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In extending previous work, this paper continues to address the acoustico-vortical
coupling inside a porous channel of the closed-open type.  The companion paper (Majdalani,
J., “Basic Vorticity Dynamics in a Porous Channel of the Closed-Open Type.  Part I: A
Standard Perturbation Treatment,” AIAA Paper 99-2503) applies conventional perturbation
principles to extract the temporal vorticity from the linearized vorticity transport equation.
Two alternative efforts will be invested here to extract the temporal velocity from the
linearized momentum equation.  These efforts rest on applying WKB and multiple-scale
expansions.  The multiple-scale approach includes the innovative idea of introducing a
virtually arbitrary scale that can be left unspecified during the derivation process.  At the
conclusion of the asymptotic analysis, this unknown variable is determined.  The algebraic
complexity of the resulting variable (which could not have been guessed beforehand) justifies
the ‘reverse engineering’ methodology adopted in its derivation.  Its complexity stems from
its intrinsic function of singly representing a triple-deck structure of inner, intermediate,
and outer length scales.  This spatial scale reduction allows a conventional two-variable
multiple-scale expansion to be successful.  The emerging one-term formulation is
conveniently short and accurate.  As a result, closed form expressions for the velocity
modulus and depth of penetration can be rendered.  Numerical verifications reveal that the
error associated with this space-reductive perturbation solution is more accurate than its
precursors, namely, the standard perturbation solution of Paper I and the WKB solution
furnished here.  It is gratifying to note, in closing, that our asymptotic formulas agree very
well with computational data acquired from a two-dimensional Navier-Stokes solver that
handles the nonlinear mass, energy, and momentum conservation equations.

 I. Introduction!

HE purpose of this paper is to complete the
temporal flowfield investigation of the porous

channel of the closed-open type that was initiated in the
companion article (Majdalani, J., “Basic Vorticity
Dynamics in a Porous Channel of the Closed-Open
Type.  Part I: A Standard Perturbation Treatment,
AIAA Paper 99-2503, henceforth referred to as Paper
I).  Previously, it was shown that, in the presence of
injection through the porous walls, acoustic pressure
waves gave rise, at the solid boundaries, to a strong
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system of shear waves.  These shear waves coupled
with the longitudinal acoustic waves to precipitate
(fairly) rich flow patterns.  The emerging vortical
structures were analyzed in Paper I in light of both
asymptotic and numeric solutions of the linearized
Navier-Stokes equations.  To that end, the asymptotic
formulations of the temporal field were derived from
the vorticity transport equation using a number of
successive approximations.  In order to reduce the
element of uncertainty introduced in the previous
derivation, the current investigation will focus on two
additional methods, namely, on WKB and multiple-
scale expansions.  At present, these will be directly
applied to the momentum equation.  Implementation of
these two asymptotic techniques, which is by no means
trivial, will lead to alternative expressions that can be
used to confirm the solution of Paper I.  Thus one of the
goals of Paper II will be to provide dual verifications to
the former asymptotic analysis.  Another goal will be to
exploit the benefits of the new formulations.  In fact,
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both WKB and multiple-scale solutions will be shown
to provide shorter, more accurate, and more elegant
expressions that reveal the explicit relationship between
several key parameters.  Among them will be the
dependence of the penetration depth (of shear waves)
on flow variables and acoustic mode numbers.

Analysis of the penetration depth is, of course,
equivalent to studying the character of the so-called
acoustic boundary layer.  This layer is essentially a
measure of the rotational region affected by the
presence of solid boundaries.  In recent years, this
acoustic boundary layer has drawn considerable
attention in the rocket combustion stability community,
due to its role in explaining a number of combustion
mechanisms that evolve in the vicinity of the burning
surface.  In searching for works that address the context
of acoustic boundary layers in channels and tubes with
both ends closed, one may cite Avalon et al.,1,
Beddini,2,3 Beddini and Roberts,4,5 Brown et al.,6

Casalis et al.,7 Crump and Price8 Culick9-11 Dunlap et
al.,12 Flandro,13-15 Kirkkopru et al.,16 Majdalani and
Van Moorhem, 17,18 Majdalani19,20 Roh et al.,21 Roh and
Culick,22 Vuillot,23,24 Vuillot and Avalon,25 and Zhao
and Kassoy.26  Note that these studies consider both
laminar and turbulent, reactive and nonreactive,
acoustic boundary layers.  A contemporaneous
investigation introduced by Casalis et al.7 addresses the
channel configuration that we consider here, namely,
with the open aft end.  As we extend the work of Paper
I, we continue to limit our scope to laminar and
nonreactive boundary layers.

