

z z
b)

&
&

'
&
&

L
NM

O
QP %

&
&

'G /b g
2

2
( ) (57)

or, equivalently,

iV
z

V U U
y

O Mz z z y b)
&
&

'L
NM

O
QP %

&
&

'G F /
Fb g ( ) (58)

 VI. Vortical Field

A. Separation of Variables

Inserting Eqs. (24)-(25), expanding and rearranging,
Eq. (57) is put into the form

z
V

z
y i y Vz

z

&
&

) F
HG
I
KJ % F

HG
I
KJ

L
NM

O
QP

RST
2

2 2 25G
5 5

G
5

csc sin

% F
HG
I
KJ
&
&

'
&
&
UVWG

5
/cos

2

2

2
y

V

y

V

y
z z (59)

which suggests using separation of variables in order to
investigate a solution of the type

V y z Y y Z zz , ( ) ( )b g ) (60)
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When inserted back into Eq. (59), Eq. (60) allows
splitting the original PDE into two linear ODEs,
coupled through a separation constant H n :

z

Z

dZ

dz Y
y i y Y) F
HG
I
KJ % F

HG
I
KJ

L
NM

O
QP

RST
2

2 2 25G
5 5

G
5

csc sin

% F
HG
I
KJ '

UVW )G
5

/ Hcos
2

2

2
y

dY

dy

d Y

dy n (61)

where H n  must be strictly positive for a nontrivial

outcome.  For every H n , a solution Zn  and Yn  must be

obtained.  Integration of the axially dependent equation
is straightforward.  The exact result is Z z c zn n

n( ) ) H ,

where cn  is an integration constant associated with H n .

Since the governing equation is linear, any linear
combination of two or more solutions is also a solution,
and one can write, in general, for all possible H n

V y z c z Y yz n n

n

n, ( )b g ) I H

H
(62)

where H n  must be determined from the no-slip

boundary condition at the wall giving rise to the strong
coupling between pressure and vorticity modes.  As a
consequence, rotational and irrotational components of
the axial velocity cancel out at y ) 0 .  This is achieved

when, ~ !u uz z) % , or

V z i k zz w m( , ) ( / ) sin0 ) % / + b g (63)

Inserting Eq. (63) into Eq. (62), writing out the
MacLaurin series expansion for the Sine function, and
equating summation terms yields

c z Y i
k z

nn n

n

w

n

m

n

n

nH

H

/
+I I4 %

%

'

'

)

J

( )
!

0
1

2 1

2 1

0

b g b g
b g (64)

which holds true when H n n n) ' )2 1, 0,1," , and

c i
k

nn
w

n

m

n

) %
%

'

'
/
+

1

2 1

2 1b g b g
b g! (65)

Yn ( )0 1) (66)

turning Eq. (62) into

V y z i
k z

n
Y yz

w

n

m

n

n
n

,
!

( )b g b g b g
b g) %

%

'

'

)

J

I/
+

1

2 1

2 1

0

(67)

In order to satisfy Eq. (61), the velocity eigenfunction
Y yn ( )  is left to be determined from

/ G
5d Y

dy
y

dY

dy
n n

2

2 2
% F
HG
I
KJcos

' % ' F
HG
I
KJ

L
NM

O
QP )i y Yn n

5
G H

5
2

1
2

0b g sin (68)

which is subjected to the two naturally occurring
boundary conditions:

Yn 0 1b g )  (no-slip condition) (69)

dY

dy
n ( )1

0)  (axial symmetry) (70)

Integration here is not straightforward.  If a direct
analytical solution to Eqs. (68)-(70) was possible,
V y zn ( , )  would have been exactly determined.  The

inherent difficulty in integrating Eq. (68) stems from
the existing variable coefficients which, unless
linearized, do not permit an exact solution.  Due to an
ostentatious logarithmic singularity at y ) 1 ,

conventional perturbative tools are futile in treating Eq.
(68), which eludes matched asymptotic, WKB, and
standard multiple-scale expansions.  Achieving a
uniformly valid analytical solution takes much effort, as
shown by Majdalani.14  Based on a variant, two-
variable, multiple-scale expansion procedure, this
closed form expression for Yn  is

