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Abstract. For a class of boundary-value problems involving damped oscillations that occur at
three or more dissimilar scales, both matched asymptotic and multiple scale expansions can fail
to provide uniformly valid solutions. A novel approach is introduced in this paper that suggests
determining a composite scale that matches the dissimilar scales, in lieu of the asymptotic so-
lutions, in their applicable domains. Information contained in the dissimilar scales is condensed
into one composite scale, thus reducing the number of independent scales to two. For that
purpose, a procedure is presented herein that consists of: 1) identifying the form and location
of prevalent characteristic scales, 2) determining a composite scale that matches the stretched
or contracted scales in their respective intervals, and 3) invoking a two-variable multiple scale
method that employs the composite scale as one of its independent variables. This procedure
is applied successfully to a problem that eludes conventional perturbation methods. The corre-
sponding boundary-layer equation pertains to the separable transversely-dependent component
of the rotational momentum equation used in modeling oscillatory flows in low aspect ratio rect-
angular channels where blowing is present at the walls. An expansion series is constructed in
the parameter associated with small viscosity. A uniformly valid expression is extracted that
captures the physical effects of unsteady inertia, viscous diffusion, and transverse convection of
unsteady vorticity, while clearly showing that spatial attenuation of rotational waves is controlled
by a single similarity parameter. Analytical results are numerically verified for a wide range of
physical parameters and test cases.
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1. Introduction

It is well-known (see for instance [3], [6], or [8]) that many boundary-value prob-
lems involving rapidly decaying oscillations can be put into the form

ε
d2f

dx2 + a(x)
df

dx
+ b(x)f = 0; x ∈ [0, 1] (1.1)

where 0 < ε � 1, a(x) and b(x) are continuous functions of x, and where f
varies rapidly in some regions of x. When several characteristic scales arise in the
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problem, approximate solutions to (1.1) are typically constructed using matched
asymptotic expansions or the methods of multiple scales. When f does not vary
on a single scale in specific regions of the domain of interest but rather varies with
widely dissimilar scales in isolated regions of the domain, matched asymptotic
expansions are rendered useless (see Wilcox [8]). In such cases, even the methods
of multiple scales are not guaranteed to succeed due to intractable obstructions,
especially in problems involving three or more disparate scales (see Murdock [6]
and [7]).

The aim of this paper is to devise a method to solve a problem that has eluded
known perturbation methods, involving four widely varying scales for the indepen-
dent variable. The dissimilar scales arise due to the presence of damping on top
of rapid spatial attenuation in a boundary layer of the oscillatory type. The result
is a problem that incorporates the characters of conventional boundary layers and
damped oscillators. Having exhausted other available means, a two-variable mul-
tiple scale expansion is found by the author to be the only promising technique
for extracting a uniformly valid solution for the case at hand. Since a multiple
scale technique that employs three or four scales is unproductive in this problem,
the technique had to be restricted to two variables, with the first one being the
unmodified independent variable itself, as implicitly required by multiple scale
formalism [8]. When the second variable is taken to be any one of the remaining
scales, the resulting two-variable solution is found to be valid only in the inter-
val where the corresponding modified scale is applicable. Inasmuch as matching
the particular two-variable solutions is not feasible, and in recognition of the dif-
ficulties inherent in establishing a suitable, uniformly valid solution, an effective
alternative is proposed that consists of devising a composite scale that matches
the modified scales in their corresponding domains before invoking a two-variable
multiple scale procedure. Employing such a composite scale, which is reducible
to the dissimilar scales in their corresponding intervals, will lead to an accurate,
uniformly valid solution.