A third goal of this investigation is to undergo
comparisons with numerical predictions acquired from
a computational code that solves the nonlinear, Navier-
Stokes equations.  The undisputed verification that
gives our theoretical model a raison d’être lies,
perhaps, in showing that the asymptotic formulation
arrived at after tedious algebra and mathematical
maneuvers does indeed agree with the unbiased Navier-
Stokes predictions.  Only then could we truly justify the
linearization procedure that was invoked at the
beginning stages set out in Paper I.

With these goals in mind, we start in Sec. II the
process of deriving the time-dependent velocity from
the linearized Navier-Stokes equations.  This is
accomplished by applying separation of variables to the
linearized momentum equation.  At the outset, a
singular ODE emerges that requires a careful
assessment.  Since the solution exhibits an oscillatory
behavior, our first attempt will be to invest in a WKB
expansion that is ideally suited to extract a one-term
expression.  Next, a two-variable derivative expansion
method is called for.

In principle, the first nonzero term of a multiple-scale
expansion is usually more compact and accurate than its
counterpart obtained with other asymptotic schemes.

The improved accuracy can be ascribed to multiple-
scale formalism which draws information from the first
order solution in constructing the leading-order term.
In practice, however, the technique can be quite
challenging because it presupposes the knowledge of
the modified scales associated with the boundary layer
structure.  As it will be demonstrated below, if ( , )y y0 1

represent the base and modified variables, the current
problem necessitates the usage of a nonlinear scaling
transformation for the modified variable.  The nonlinear
transformation that must be conjectured in our problem
at the beginning of a standard multiple-scale analysis
turns out to be

y y y y1 2 0 2 0 4 01! " "! " " "sec tan ln tana f a f a f , (1)

which, for obvious reasons, cannot be guessed
beforehand.  Physically, this difficulty can be attributed
to the presence of a triple-deck structure of inner,
intermediate and outer spatial scales.19  The single
modified variable y1  that can be successfully employed

in the perturbative analysis must be representative of all
three spatial scales.  In other words, y1  must reproduce

three spatial scales, thus reducing the total number of
virtual scales from three to one.  The subsequent two-
scale ( , )y y0 1  formulation will, in essence, be

equivalent to a standard four-scale expansion.
Evidently, the two-scale formulation that uses the
space-reductive variable y1  will be more compact and

accurate since its leading-order term will be equivalent
to a three-term standard multiple-scale expansion.  To
aggravate the issue, in the case at hand, we do not have
the luxury of a choice, since a standard four-scale
expansion is futile due to intractable mathematical
obstructions.  We are bound to pursue, in consequence,
the space-reductive treatment.

Since the key scaling transformation y1  is initially

unknown, the asymptotic treatment begins with an
undetermined coordinate transformation.  At the
conclusion of the analysis, this unspecified
transformation will be determined from physical
arguments.  Interestingly, the leading-order WKB
expression, that is developed early on, is recoverable
from the leading-order space-reductive solution.

Comparisons with the previous solution of Paper I
are brought into perspective in Sec. III.  Having insured
the reliability of the space-reductive formulation, the
corresponding modulus and penetration depth are
quantified to help characterize the flow behavior in a
closed-open configuration.  The error entailed in the
space-reductive solution is evaluated and compared to
its precursor.  This is followed by comparisons with
computational results retrieved from numerical
simulations of the nonlinear Navier-Stokes equations.
Section IV concludes the analysis.
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 II. Mathematical Procedure

A. Separation of Variables

In Paper I, the rotational velocity was produced from
the vorticity and vorticity transport equations following
a number of successive approximations.  Here, the
temporal component ~u  will be extracted directly and
explicitly from the momentum equation, written at
!( )M .  Using the same notation as before, we

rearrange Eq. (26) of Paper I into

x
u
x

S y
#
#

! 2
2"
"csca f

$ % %
#
#

"
#
#

RST
UVWi " " "# # !2 2 2

2

2
sin cosy u y

u
y

u
y

a f a f . (2)

We then call for separation of variables in order to
investigate a solution of the type

u x y X x Y y( , ) ( ) ( )! . (3)

Inserting Eq. (3) back into Eq. (2), and setting $ "! 2 y

renders,

2
2

2

2
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Y
Y
y

Y
y"