Y y y y yn

n

b g b g
b g

) F
HG
I
KJ

L
NM

O
QP % F

HG
I
KJ

RST
'

cos exp sec
5

K
5

L
H

2 2

1

3

' ' F
HG
I
KJ

F
HG
I
KJ %

L
NM

O
QP

5
KG H

5
L H

52
2 2

4
1

2 2
1n ny y yb g b gsec tan

% 'FHG
I
KJ

F
HG
I
KJ
F
HG
I
KJi y y yn5KG H L

5 51

2 2 2
2b g sec tan

' 'L
NM

O
QP
UVW '

2

4
1

i
y O

5G
5

/ln tan ( )b g (71)

where K / G) / 3 , L y y cy yy c ycb g b g) ' %%
%

1 1
1# #

ln ,
#
y y) %1 , and c ) 3 2/ .

B. Infinite Series Solution

Substituting Eq. (71) into Eq. (67), letting M 5) y / 2 ,

and summing up over all H n  gives
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V y z i
k z

nz
w

n

m

n

n

n
,

!
cosb g b g b g

b g b g
b g) %

%

'

'

)

J
'I/

+
M

1

2 1

2 1

0

2 2

, % ' ' %
L
NMexp

cos cos
tanK

L
M

KG
5 L

M
H H M

y y
n n

b g b g b gb g
3

2
2

2

4
1 1

' 'FHG
I
KJ % 'FHG

I
KJ

O
QP

2

2 4

1

2
2i

i yn5G
M 5

5KG H L M Mln tan sec tanb g
'O( )/ (72)

From Eq. (45), ~uz  can be written in an infinite series

form as well.  Regrouping and invoking elementary
trigonometric identities, ~uz  can be expressed in a form

that clearly displays the leading order terms and smaller
terms of O( )G 2 :

~ , , cos
cos

!
u y z t i

k z

nz
w

n

m

n

n

b g b g b g
b g) %

%

'
,

'

)

J

I/
+

M
M1

2 1

2 1

0

exp
sec

cos sin
%

' ' ' %
RST

UVW
F
HG

KL
M

H M H M
5 G

3
21 1 2 1

2 2

4
n nb g b g

' 'FHG
I
KJ % 'FHG

I
KJ

L
NM

O
QP %
I
KJ

i
ik tn mG 5

M 5
5KG H

L M
M

2

2 4

1

2
2

3
ln tan

sin

cos

'O( )/ (73)

Fortunately, Eq. (73) is a rapidly converging series.

C. Closed Form Solution

Analyzing Eq. (73) carefully shows that it can be
written in a closed form by ignoring terms that are
much smaller than the order of precision associated
with the infinite series itself for the range of physically
meaningful settings.  The result is, for all practical
purposes, an equivalent closed form expression that
carries many advantages:

~ , , cos sin cosu y z t i k zz
w

mb g b g) %
/
+

M M

,
%

'
F
HG

I
KJ

L
NM

' 'FHG
I
KJexp

sec
cos ln tan

KL
M

M
5G

M 55 G
3

1 2
2

2 4

2 2

2

i

% % O
QPi ik tm

3

2
25

KGL M Msec tan (74)

For instance, Eq. (74) can be expressed in a compact
form in terms of a spatial damping function N  and a

spatial phase angle O , each of which written out as a
leading-order term followed by a small first-order
correction:

~ cos sin cos exp expu i k z i k tz
w

m m) % % '
/
+

M M Nb g b gO
(75)

where

N N N) '0 1 , O O O) '0 1 (76)

N KL M0
3) % sec , O 0

2

2 4
) % 'FHG

I
KJ5G

M 5
ln tan (77)

N KG 5
L M

M1
2 2

3

2

2
) %

cos

cos
,  O 1 3

3

2
) 5KG

L M
M

sin

cos
 (78)

D. Reduced Closed Form Solution

Equation (75) can be further simplified by neglecting
terms of O( )G 2  and smaller (i.e., N 1  and O 1 ).  The

remarkably reduced expression is found to match both
numerical and infinite series results with a margin of
error that is smaller than M b .   Since there is no need to

be more accurate than Eq. (57) itself which ignores the
normal velocity component of order M b ,  a practical

expression is made available by retaining the leading
order terms in the spatial damping and phase functions.
A short and accurate rotational solution ensues