The “hybrid” approach to be employed borrows the idea of matching solutions
over intervals of validity from matched asymptotic expansions and applies it to the
scales instead of the solutions, in order to reduce a multi-variable to a two-variable
multiple scale problem. To that end, we offer the following systematic plan: In
section 2, the governing differential equation is specified along with its boundary
conditions. In section 3, a successful methodology is implemented to identify the
independent scales. In section 4, a composite scale that matches the independent
scales in their corresponding domains is constructed. In section 5, a generalized
two-variable multiple scale expansion is derived leading to i) a uniformly valid
solution, when the second variable is taken to be the composite scale, and ii)
particular solutions that are valid in limited domains, when the second variable is
taken to be the corresponding characteristic scale. Discussion of results is deferred
to section 6 where analytical predictions are shown to compare quite favorably
with corresponding numerical data. The leading-order term of the composite-
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scale solution is shown therein to be in accord with the corresponding numerical
solution in a wide range of physical parameters, in addition to capturing the key
physical elements in the problem, and furnishing, as a bonus, a new similarity
parameter that controls the solution’s depth of penetration. Last, in section 7, a
well-known technique is used to ascertain the order of accuracy associated with
the composite-scale expansions.

Despite the wealth of singular perturbation methods for ordinary differential
equations cited in the literature, a similar scale-matching procedure that is used
in conjunction with multiple scales does not seem to have been addressed previ-
ously. The reader is referred, for instance, to the works of Kevorkian and Cole [3],
Murdock [6], and Wilcox [8], and the references therein, spanning over a century
of work in the field.

Far from being limited to a particular application, the method to be furnished
herein offers new possibilities to solve boundary-layer problems involving several
scales by first reducing the number of scales before invoking two-variable multiple
scale expansions. The author’s experience with the procedure has indicated its
effectiveness in several problems of practical interest.

2. Problem formulation

In recent years much attention has been given to small amplitude steady-periodic
pressure waves through fluids confined in rigid tubes. Though a problem of long
intrinsic interest to acousticians and fluidicians, research has recently been spurred
on by technological developments and the desire for better mathematical models of
combustion processes and biological flows. Such models become more challenging
when the tube walls are made permeable in a manner to allow steady injection
or suction of a fluid. Naturally, the coupling between steady and small ampli-
tude oscillatory velocities leads to a more complicated mathematical model that,
heretofore, has been a deterrent to fruitful endeavors.

The problem that we propose to investigate arises in such an environment
where an oscillatory field is established in a long rectangular channel of height 2h
and width w, where 2h/w� 1. Reminiscent of a flow between two infinitely long,
parallel and permeable plates, two-dimensionality can be assumed in addition
to symmetry with respect to the midsection plane that is equidistant from the
walls. Gravity and lateral edge effects in the rectangular channel are ignored. The
difference here from previous models is that steady injection is imposed at the
porous walls, with a blowing speed of Vb. The radian frequency of oscillations
corresponding to the fundamental or one of the overtones of the oscillating source
is ω, the kinematic viscosity is v, and c is the mean speed of sound. Due to
symmetry, the analysis is limited to the domain extending from the wall to the
plane of symmetry which, in two dimensions, will be referred to herein as the
centerline.
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Having briefly described the physical boundaries, we proceed to consider the
governing equation arising in the model, similar in form to (1.1), and which corre-
sponds to the separable transverse component of the rotational momentum equa-
tion (given in [4]):

ε
d2Vn
dy2 − σ cos

(π
2
y
) dVn
dy

+
[
i− π

2
σ(1 + λn) sin

(π
2
y
)]
Vn = 0; y ∈ [0, 1] (2.1)

where y is the distance from the wall, normalized by h, and Vn(y) is the component
of the rotational velocity, normalized by the irrotational acoustic amplitude, which
must satisfy two auxiliary conditions:

Vn(0) = 1 (no-slip at the wall) (2.2)
V ′n(1) = 0 (centerline symmetry) (2.3)

Equation (2.1) is known to the order of the injection Mach number, Mb = Vb/c =
O(10−3). The small parameters ε and σ are reciprocals of the dynamic similarity
parameters Rek and St, representing the kinetic Reynolds number and Strouhal
number, respectively:

ε = Re−1
k = vω−1h−2 (2.4)

σ = St−1 = Vbω
−1h−1 (2.5)

We exploit the fact that Rek is large, being the quadratic ratio of the domain
height h, and the Stokes layer

√
v/ω, which is an exceedingly small quantity. The

real constant that appears in (2.1), λn = 2n+ 1, n = 0, 1, 2, . . . , is an odd integer,
and i =

√
−1. For physically meaningful settings, one should consider St > 10

and Rek > 105, corresponding to ε� σ � 1.
From a physical standpoint, the first term in (2.1) represents viscous diffusion,

the second represents convection, and the third is the result of time-dependent
inertia and coupling with mean flow components. The variable coefficient multi-
plying the convective term is found to be negative everywhere except at y = 1,
where it vanishes. Since it is not strictly negative everywhere, perturbation theory
no longer guarantees a boundary layer near y = 1 [8].