$ # $ # $ !"csc sin cosa f a f a fi
d
d

d
d

% % "
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UVW
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x n

d
d

% , (4)

where %n  must be strictly positive for a nontrivial

outcome.  For every %n , a solution Xn  and Yn  must be

realized.  Integration of the axially dependent equation
is straightforward.  The exact result is X x c xn n

n( )! % ,

where cn  is a simple integration constant.  Owing to

the linearity of Eq. (2), the general solution takes the
form

u x y c x Y yn n

n

n( , ) ( )!& %

%
, (5)

where Yn  must be determined from the no-slip

boundary condition at the wall that is chiefly
responsible for the strong coupling between pressure
and vorticity modes.  As a consequence of this,
rotational and irrotational components of the axial
velocity must be equal and opposite at the wall.  This is
fulfilled when, ~ !u u! % , or

u x k xm( , ) sin0 !%i a f , (6)

where k m lm ! %( ½) /"  is the nondimensional wave

number.  Inserting Eq. (6) into Eq. (5), writing out the
MacLaurin series expansion for the Sine function, and
equating summation terms yields

c x Y
k x
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which will be true if, for integral values of n ,
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Yn ( )0 1! , (9)

turning Eq. (5) into

u x y
k x
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Finally, the velocity eigenfunction Yn  is left to be

determined from Eq. (4), viz.

! # $ # % $"d

d

d

d
i

2

2 2 1 0
Y

y

Y

y
Yn n

n n% " % " !cos sina f
(11)

which must satisfy the two existing boundary
conditions:

Yn 0 1a f! , and 
d

d

Y

y
n ( )1

0! . (12)

Unfortunately, Eq. (11) does not possess an exact,
closed-form solution.  The presence of a small
multiplier in the highest derivative suggests, however,
the possibility of a perturbation treatment.  Due to the
oscillatory solution behavior, both WKB and two-
variable multiple-scale expansions appear promising.
In fact, the latter technique has been shown by
Majdalani19 to result in partially valid local solutions
corresponding to outer, inner, and intermediate scales.
In the same work, a uniform two-scale expansion was
presented using a hybrid technique.  The technique was
based on the choice of a so-called ‘composite scale’
that reproduced the inner, outer, and transition scales in
their respective domains.  Instead of constructing the
composite scale from our possible foreknowledge of
inner, outer, and transition scales, we now attempt
another route to determine the necessary scaling
transformation.

B. The WKB Motivation

In searching for an asymptotic solution to the
boundary value problem set out in Eqs. (11)-(12), two
cases may arise depending on the order of the Strouhal
number.

1. The Outer Expansion

For small Strouhal numbers, # ! !%S 1 1!( ) , and

the leading-order term of the outer solution Yn
o  can be

obtained straight-forwardly from

% " % " !# $ # % $"cos sin
d

d
i

Y
y

Yn
o

n n
o

2 1 0a f . (13)

Fulfillment of Yn 0 1a f!  gives

Y y S yn
o n! ""[cos ] exp ln tan" %

"
"

2
1 2

4 1a f a fm ri

' " %(cos ) exp( )$ $"
2 2 2 1n Si gd . (14)
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where gd%1  is the inverse Gudermannian function.27

Since the cosine factor in Yn
o  decays rapidly as y ) 1 ,

the other boundary condition at the core is self-satisfied
by the first derivative.  This eliminates the need for an
inner solution at this order.  On a separate note, the
exponential term in Yn

o  denotes an oscillatory behavior

that is commensurate with the size of S .  The first
order correction can be found in a similar fashion.  The
resulting outer solution, at !( )!2 , is

Y Sn
o n! " %(cos ) exp( )($ $"

2 2 2 1 1i gd

% " " "* +% %! $ $ $ " $"S S n{ ( sec tan )1 2 1 11gd gd

% "* + " " % %" $ $ $ $n n1 2 11
2a f[sec tan ln cos ln( sin )]

" "iS n2 3
2

2a f tan })$ . (15)

Due to the !( )!S 3  correction term in Eq. (15), a

secular behavior can be expected for large S .  Since
oscillations often occur for S , 10 , a WKB analysis
will be more appropriate in practice.

2. The WKB Expansion

For large Strouhal numbers, # -- 1 , and rapid
oscillations occur on a short scale, while a slow drift
takes place on the scale x ! !( )1 .  The WKB ansatz

can be formulized from

% . " !cos "
2 0yY SYn na f i , Yn ( )0 1! ,

or Y Sn !
%exp( )2 1

" $i gd . (16)

Setting Y g y Sn !
%( )exp( )2 1

" $i gd  and substituting back

into Eq. (11) gives
. " " "* + !%g S n g S! $ " $ !3 3 21cos tan ( )! . (17)

The leading-order WKB formulation, at !( )!S 2 , can

be obtained therefrom:
Yn

n0 2 2
0 0! %"(cos ) exp( )$ & i/ ,

 where
& ' $ $ $"0

1 1!% "%( sec tan )gd ,

/0
2 1!% %
" $Sgd . (18)

Here ' ! (! ! %S k hvw
3 2 3  controls the exponential rate

of decay as y ) 1 .  The superscript in Yn
0  refers to the

zero order WKB expansion whose derivative
automatically satisfies the remaining boundary
condition at the core.