~ , , cos sin cosu y z t i k zz
w

mb g b g) %
/
+

M M

, % ' 'FHG
I
KJ %

L
NM

O
QPexp

cos
ln tan

KL
M 5G

M 5
3

2

2 4

i
ik tm (79)

which can be written in an elegant form, in terms of the
steady flow stream function and normal velocity:

~ , , sinu y z t iU kz
w

y mb g b g) %
/
+

1

, % % % 'FHG
I
KJ

L
NM

O
QP

RS|T|
UV|W|

exp ln tanK
L

5G
M 5

U
i k t

y
m3

2

2 4
(80)

When the irrotational velocity component is added to
~uz  in Eq. (34), a solution for u ( )1  is achieved to

O Mb( ) .  The depth of penetration of the resulting

time-dependent velocity can be determined using either
one of the three analytical versions represented by Eqs.
(73)-(75), of theoretically decreasing accuracy.  A
reliable numerical solution to Eq. (57) can also be
achieved using a Runge-Kutta scheme of order seven.15

When results are overlaid in Fig. 3, differences are
found to be visually indiscernible, except for very large
G  and small /  (corresponding to unrealistic physical
settings), where a hardly perceptible discrepancy is seen
to exist between the reduced closed form solution and
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all others.  In addition to its simplicity and remarkable
precision, Eq. (80) reveals the leading-order terms
which seem to influence the solution.  This allows
identifying the physical phenomena of most
significance to be the convection of unsteady vorticity
by the mean flow (in both axial and normal directions),
unsteady inertia, and viscous diffusion of unsteady
vorticity.  As could be extrapolated from Fig. 3, Eq.
(80) concurs with numerical and infinite series
predictions remarkably well.

E. Normal Velocity

Having determined ~uz , the normal component ~uy

can be derived analytically from Eq. (40) for mass
conservation.  To begin, we propose an ansatz of the
form

~ ( ) cos cos exp expu G y k z i k ty
w

m m) % '
/
+

M Nb g b gO
(81)

where G y( )  must be determined to satisfy continuity.

Substituting Eq. (75) and Eq. (81) into Eq. (40), the
spatial function G y( )  that leads to a balance between

highest order quantities is extracted in order to ensure
that & & 4 %& &~ / ~ /u y u zy z  is satisfied in the leading

order terms.  This occurs when

G y M Ub y( ) ) 3 (82)

leading to

 ~ cos exp expu M U k i k ty
w

b y m m) % '
/
+

N3 1b g b gO (83)

which indicates that the original assumption of
~uy / ~uz = O Mb( )  —that led to Eq. (57)— is truly

justifiable.

 VII. Solution Characteristics

A. Total Time-Dependent Velocity

Since !u y ) 0 , the total unsteady, normal velocity

component is u uy y
( ) ~1 ) .  From Eq. (34), uz

(1)  can be

constructed by combining rotational and irrotational
components:

u y z t i k z ik tw
m mz

(1) ( , , ) sin exp) %
/
+
b g b gm

% % 'cos sin cos expM M Nk z i k tm mb g b g tO (84)

or, equivalently, in the real domain,

u y z t k z k tw
m mz

(1)

irrotational part

, , sin sinb g b g b g)
L
NM/

+

$ %&& '&&

% '
O

Q
PPP

cos sin cos exp sinM M Nk z k tm mb g b g
rotational wave amplitude wave propagation

rotational part

( )&&&& *&&&& ( )& *&

$ %&&&&&&& '&&&&&&&
O (85)

Evidently, u ( )1  is prescribed by uz
(1)  which is a

harmonic wave —traveling in the positive y

direction— characterized by a wave amplitude that
diminishes exponentially with increasing distance from
the sidewall.  The vortical wave amplitude is actually
controlled by two terms: an exponentially decaying
term, made possible by inclusion of viscous dissipation,
that decreases with the distance from the wall, and a
sinusoidal term, made possible by inclusion of axial
mean flow convection of unsteady vorticity, which
varies harmonically with the distance from the head-
end, and also decreases with the distance from the wall.
By inspection of the spatial damping function N  in Eq.