3. Characteristic scale identification

As indicated earlier, the first methodical step is to determine the form and location
of the scales. The basic idea that we will employ is that the scales represent the
order according to which the solution varies locally. Effectively, every characteristic
scale that we seek to identify must correspond to the coordinate transformation
that is capable of providing a balance in (2.1) between terms that are locally
significant in specific intervals of the solution domain.
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3.1. Contraction near the wall

Near the wall, the effect of sidewall injection is appreciable. The thin viscous layer
that is typically established near the wall in steady flows is “blown off” the solid
boundary in this problem to a nonlocalized region. A viscous layer of similar char-
acter was first identified in steady flows incorporating sidewall injection by Cole
and Aroesty [2]. As a consequence of strong blowing at the wall, unsteady iner-
tia and mean flow convection dominate. By contrast to the inner region in steady
boundary layers where scale magnification of the form y1 = y/ε is necessitated, un-
conventional scaling is required here to achieve a balance between convection and
inertia. Note that the solution to the problem obtained by keeping the two terms
in (2.1) that dominate near the wall results in a wave of constant amplitude (to
read: that varies extremely slowly). Since stretching is needed when amplitudes
vary rapidly, contraction is needed here. Introducing the near-wall transformation
variable, y1 = εy, (2.1) becomes:

ε3 d
2Vn

dy2
1
− εσUy

dVn
dy1

+
[
i− π

2
σ(1 + λn) sin θ

]
Vn = 0 (3.1)

where θ = πy/2 is a recurring action coordinate, and Uy = cos θ is a function
denoting the steady transverse velocity. A balance between inertia and convection
is achieved in (2.1) since the actual velocity gradient near the wall is expected,
and can be shown a posteriori , to be large; in other words,

εσUy
dVn
dy1

= σUy
dVn
dy

= O(1) since
dVn
dy

= O(σ−1) = O(St) (3.2)

3.2. Stretching near the centerline

At y = 1, the convective term becomes insignificant as Uy vanishes. A stretching
of the scale is required here since the spatial wavelength, which is controlled by Uy,
vanishes as well. Introducing the nontraditional scale, y1 = ε(1− y)−q, a balance
between unsteady inertia and diffusion can be achieved in (2.1):

q2ε1−2/q
[
y

2(1+1/q)
1

d2Vn

dy2
1

+
(

1 +
1
q

)
y

(1+2/q)
1

dVn
dy1

]
+
[
i− π

2
σ(1 + λn) sin θ

]
Vn
(3.3)

= qσε−1/qy
(1+1/q)
1 Uy

dVn
dy1
→ 0

where the first two terms representing viscous and inertial forces will be of the
same order when ε1−2/q = 1, or q = 2.

Careful scaling shows that, in the vicinity of the previous location, viscous and
convective terms must be in balance as well. When Uy is no longer negligible, a



854 J. Majdalani ZAMP

value of q = 1 will characterize this scale at y = yu, where yu is undetermined. A
balance between convection and viscous diffusion is achieved between the first two
terms in (2.1) when ε1−2/q = ε−1/q, or q = 1:

q2ε1−2/q
[
y

2(1+1/q)
1

d2Vn

dy2
1

+
(

1 +
1
q

)
y

(1+2/q)
1

dVn
dy1

]
− qσε−1/qy

(1+1/q)
1 Uy

dVn
dy1

= −
[
i− π

2
σ(1 + λn) sin θ

]
Vn (3.4)

The stretching exponent thus varies between q = 1 (where convection and diffusion
are in balance at y = yu) and q = 2 (where diffusion and inertia are in balance
at y = 1) in the small interval of undetermined size corresponding to yu < y <
1. Clearly, all three mechanisms must be present as y varies between yu and 1.
Using the limiting scales to provide us with an alternative of replacing the local
physical process by its ”average,” the scaling exponent characterizing the thin
near-centerline region is taken to be q = 3/2, resulting in a balance of all three
forces. In this fashion, it can be argued that y1 = ε(1− y)−3/2 can be used, when
compelled by the need to reduce the number of scales, as a representative of the
near-centerline scales.