C. The Space-Reductive Treatment

Following the approach described by Majdalani,19 we
introduce two independent virtual coordinates, y y0 ! ,

and y s y1 ! ! ( ) , where ‘s ’ is an undetermined scale

function that we propose to find.  Note that the
proposed transformation represents a slight departure

from conventional linear transformations bearing
y y1 ! ) !( ) .  The current stipulation of y1  offers the

necessary freedom that will lead to a uniformly valid
solution.

As prescribed by multiple-scale formalism, functions
and derivatives can be expanded, following this virtual
transformation, via

Y y y Y y y Y y yn ( , ) ( , ) ( , ) ( )0 1 0 0 1 1 0 1
2! " "! !! , (19)

d
d

d
dy y
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y y

! "
*
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*
*0 0 1
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d
d

2

2

2

0
2y y

! "
*
*

!!( ) . (20)

After substitution into Eq. (11), terms of the same order
can be segregated to produce the following set of
coupled, partial differential equations

   
*
*

"
% $ $

Y
y
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0
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0 0 02

1 0" " %L
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O
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*
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"
% $ $
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2

*
*

$
*

*
seca f ; (22)

where $ "
0 2 0! y .  In much the same way, boundary

conditions given by Eq. (12) can be converted into

Y0 0 1a f ! ,  
*
*
Y

y
0

0

1 0a f! . (23)

Next we integrate Eq. (21) to get

Y C S yn
0 1 0

1
0

2
4

1! " "L
NM

O
QP

RST
UVW

"exp ln(cos ) ln tan$
"

"% i a f
'C y y1 1 0a f a f+ , (24)

where C1  is an integration function that must be

determined in a manner to ensure a secular-free series
expansion in Yn .  Differentiating Eq. (24), and

plugging the results back into Eq. (22) gives
*
*

"
% $ $

Y
y

S Yn
1

0
0 0 12

1" " %L
NM

O
QPa f tan seci

! %
RST

"
d
d

d

d
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C y

y
C y
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1
1 1 0
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NM S Sn n

3 2
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2
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04
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"
% % $a fb g

% "FHG
I
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O
QP
UVW

i" % $ $ +S yn
2

0 0 0

1
2

sec tan a f , (25)

Removing secular-producing terms demands that the
right-hand side of Eq. (25) be nil.  Otherwise, the
asymptotic series will contain terms whose quotient
between two successive orders can be unbounded.
Fortunately, the resulting first-order differential
equation in C1  can be easily integrated in closed form.

After reverting back to our laboratory coordinate,
satisfaction of Eq. (23) furnishes
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C y y1
3 2

2

0
4

a f a f a f! % % "
RSTexp sec' , $ , '#

"

$ " % "1 1 02% $, % $ ,n nya f a fb g a fsec tan

% "FHG
I
KJ

UVWi"'# % , $ $
1
2

2
n ya f sec tan , (26)

where the viscous parameter ' !! S 3  appears here

along with the effective scale functional ,( )y  .  The

latter is defined by
, y s y s ya f a f' ./ ( ) . (27)

The leading-order term can now be summoned from
Eqs. (26) and (24).  Since the overall solution is sought
at !( )M , and M , ! , there is no justification in

retaining other than Y0 , and the expansion in Eq. (20)

reduces to

Y
Sn n

n! % % " "
"

cos exp sec$ ' , $ ,
"

' %
%a f a fm a f1 3

2

2
0

4
1

$ % " " %, $ % $ , $"sec tann S2 2 11 0b g a f i gd

% "FHG
I
KJ

UVW"i"
'

% , $ $ !
S n

1
2

2sec tan ( )! . (28)

Obviously, the undetermined scale function remains,
at present, unspecified.  However, one can verify that,
near the wall, an asymptotic solution exists for
s y y( )! , as shown in detail by Majdalani.19

Mathematically, this translates into
lim ( ) ( )
y

y y
)

! 0 !
0

0 0, , , (29)

which can be used to slightly simplify Eq. (28) before
eventual substitution into Eq. (10).  Note that this
simplification is convenient but not necessary for the
success of the current procedure.  At the outset, we get

~( , , ) cos
cos

!
u x y t

k x

n

n
m

n

n

!%
%

"

"

!