(75) and Eq. (85), increasing viscosity is found to cause
the rotational wave to decay more rapidly, preventing a
deeper inward penetration of vorticity.  This effect is
contrary to the boundary-layer “thickening” role played
by viscosity in oscillatory flows between parallel walls
in the absence of injection.  Incorporation of injection
appears to alter the flow character quite dramatically.
Results from Eq. (85) are congruent with numerical
predictions which are achieved with a high order of
accuracy (using a nine-stage Runge-Kutta scheme, and
a step size of 10-6, with an associated global error of
order seven).15  This agreement shown in Fig. 4 causes
graphical results to become visually indiscernible.
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Fig. 3  Virtually indistinguishable results for the
boundary-layer thickness at one axial station
predicted from infinite series, closed form, and
reduced closed form expressions, corresponding to
Eqs. (73), (74), and (80).
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When, in Fig. 4, numerical and analytical velocity
distributions are overlaid at 12 evenly spaced times,
only 12 lines are perceived.  Velocity time evolutions
shown correspond to a full oscillation cycle and the first
four pressure oscillation modes.  The profiles are
displayed at key axial positions corresponding to the
location from the head-end of the last harmonic
pressure node.

A key feature captured very well by the analytical
solution is that of the rotational velocity amplitude
vanishing m times at the mth pressure node.  As shown
in Figs. 4b-d, the rotational amplitude decays
prematurely to zero somewhere between the wall and
the central plane, corresponding to lines of zero
unsteady vorticity.  This peculiar effect, which is
attributable to the mean flow, downstream convection
of zero unsteady vorticity lines, is further evidence that
the influence of the mean flow on the time-dependent
field has been correctly incorporated.

B. Wave Propagation Speed

The normal speed of propagation of rotational waves
can be determined to be equal to the steady flow
velocity (V Ub y ) from the wave propagation term in Eq.

(85).  As a result, the normalized spatial wavelength is
calculated to be ( 25U Sry / ).  This explains the

progressively larger number of reversals per unit
distance for a fluid traveling away from the wall.  For
pressure oscillations at the fundamental mode, velocity
shape profiles are shown in Fig. 5 at various axial
locations for typical Rek  and Sr  values.  As

anticipated, the normal wavelength diminishes at higher
Sr  or frequencies.  In addition, time-dependent
rotational effects become more pronounced in the
downstream direction where time-dependent vorticity
permeates the field.
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Fig. 4  Evolution of unsteady velocity obtained
numerically and analytically (indiscernible) when
overlaid at 12 evenly spaced times in a typical
chamber.  Results are for the first four oscillation
modes evaluated at the last pressure node.
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Fig. 5  Outer envelope of time-dependent velocity
shown at five axial locations for Rek = 105.
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C. Total Time-Dependent Vorticity

By differentiating ~uz , total unsteady vorticity is

found to depend directly on the Strouhal number

"""" ( ) sin exp cos1 ) '
/
+

Nw
m y m xSr k zU k td i b gO e (86)

The vorticity amplitude is largest near the wall where it
is generated by the oscillatory pressure gradient normal
to mean flow streamlines.  Moving away from the wall,
vorticity diminishes, primarily, because of the
downstream convection of """" ( )1  by U z  and the inward

decrease in U y , both aided by viscous diffusion.  As

with velocity, vorticity amplitudes depreciate more
rapidly at lower injection speeds, and at higher
frequencies and kinematic viscosities.  Higher injection
causes vorticity to last longer, reach deeper, and
permeate larger domains above the wall.