4. A composite scale

Since the problem involves events occurring at three dissimilar scales, other than
the base scale y, a standard multiple scale method would formally require utilizing
four scales, y, εy, ε(1−y)−1, and ε(1−y)−2, and integrating three times in order to
reach a one-term expansion [2]. In light of the discussion presented in the previous
paragraph, it can be argued that, in the case at hand, three representative scales,
y, εy, and ε(1 − y)−3/2 may be used to attempt a uniformly valid expansion.
Unfortunately, a multiple scale procedure using the aforementioned scales leads,
in either situation, to dead ends. It is found that, for a closed form expression
to be manageable here, the method of multiple scales will have to be limited to
two variables, with one of them being the base scale y. Due to this restriction, a
uniformly valid solution is tractable if a composite scale can be devised such as to
provide the same geometric description that is available from the modified scales
in their regions of applicability. To that end, the second step in our approach is
to propose a composite scale, y1 = εs(y), that is valid in the entire domain, and
that reduces to the local characteristic scales. A nonunique scale function s is thus
proposed

s(y) =
y

(1− y)q
=

{
y (y → 0)

1
(1−y)3/2 (y → 1)

(4.1)

where the stretching exponent q(y) is chosen to be a spatially sensitive function
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Figure 1.
Spatial distribution of the composite-scale function that matches efficaciously the widely dissim-
ilar characteristic scales in their respective domains.

satisfying

q(y) = ayb →
{

0 (y → 0)
3/2 (y → 1)

(4.2)

The parameters a and b appearing in q(y) can be determined to minimize the
error between resulting analytical and numerical predictions which, in turn, is
expected to provide smooth matching of the modified scales. In this problem,
when a = b = 3/2, the resulting analytical predictions will match the numerical
solution of (2.1) with an uncertainty that is smaller than the error associated
with (2.1) itself, which is of order 10−3. In Figure 1 above, the efficiency of
the composite scale in matching the modified scales is illustrated graphically. In
other problems, it could be speculated that a composite-scale function could be
proposed, in general, as a candidate for matching the individual scales in their
corresponding domains. The selection must be guided by a foreknowledge of the
behavior of the proposed function. The geometric parameters in the proposed
function could then be determined to minimize, for example, the maximum error
in the resulting solution, or the error at a given point of interest.

5. A standard two-variable multiple scale expansion

Having identified and reduced the relevant scales to two, y0 = y and y1 =
εy/(1 − y)q(y), the third step in the current procedure is to invoke a standard
multiple scale approach that consists of expanding the derivatives, as well as the
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dependent variables in powers of the small parameter ε, in order to arrive at uni-
formly valid expansions. A generalized solution will be sought that is applicable to
any characteristic scale s(y). From the generalized expression, particular solutions
corresponding to individual characteristic scales will be derived for comparison
purposes.

5.1. A generalized two-variable expansion

The two scales to be used in the formal multiple scale expansion of (2.1) are: i) the
base y0 ≡ y, and ii) the modified scale y1 ≡ εs(s) = εs(y0), written in the most
general form to accommodate any scale function corresponding to a transformation
of the transverse coordinate. As such, the value of the modified scale function may
assume any of the following forms

s(y0) =


y0; y → 0
(1− y0)−q; y → 1

y0(1− y0)−q(y0); 0 ≤ y0 ≤ 1

(5.1)

Using the chain rule for differentiation, and carrying as many terms as is necessary
to retain a final order of ε2 the derivatives in (2.1) can be expanded as follows:

d

dy
=

∂

∂y0
+ ε

ds

dy0

∂

∂y1
;

d2

dy2 =
∂2

∂y2
0

+O(ε) (5.2)