(

&i $
$1

2 1

2 1

0

a f a f
a f

$ % " " "exp sec cos sin', $ # $ $"3
2

2 21 1 2 2
2

n na fb gn
" " % " %2

2 4
3
2

22"
$ " "'# , $ $i i iS n k tmln tan sec tana f a f r

"!( )! , (30)

which is a rapidly converging series that displays
distinctly terms of !( )#2 .  In fact, the error associated

with n 1 1  terms can be verified to be smaller than the

!( )!  entailed in the n ! 0  term.

D. A Finite Formulation

Careful examination of Eq. (30) reveals that a closed-
form equivalent is possible when terms that do not
affect the reported precision are dropped.  This can be
accomplished by dismissing the !( )#2  quantities

arising in the n 1 1  terms.  In practice, the equivalent
expression reads
~ cos sin cos exp expu k x k tm m!% % "i i$ $ &a f a f/ (31)

where & & &! "0 1

! % %', $ '# , $ $"sec sec cos3
2

2 32
2 , (32)

and / / /! "0 1

! % " "2
2 4

3
2

2
"

$ " " '#, $ $S ln tan sec tana f (33)

Clearly, each of the spatial damping function &  and

spatial phase angle /  comprises a leading-order term
and a small correction of !( )#2 .

E. Remaining Flow Variables

Having obtained an accurate expression for ~u , the
transverse component ~v  can be extracted from mass
conservation.  To that end, we proceed heuristically by
setting an ansatz of the form

~ ( )cos cos exp expv G y k x k tm m! % "$ &a f a fi / , (34)

where G y( )  is a subsidiary function that must be

determined in a manner to satisfy continuity, namely,
# # " # # !~ / ~/u x v y 0 .  After some algebraic

operations, continuity is indeed fulfilled in leading-
order quantities when G Mv! 0

3 .  Henceforth,
~ cos cos cos exp expv M k x k tm m! % "3 $ $ &a f a fi / (35)

indicating that our initial claim of ~/ ~ ( )v u M! !  was

legitimate.  Indubitably, this analytical realization can
be verified numerically as well.  Next in line, temporal
vorticity can be issued directly from the velocity
formulation.  In fact, differentiation begets

~( , , ) sin exp- &x y t S k xv k tm m! % % "0a f a fi / . (36)

F. Defining the Space-Reductive Transformation

1. Velocity Consideration

One may proceed by contending that the multiple-
scale formula should match, in leading order, the
uniformly valid WKB expansion.  This can be achieved
by suppressing terms of !( )#2  in Eq. (28) and

equating the resulting expression to Eq. (18).  At the
outset, we find that

% !% "%', $ ' $ $ $"sec ( sec tan )3 1 1gd ,

 or , $ $ $ $"! "%1 1 2(cos tan )cosgd (37)

From Eq. (27), one may solve for the appropriate
scale function via . % !%s s, 1 0 .  Recalling that

s( )0 0! , direct integration yields

s y
y

( ) exp ( )! %z , . .1

0
d
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! " "sec tan ln tan" " "
2 2 4 1y y ya f a f a f . (38)

With this choice of s , the multiple-scale solution given
by Eq. (31) will coincide with the corresponding WKB
formulation when &1 1 0! !/ .  Retention of the first

order corrections &1  and /1  in Eq. (31) slightly

increases the accuracy of the space-reductive multiple-
scale formulation beyond its WKB counterpart.

2. Vorticity Consideration

The current expression for vorticity can be compared
to its counterpart in Sec. V(F) of Paper I.  Knowing that
the exponential decay of time-dependent vorticity must
be decreed by the same agents irrespective of the
perturbation technique, the spatial damping function &
must be the same as that obtained previously.  This
contention implies that, in Eq. (32), we must have

% ! % " ", "
"

" " "sec ln tan sec tan3
2

1
4 2 21y y y ya f a f a f a f ,

(39)
which leads to the same expressions obtained from
velocity consideration.

3. Generalized Space-Reductive Scale

Combining Eqs. (37) and (38), a general expression
for the space-reductive function s y( )  can be produced:

s y
v

v z z

y
( ) exp

( )

( )
!

%

%zz
0

3

0
3

0

0

. .
.

d

d
(40)

since ,( ) ( ) ( )y v y v z z
y

! % %z0
3

0
3

0
d (41)

These expressions exemplify the mathematical
sophistication materialized in determining explicitly the
modified variable transformation.  They also indicate
that the unusually rapid variations that occur in the
transverse direction are solely prescribed by the normal
mean flow velocity component, v y0 2! cos( )" .