D. Boundary-Layer Thickness

In general, the boundary-layer thickness will depend
on the rate of decay of the wave amplitude.  The wave
amplitude that controls the evolution of the outer
envelope of the rotational velocity can be expressed, to
O Mb( ) , as

~ cos sin cosu y k z yw
m

(1) ) F
HG
I
KJ

F
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I
KJ

L
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/
+

5 5
2 2

, % F
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O
Q
PPexp
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sec

L 5y

S
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p

3

2
(87)

Since the point above the wall where this amplitude
becomes P 4 1% of its irrotational counterpart is
habitually defined to be the edge of the boundary layer
region, it follows that the depth of penetration y p

extending from the wall to the edge of the boundary
layer must be calculated by finding the root of

cos sin cos
5 5
2 2

y k z yp m p
F
HG
I
KJ

F
HG
I
KJ

L
NM

O
QP

, % F
HG
I
KJ

L
N
MM

O
Q
PP % )exp

( )
sec sin

L 5
P

y

S
y k z

p

p
p m

3

2
0b g (88)

Plots of y p  versus Sr  for a wide range of Rek  are

shown in Fig. 6 at two axial stations.  The wide spread
in the data makes it difficult to interpret the dependence
of y p  on actual physical parameters.  This problem is

alleviated by referring to Eq. (88) which clearly shows
that the term involving exponential boundary layer

decay is a strong function of the penetration number,
S p ) %K 1 .  This subtle realization motivates generating

curves of y p  versus S p , for wide variations in Rek

and Sr .  As shown in Fig. 7, entire families of curves,
such as those shown in Fig. 3 and Fig. 6 at discrete
axial stations, collapse splendidly into single curves per
axial location.  This significant result reveals that y p

does not depend on Rek  and Sr  separately, but rather

on S p =V Hb
3

0
2

0/ ( )$ # , a key similarity parameter that

resembles, in importance, the Stokes number in
oscillating flows over nontranspiring walls.  Unlike
many similarity parameters, S p  cannot be disclosed by

standard dimensional analysis, no matter how
parameters are selected.

Figure 7 brings into focus the character of the
oscillatory boundary layer over permeable walls.  For
instance, it is clear that y p  depends on the penetration

and pressure mode numbers, and, to a lesser degree, on
the axial station within the chamber.  For small
penetration numbers, the penetration depth varies
linearly with S p , independently of z .  The larger the
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Fig. 6  Locus of the oscillatory boundary-layer
thickness at two axial stations.
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penetration number, the larger the penetration depth
will be due to a smaller argument in the exponentially
decaying term.  In addition, increasing the injection
speed, or decreasing viscosity, frequency, or chamber
height enhances the depth of penetration.  Eventually,
for sufficiently large S p , y p  tends asymptotically to a

maximum fixed value per axial position.
In order to pinpoint this maximum possible

penetration depth, y pm , occurring per axial station and

mode number, we realize that, for the same geometry
and injection speed, larger penetration occurs in fluids
with smaller viscosity.  In the ideal case of zero
viscosity, rotational waves face minimum friction and,
thereby, travel the furthest distance from the wall.  The
asymptotic limit on the thickness of the boundary layer
can thus be determined from the inviscid formulation of
the penetration depth —which only depends on the axial
station and pressure mode.  From Eq. (88), we get

cos sin cos sin
5 5

P
2 2

0y pm k z y k zm pm m

F
HG
I
KJ

F
H
I
K

L
NM

O
QP % )b g (89)

which must be first expressed in terms of 
#
y ypm pm) %1

for an asymptotic expansion in small 
#
y pm  to be

manageable.  The resulting expansion formula is

y
k z

k z
O ypm

m

m
pm) % '1

2 3

5
P

sinb g d i#
(90)

which allows predicting the inviscid depth of
penetration quite accurately.  A maximum truncation
error of 2 62 10 4. , %  corresponds to the largest value of#
y pm , which is 0.0636 for z ) 0 .  Since the maximum

truncation error is about an order of magnitude smaller
than Mb , Eq. (90) can be exchanged for the numerical

solution to Eq. (89).  This is illustrated in Fig. 8 below
for the first four pressure modes.