After substitution of (5.2) into (2.1), the latter is transformed into a partial dif-
ferential equation that is function of two coordinates y0 and y1. Using θ0 = πy0/2
for brevity, (2.1) becomes

ε
∂2Vn

∂y2
0
−σUy

∂Vn
∂y0
− εσUy

ds

dy0

∂Vn
∂y1

+
[
i− π

2
σ(1 + λn) sin θ0

]
Vn+O(ε2) = 0 (5.3)

Following the multiple scale formal procedure, the dependent function is now writ-
ten using a two-term expansion which is function of the two independent scales:

Vn(y0, y1) = V
(0)
n (y0, y1) + εV

(1)
n (y0, y1) +O(ε2) (5.4)

Substituting the perturbed two-term expansion given by (5.4) into (5.3), rear-
ranging and collecting terms of order ε0 and ε1, two first-order coupled partial
differential equations must be satisfied for any value of ε. These are

−σUy
∂V

(0)
n

∂y0
+
[
i− π

2
σ(1 + λn) sin θ0

]
V

(0)
n = 0 (5.5)
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−σUy
∂V

(1)
n

∂y0
+
[
i− π

2
σ(1 + λn) sin θ0

]
V

(1)
n = σUy

ds

dy0

∂V
(0)
n

∂y1
− ∂2V

(0)
n

∂y2
0

(5.6)

The boundary conditions given by (2.2) and (2.3) for Vn can be translated to the
first perturbation term V

(0)
n which must satisfy the same condition as Vn in the

limit when ε→ 0, as can be clearly seen from (5.4). The resulting conditions that
must be met by V (0)

n are
V

(0)
n (y0 = 0) = 1 (5.7)

∂V
(0)
n

∂y0
(y0 = 1) = 0 (5.8)

5.2. Nonsecular integration

The next step is to integrate (5.5), which is solely a function of the first scale, for
the zeroth term V

(0)
n . The integration constant that can be a function of the second

scale will have to be determined after substitution into (5.6) and examining the
possibility of suppressing secular terms which, if retained, will cause the solution
to become nonuniformly valid. Complete closure is later accomplished by applying
the boundary conditions (5.7)-(5.8).
5.2.1. First integration. Equation (5.5) is a homogeneous first-order PDE with a
variable coefficient that is solely a function of y0. Direct integration yields

V
(0)
n = C1(y1) exp

{
(1 + λn) ln cos

(π
2
y0

)
+

2i
πσ

ln tan
[π

4
(1 + y0)

]}
≡ C1(y1)χ(y0)

(5.9)

Since integration is carried out with respect to y0 only, the constant of integration
C1 can, in general, be a function of y1 as well.
5.2.2. Suppressing secular terms. First and second partial derivatives of V (0)

n are

∂V
(0)
n

∂y0
= C1(y1)

[
iSt sec θ0 −

π

2
(1 + λn) tan θ0

]
χ(y0) (5.10)

∂V
(0)
n

∂y1
=
dC1(y1)
dy1

χ(y0) (5.11)

∂2V
(0)
n

∂y2
0

=
[
− St2 sec2 θ0 +

π2

4
(1 + λn)(λn tan2 θ0 − 1)

− iπSt
(

1
2

+ λn

)
sec θ0 tan θ0

]
V

(0)
n

(5.12)



858 J. Majdalani ZAMP

Now by inserting (5.10)-(5.12) in (5.6), the right-hand-side becomes a source of
secular terms. To remove secular terms which cause the solution to degenerate,
a requirement that satisfies the symmetry condition, given by (5.8), is that the
right-hand-side of (5.6) be zero

−σUy
∂V

(1)
n

∂y0
+
[
i− π

2
σ(1 + λn) sin θ0

]
V

(1)
n =

{
σUy

ds

dy0

dC1(y1)
dy1

−C1(y1)
[
− St2 sec2 θ0 +

π2

4
(1 + λn)(λn tan2 θ0 − 1) (5.13)

−iπSt
(

1
2

+ λn

)
sec θ0 tan θ0

]}
χ(y0) = 0

yielding a first-order ODE that can be solved for C1:

dC1
dy1
− C1St

[
−St2 sec2 θ0 +

π2

4
(1 + λn)(λn tan2 θ0 − 1) (5.14)