4. Comparison with Previous Scaling Analyses

Fortuitously, we are able to manage, this time, an
exact expression for the desired nonlinear
transformation, y s y1 ! ! ( ) .  Obviously, the complexity

of Eq. (38) precludes the possibility of guessing this
coordinate transformation beforehand, as demanded by
conventional multiple-scale procedures.  It also justifies
the need to deploy the ‘reverse engineering’ process in
tracking the scales.  The most striking result is, perhaps,
the excellent agreement between our current didactic
formulation and the ad hoc formulation obtained by
Majdalani19 using a forward approach.  In the previous

analysis, a composite scale s y y y y( ) ( )
/ /2! % %1 3 3 2

 was

constructed ab initio in a manner to reproduce
asymptotically the inner, outer, and intermediate scales

cropping up in the problem.  As a result, usage of the
composite scale reduced the number of spatial scales to
two, which was necessary for the success of the
multiple-scale expansion.  Subsequently, the effective
scale functional ,  was derived and then substituted

into the solution.  In the current analysis, ,  is

determined first, and it is only at the conclusion of the
analysis that one may verify that the space-reductive
coordinate does indeed reduce to the proper spatial
scales in their regions of applicability.  For instance, in
the vicinity of the transpiring wall and core, one can
recover the scales found by Majdalani.19  Thus,

y y y y1 2 2 4 1! " "! " " "sec tan ln tana f a f a f
) ) % )%! !y y y y, , ( ) ,0 1 12k p (42)

 III. Discussion

A. The Temporal Velocity Profile

Since ~/ ~ ( )v u M! ! , ~u  dominates the vortical

description, and the total temporal velocity can be
contrived by juxtaposition of irrotational and solenoidal
fields.  The result, from Eq. (31), is

u x y t k x k tm m1( , , ) sin exp! %i ia f a fl
% % "cos sin cos exp$ $ &k x k tm ma f a f ri / . (43)

As Euler’s notation is no longer needed, the real part of
Eq. (43) can be retrieved into

u x y t k x k tm m1( , , ) sin sin! a f a f
irrotational part" #$$ %$$

% "cos sin cos exp sin$ $ &k x k tm ma f a f
wave amplitude wave propagation

rotational part

& '$$$$ ($$$$ & '$$ ($$

" #$$$$$$$ %$$$$$$$
/ . (44)

In a sense, Eq. (44) is the culmination of our labors.
Clearly, the first term in Eq. (44) abbreviates the
pressure-driven, inviscid response, and the second term
represents the vorticity-driven, viscous response.  As
such, it vividly displays the vortical wave
characteristics that permit exacting explicit
formulations for the vortical depth of penetration,
velocity overshoot, and surfaces of constant phase.
Unlike theoretical studies that are concerned with
infinitely long channels with oscillatory motions
induced by pistons at infinity, a dependence on the axial
coordinate x  is brought about here by the body’s finite
length.  Further examination of Eq. (44) reveals that the
vortical amplitude is decreed by two separate terms: an
exponentially damped function owing to viscous
dissipation, and a space-harmonic function made
possible by inclusion of axial mean flow convection of
vorticity fluctuations.  Whereas both terms depreciate
with increasing distance from the wall, the latter varies



AIAA-99-2504

 7
American Institute of Aeronautics and Astronautics

sinusoidally in the streamwise direction.  Moreover,
inspection of the spatial damping function &  reveals

that successive increases in viscosity promote vortical
degeneration.  This counterintuitive effect stands
behind the unusual character of the acoustic boundary
layer which clearly defies Prandtl’s classic usage of the
term.

B. Comparison with Former Results

A quick comparison is undertaken in Table 1 where
numerical simulations of the linearized Navier-Stokes
equations, described in Paper I, are compared with the
asymptotic results obtained at the downstream end from
the space-reductive multiple-scale solution, given by
Eq. (44), and the perturbation solution of Paper I. The
test case covers a typical set of flow parameters.  The
last two columns give the percentage deviation of the
preceding entries relative to the numerical
approximations obtained with negligible error.  In fact,
by observing the results at different tolerances and
mesh sizes, the numerically reported data entries seem
to be correct to all decimal places quoted.  The
numerical code was actually tested on similar
differential equations that possess exact solutions to
insure the accuracy of every decimal point quoted in the
table.   It is very satisfying to note the agreement, in
many cases, to three or more decimal places, between
numerics and asymptotics.  In view of such small
errors, graphs of velocity and vorticity profiles will
appear the same to the naked eye.  The compact size of
Eq. (44) remains, however, the most convenient for
programming and analysis.