 VIII. Conclusions
In this paper, a clear analytical formulation is

managed for the oscillatory flowfield with sidewall
injection when the ratio of the oscillatory pressure
amplitude to the mean pressure amplitude is small by
comparison to the mean injection Mach number (i.e., by
one order of magnitude or less).  Closed form analytic
expressions describing the character of the resulting
boundary layer are furnished to elucidate the peculiar
features of the oscillatory “Stokes” layer with injection
in a rectangular geometry.  The latter is found to exhibit
a strong dependence on a nondimensional grouping that
eliminates one dynamic similarity parameter and

facilitates data correlation and interpretation.  This so-
called penetration number, S V Hp b) 3

0
2

0/ ( )$ # , plays a

similar role to the well-known Stokes number,

H $ #S H) 0 02/ ( ) , encountered in the analyses of

oscillatory flows over impenetrable walls.  Unlike the
Stokes number, however, the boundary layer grows
larger at higher S p , corresponding to smaller

viscosities.  In all cases, increasing the frequency or the
distance separating the sidewalls reduces the
nondimensional boundary layer thickness.  The
penetration depth is larger at higher injection rates since
rotational effects established near the wall are felt
deeper into the field when carried away more intensely
by the normal component of the incoming mean flow.
In retrospect, the axial location measured from the head
end is relevant as well, especially in long chambers or
at high oscillation modes.  In any event, four
mechanisms are identified to be the most appreciable in
altering the flowfield character; these include, first and
foremost, the convection of unsteady vorticity by the
mean flow in both the normal and axial directions;
equal in importance is the inertia associated with
harmonic oscillations; and, finally, the viscous
dissipation of unsteady vorticity which has a profound
effect on the rate of decay of the rotational region, and
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Fig. 8  Trace of the maximum boundary-layer
thickness for ideal fluids shown for the first four
oscillation modes: (a) m = 1, 2 and (b) m = 3, 4.
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which must not be ignored if an accurate prediction of
the flowfield behavior is desired away from the wall.

Appendix A: Linearization Details
Inserting the expanded variables into Eq. (1) yields

& ' & '( ' ' )1 1 01 1 1* *( ) ( ) ( )/b g b gb gt Mb. U u (A1)

( ' ' 'F
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I
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. U u U uM
O O
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O O
b

w w

b

w w
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

/ /
*
/

*
/0

1

1

1

1

1 1

2

+ ()* ()& *&3

'& & )* ( ) /1 0t (A2)

Collecting terms to the first order in the wave
amplitude, and neglecting smaller terms, one gets

& & '( ' )* *( ) ( ) ( )/1 1 1 0t Mb. u Ub g (A3)

which is Eq. (11).  Inserting the expanded variables into
Eq. (2), and recalling that (7 )U 0 , we get

* *& & ) ' & ' &u U u/ /( ) ( )t M tb1 1 1b g b g 
) & & ' & &u u( ) ( ) ( )/ /1 1 1t t* (A4a)

u. u U u . U u U. U( ) ' ( ' (M M Mb b b
( ) ( )1 1 2b g b g  =

' ( ' ( ' (M Mb bU. u u . U u . u( ) ( ) ( ) ( )1 1 1 1 (A4b)

* *u. u u. u U. U U. u( ) ' ( ( ' (1 1 2 1( ) ( )b g = M Mb b

' ( ' ( ' (M Mb b* * *( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 1 1 1u . U U. U u . u

' ( ' ( ' (M Mb bu . U u . u U. u( ) ( ) ( ) ( ) ( )1 1 1 1 1* (A4c)

%( ) %(p p/ /( )+ +1 (A4d)

Re Re% %( ( ) ( ( '1 1 14 3 4 3.u . U ub g b g/ /( )Mb

) ( (%4 31 1Re .u ( ) /b g (A4e)

% ( , (, ) % ( , (, '% %Re Re1 1 1u U ub g b gMb
( )

) % (, (, % (, (,% %Re Re1 1 1Mb U ub g b g( ) (A4f)

Adding up Eqs. (A4a-f), we realize that the zero order
terms yield back Eq. (9) associated with the steady
field.  Collecting terms to the first order in the wave
amplitude, and disregarding smaller terms, we obtain

& & ' ( ' ( ) %(u U. u u . U( ) ( ) ( ) ( )/ /1 1 1 1t M M pb b +

' ( ( % (, (,% %4 31 1 1 1Re Re.u u( ) ( )/b g b g (A5)

which by making use of the vector identity,

U. u u . U u .U( ' ( ) (b g b g b g( ) ( ) ( )1 1 1

% , (, % , (,u U U u( ) ( )1 1b g b g (A6)

leads to the leading-order, time-dependent momentum
equation, referred to in Sec. III as Eq. (12).
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