−πSt
(

1
2

+ λn

)
sec θ0 tan θ0

]
sec θ0

(
ds

dy0

)−1
= 0

5.2.3. Second integration. Integration of (5.14), subject to satisfaction of the no-
slip condition given by (5.7), allows the complete determination of C1:

C1(y) = exp
{
−ξ[η(y) sec3 θ − η(0)] + ξσ2 π

2

4
(1 + λn)

[
sec θη(y)(λn tan2 θ − 1)

(5.15)

+η(0)
]
− iπξσ

(
1
2

+ λn

)
η(y) sec2 θ tan θ

}
where the viscous parameter that controls the leading exponential term is

ξ =
St3

Rek
=

ε

σ3 =
vω2h

V 3
b

(5.16)

and the effective scale function η(y), shown in Figure 2, controls the solution. This
scale

η(y) ≡ s(y)
(
ds

dy

)−1
(5.17)

is found to be a smooth, positive, and skew-symmetric function.
5.2.4. General solution. Information from first and second perturbation levels can
now be incorporated into the first term of the multiple scale expansion for Vn in
(5.4). The result is

Vn = (cos θ)1+λn exp
{
−ξ[η sec3 θ − η(0)] +

π2

4
ξσ2(1 + λn)

[
η sec θ(λn tan2 θ − 1)

(5.18)

+η(0)
]

+
2i
πσ

ln tan
[π

4
(1 + y)

]
− iπξσ

(
1
2

+ λn

)
η sec2 θ tan θ

}
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Figure 2.
Spatial distribution of the effective scale function η(y) that controls the composite solution.

5.3. Particular solutions

In order to produce particular solutions in the various domains of interest, the only
requirement will be a knowledge of the scale function and its derivative in order to
determine the effective scale function η(y) given by (5.17). The value of η(0) will
also be needed as necessitated by the velocity-adherence condition materialized in
(5.18).
5.3.1. Near-wall solution. In this case, s = y, and η = y. Equation (5.18) becomes

Vn = (cos θ)1+λn exp
{
−ξy sec3 θ +

π2

4
ξσ2(1 + λn)[y sec θ(λn tan2 θ − 1)] (5.19)

+
2i
πσ

ln tan
[π

4
(1 + y)

]
− iπξσ

(
1
2

+ λn

)
y sec2 θ tan θ

}
5.3.2. Near-centerline solutions. Using s = (1 − y)−q, η = (1 − y)/q, q = 1, 2,
r ≡ (1− y),

Vn = (cos θ)1+λn exp
{
−ξ
q

[r sec3 θ − 1] +
π2

4q
ξσ2(1 + λn)[r sec θ(λn tan2 θ − 1) + 1]

(5.20)

+
2i
πσ

ln tan
[π

4
(1 + y)

]
− iπ

q
ξσ

(
1
2

+ λn

)
r sec2 θ tan θ

}
5.3.3. Composite-scale solution. A uniformly valid solution is obtained when
s = yr−ay

b

resulting in
ds

dy
= r−ay

b

(1 + ayb+1r−1 − abyb ln r), η = y[1 + ayb(yr−1 − b ln r)]−1 (5.21)
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Vn = (cos θ)1+λn exp
{
−ξη sec3 θ +

π2

4
ξσ2(1 + λn)η sec θ(λn tan2 θ − 1) (5.22)

+
2i
πσ

ln tan
[π

4
(1 + y)

]
− iπξσ

(
1
2

+ λn

)
η sec2 θ tan θ

}

6. Results and comparisons

For comparison purposes, a numerical solution to (2.1) is obtained using a classical
fourth-order Runge-Kutta scheme, a shooting method, and superposition that
takes advantage of the linearity in (2.1). The shooting procedure starts at the
wall, and integrates the stiff differential equation back to the centerline using a
step size of 10−6. The maximum error associated with the numerical results is
hence virtually insignificant.