C. Velocity Modulus in the Closed-Open Channel

The compact size of Eq. (44) allows extracting the
modulus of the axial velocity which can be used to
characterize the flow patterns for the first three
oscillation modes.  These are shown in Fig. 1 below at
several select locations for S m! %25 2 1( ) and

K m! %10 2 16( ) .  Clearly, the modulus is small at the
nth  acoustic velocity nodes corresponding to
x l n m/ / ( ½)! % , for integral values of n m- .

The effect of increasing viscosity can be easily captured
in Fig. 2 where the kinematic viscosity is increased by
one order of magnitude.  The result is a depreciation in
the vortical component and a broadening of the acoustic
core.  These observations are in perfect agreement with
the former assessment of vorticity structures in Paper I.

D. Quantifying the Acoustic Boundary Layer

It should be pointed out that the total flowfield has
been divided in Paper I into a steady part and a time-
dependent part.  Due to linearity, one may envisage the

Table 1  Temporal velocity u ( )!  for S ! 25 ,
K ! 105 , x l/ ! 1 , k tm ! !

2 , and m ! 1

y Numeric
Paper I
Asymp.

Paper II
Asymp.

Paper I
Error %

Paper II
Error %

0.00 0.00000 0.00000 0.00000 0.00000 0.00000
0.05 0.68921 0.68928 0.68923 0.00951 0.00176
0.10 1.78448 1.78460 1.78433 0.00682 0.00841
0.15 1.75882 1.75880 1.75907 0.00067 0.01456
0.20 0.66729 0.66709 0.66823 0.02949 0.14208
0.25 0.12864 0.12850 0.12848 0.10981 0.12286
0.30 0.94854 0.94878 0.94639 0.02554 0.22675
0.35 1.76223 1.76254 1.76172 0.01738 0.02890
0.40 1.18939 1.18889 1.19254 0.04168 0.26554
0.45 0.37646 0.37599 0.37720 0.12413 0.19782
0.50 0.93337 0.93462 0.92959 0.13405 0.40470
0.55 1.47594 1.47585 1.47670 0.00616 0.05142
0.60 0.77880 0.77677 0.78143 0.26095 0.33801
0.65 0.90855 0.91150 0.90604 0.32459 0.27688
0.70 1.17433 1.17176 1.17529 0.21877 0.08120
0.75 0.87154 0.87417 0.87167 0.30096 0.01495
0.80 1.04830 1.04377 1.04691 0.43188 0.13277
0.85 1.02134 1.02384 1.02229 0.24420 0.09284
0.90 1.00242 1.00377 1.00326 0.13434 0.08330
0.95 1.00010 1.00000 1.00000 0.01011 0.01004
1.00 1.00000 1.00000 1.00000 0.00000 0.00000
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Fig. 1  Modulus of u ( )!  for S m! %25(2 1),

K m! %10 (2 16 ), and, from top to bottom,
m ! 1,2, 3 .
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Fig. 2  Same as above except for K m! %10 (2 15 ), .
This variation can be ascribed to an order of
magnitude increase in kinematic viscosity.
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resulting boundary layer as the sum of individual
contributions from mean and temporal components.

1. The Mean Flow Contribution

The assessment of the boundary layer associated with
the mean flow has been addressed in the past by several
researchers including Proudman,28 Catheral,29 Cole and
Aroesty,30 and Terrill.31  For example, Proudman28 has
demonstrated that a shear layer could not exist on a
porous surface in the presence of sidewall injection.
Accordingly, only suction at the walls can give rise to a
shear layer in the vicinity of the solid boundary.  This
viewpoint is shared by Catheral29 who explains, in
addition, how the conventional viscous shear layer is
pushed from the wall, in the injection case, in a manner
to delineate two virtually inviscid zones.  The first zone
consists of the main stream convecting downstream,
and the second consists of the incoming stream of
injected fluid.  This viewpoint is shared by numerous
authors, including Cole and Aroesty,30 in their classic
treatment of the ‘blowhard’ problem over a porous
plate.

For an arbitrary cross-flow Reynolds number R , it is
therefore quite difficult to locate the viscous shear
layer.  Fortunately, we know from Terrill31 that the
viscous layer draws nearer to the core with successive
increases in R .  The thickness of the layer is also
confirmed in several investigations to be of !( )½R% .