Profiles of Vn(y) corresponding to the composite-scale solution given by (5.22)
are shown along with the numerical solution of (2.1) in Figure 3 and Figure 4 where
real components are compared. In Figure 3, the results are compared at several
typical values of the controlling parameters, and for the first value of λn. In Figure
4, the results are compared for the next four values of λn, and at a typical value of
σ. The striking similarity between numerical and analytical results is reassuring
and gets even better at smaller ε.

The function Vn(y) is best described as an upward-traveling harmonic wave
with an amplitude which suffers exponential damping with increasing distance
from the wall. This damping is found to depend primarily on the viscous pa-
rameter, ξ; its dependence on σ is found to be insignificant as could be inferred
from the spatial attenuation term of (5.22). In order to compare numerical and
analytical results in a very wide range of physical parameters, and to provide fur-
ther reassurance that the favorable trends depicted in Figures 3-4 are not merely
fortuitous, the 99% based depth of penetration of Vn, a measure of the rotational
region, is displayed in Figure 5, for the first two values of λn, as obtained from
both numerical and multiple scale solutions. To that end, the depth of penetration
is plotted, for a wide range of ε, versus the penetration number, Sp ≡ ξ−1, which
has been ascertained in this and similar studies ([4] and [5]) to be the agent in
control of the spatial attenuation character of the rotational solution.

It should be pointed out that, despite the fact that (2.1) depends on both ε and
σ, the perturbation analysis shows that the decay of rotational waves is controlled
by a single nondimensional parameter, Sp, which groups both dynamic similarity
parameters appearing in the governing differential equation. This important result
could not have been foretold without the analytical derivation, since dimensional
analysis and numerical solutions alone are not capable of revealing its existence.
As it turns out, the larger the penetration number, the larger the penetration
depth will be. Additionally, for small penetration numbers, the penetration depth
varies linearly with the penetration number.
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Figure 3.
Comparison of the composite-scale expansion for Vn to the numerical solution for several test
cases corresponding to typical values of the control parameters and n = 0.
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Figure 4.
Comparison of the composite-scale expansion for Vn to the numerical solution for several test
cases corresponding to n = 1, 2, 3, 4, and σ = 0.02, corresponding to a typical value of the
Strouhal number of 50.
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Figure 5.
Penetration depth of the velocity function Vn for a wide range of physical parameters showing
an excellent agreement between multiple scale and numerical predictions for (a) n = 0, and (b)
n = 1.

As one would expect in Figure 5, the multiple scale solution (5.19) that uses
the near-wall scale and the numerical solution are in excellent agreement in the
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Figure 6.
Comparison of numerical and analytical predictions of the penetration depth of Vn for a wide
range control parameters encompassing realistic physical settings and at several values of λn,
n = 0, 1, . . . , 7.

vicinity of the wall. Similarly, the centerline solutions (5.20) are in agreement
with the numerical solution in their applicable domains, forming an envelope of
undetermined size, as predicted by the scaling analysis of section 3. Note that
the multiple scale solution (5.22) that uses the composite scale and the numer-
ical solution concur in the entire domain and for a very wide range of physical
parameters.

This close agreement between numerical and composite-scale predictions is fur-
ther demonstrated in Figure 6 where the same trend is shown to persist at higher
values of λn. Note that, for λn > 15 (not shown), the computational results begin
to degenerate at high penetration numbers corresponding to invisicid or frictionless
flows. The analytical results, however, remain unaffected.

Finally, it should be mentioned that, by contrast to traditional boundary lay-
ers, no single ”inner” boundary-layer region could be located here, to which will
correspond a unique ”outer” region. This fact offers a plausible explanation for the
reason behind the failure of matched asymptotic expansions. Furthermore, and
contrary to conventional boundary layers, the depth of penetration diminishes with
increasing viscosity.

7. Order Verification

In order to determine the order of the error associated with the composite-scale
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expansion of Vn given by (5.22), and in order to show that the error tends to zero at
the correct rate as ε→ 0, a simple yet powerful technique described by Bosley [1]
will be invoked. Being ideally suited for both complicated and novel perturbation
results, this technique is capable of verifying rigorously the quantitative accuracy
of asymptotic expansions and ascertaining the order of accuracy, to ensure that
no mistakes were made during the derivation process. Accordingly, if the error En
associated with (5.22) could be represented by

En = Kεα (7.1)

then α, representing the order of the error, could be approximated by the slope of
the linear least-squares fit of the data generated by graphing log(En) versus log(ε)
over a range of ε that is devoid of computational instabilities. In accordance with
Bosley’s technique, the calculated error En can be chosen, for the case at hand,
to be the maximum absolute error over the domain of interest between analytical
and accurate numerical results. For that purpose we define

En = max
y∈[0,1]
σ=const

∣∣Vnumerical(y, n, σ, ε)− Vanalytical(y, n, σ, ε)
∣∣ (7.2)

where the analytical component is calculated from (5.22) and the numerical com-
ponent from solving (2.1) over the interval [0, 1] by use of a classical fourth-order
Runge-Kutta scheme and a variable mesh size ranging from 10−6 to 10−9. The
maximum error defined by (7.2) is plotted versus ε, which is very finely spaced
on the interval shown, in Figure 7, for a vast range of controlling parameters and
n = 0, 1. Fitting linear least-squares to the data indicates that the order of the
error approaches unity very rapidly as ε→ 0.

What is very interesting to note is that the regions where deviations from lin-
earity are observed correspond to improbable or unrealistic physical settings, and
to settings where the mathematical model used to approximate reality deteriorates.
For instance, when σ = 0.2, the rate of decrease in the error starts fluctuating while
maintaining the same overall asymptotic order. This can be attributed to the fact
that σ = 0.2 corresponds to a quasi-steady field for which the mathematical model,
intended for oscillatory fields, begins degenerating. Additionally, for large ε along
lines of constant σ, the asymptotic rate of the error cannot be observed as clearly.
This can be attributed to the fact that ε = vω−1h−2 cannot exceed certain limits
by virtue of physical restrictions imposed on viscosity, frequency, and height of a
channel.

A closer look at the asymptotic behavior of the error is given in Figure 8 for
a typical value of σ, and a practical range of ε, for n = 0, 1, 2. The linear slopes
obtained from least-squares are provided for two distinct ranges of ε with a high
correlation coefficient of 1.0000. The results from least-squares are shown by thin
solid lines, and the ranges corresponding to ε ∈ [10−7, 10−6] and ε ∈ [10−8, 10−7]
are indicated by parentheses. Clearly, the slope approaches unity more rapidly at
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Figure 7.
Verification of the order of the error in the composite-scale expansion of Vn for a vast range of
controlling parameters and the first two values of λn indicating a clear asymptotic behavior in
wide ranges os ε.

Figure 8.
Verification of the asymptotic order of the error for a practical range of parameters and n = 0, 1, 2,
showing a consistent decrease in the error at a logarithmic rate that approaches unity as ε→ 0.

higher values of n and in ranges of smaller ε. This repetitive trend observed for
other values of σ indicates that the error decreases consistently in ε according to
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the correct asymptotic behavior; this behavior can be described by

En−→
ε→0

Kε (7.3)

In conclusion, the error associated with the composite-scale technique presented
here is established to be of O(ε).

8. Closure

For a class of boundary-layer problems containing a small parameter and several
dissimilar scales, a hybrid two-variable multiple scale procedure can be attempted.
The method comprises three principal steps: 1) identification of the prevalent char-
acteristic scales, 2) determination of a composite scale that matches the modified
scales in their respective domains, and 3) application of a standard two-variable
multiple scale expansion that includes the composite scale to arrive at accurate,
uniformly valid solutions. The foregoing analysis furnishes guidelines to construct
the composite scale which depends on the particular case at hand. It is hoped that
more rigorous formalism can be established in the future to guide the selection of
the composite scale function which might be derivable rather than established by
trial, optimization, inspection or conjecture.

Since the main objective of the multiple scale approach is to seek approximate
analytical expressions that would be uniformly valid, the scale-matching procedure
presented here could be considered to be an honest and useful alternative, espe-
cially that other available methods ended in futility. Although not guaranteed to
succeed under other circumstances, the method is likely to work in boundary-layer
applications incorporating more than two characteristic scales. Such applications
involving fast-changing processes will be dealt with in subsequent study and will
be reported in our forthcoming work.
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