This implies that the actual steady boundary layer
associated with the Taylor flow is vanishingly small.
Furthermore, it is pushed all the way to the core, which
delimits our solution domain.  Evidently, its presence
cannot be felt anywhere within the channel, especially
near the wall, being a single line that extends along the
core.  The total boundary layer, if any, must owe its
character to the time-dependent contribution.

2. The Temporal Contribution

Contrary to the mean flow, the temporal velocity
component gives rise to an appreciable region near the
wall where rotational effects are clearly present.  This
so-called acoustic boundary layer defies Prandtl’s
classic usage of the term, which is restricted to flows
where the dependence on viscosity is consistent with
conventional theory.  The reason is this.  As explained
in the preceding section, the rotational region here
diminishes when viscosity is increased, a fact that
contradicts the traditional expectation of boundary layer
growth.

3. The Total Contribution

In quantifying the total boundary layer thickness and
location, our task reduces, therefore, to the
characterization of the penetration depth yp  of time-

dependent rotational waves.  We thus define yp  to be

the normalized distance from the wall to the point
where 99 percent of the rotational wave amplitude in
Eq. (44) has vanished.  From Eq. (44), one can define
the point above the wall where the rotational amplitude
reduces to / ! 1 percent of its irrotational counterpart.
If y yp!  denotes such a point, then yp  is soluble from

cos sin cos exp ( ) sec" " ", '2 2
3

2y k x y y yp m p p pb g b g b g%

% !/ sin k xma f 0 . (45)

Despite its transcendental form, Eq. (45) indicates
that the exponential decay is a strong function of a
nondimensional penetration number, Sp !

%' 1 .  This

observation suggests generating curves of yp  versus

Sp , for large variations in K  and S .  In fact, Fig. 3

shows how entire families of asymptotic curves over
wide ranges of K  and S  collapse into single curves
per axial position.  Here too, asymptotics and numerics
concur.  This interesting result reveals that yp  does not

depend on K  and S  separately, but rather on
Sp = KS%3 , a parameter that resembles, in importance,

the Stokes number in periodic flows over hard walls.32

In a sense, Fig. 3 along with Eq. (45) bring into focus
the character of the acoustic boundary layer.  For
instance, it is clear that, for the first oscillation mode,
yp  depends on Sp , and, to a much lesser degree, on x .

For small Sp , the penetration depth varies linearly with

the penetration number, irrespective of x .  Apparently,
the larger the penetration number, the larger the

101 102 103
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0.92
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x/l = 0.01 0.5 0.7 0.9 0.99

 Analytic

 Numeric

yp
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Fig. 3  For the fundamental oscillation mode, we
show the acoustic boundary layer thickness over a
wide range of parameters and axial stations.   We
include both numerical (K ! 106 ) and asymptotic
predictions (10 104 8- -K ).  The latter are found
to be virtually independent of K .  Note the
insignificant sensitivity of yp  to the axial location.

This effect is captured in the enlarged inset.
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penetration depth will be.  This dimensionless grouping
reveals that increasing injection, or decreasing
viscosity, frequency, or channel height broadens the
depth of penetration.  Notably, our time-dependent
solution represents a strongly damped wave whose
penetration into the fluid is inversely proportional to ( .
The largest possible depth of penetration can be
realized, therefore, in a fluid with very small viscosity.

4. The Maximum Depth of Penetration

As borne out in Fig. 3, for sufficiently large Sp , yp
approaches a maximum fixed value per axial station.  In
order to locate this maximum possible depth,
y y m xpm p! (( , , ) , we realize that, for ideal fluids,

rotational waves face minimum resistance and extend
the furthest from the wall.  The asymptotic limit can
thus be evaluated from the inviscid formulation of the
penetration depth.  From Eq. (45), we reap

cos sin cos sin" " /2 2 0y k x y k xpm m pm mb g b g a f% ! , (46)

which possesses an accurate asymptotic expansion with
a maximum absolute error of 262 10 4. $ % , entailed at
the smallest value of ypm( , ) .1 0 0 9364! .  This formula,

y k x k x ypm m m pm! % " %% %1 12 1 1 3

" / sina f b g! , (47)

can be used in exchange for the numerical solution of
Eq. (46), being correct to !( )10 4% .  Both are shown in

Fig. 4 for the first four oscillation modes.

E. Asymptotic Error Behavior

To gain further reassurance, we retrace our footsteps
from Paper I by analyzing the maximum absolute error
between numerics and asymptotics.  In much the same
way, we again calculate the maximum difference Em

between Eq. (44) and the corresponding numerical
solution of the linearized equations.  Results are shown
in Fig. 5 at several discrete values of the Strouhal
number.  We also compare our current error to that
incurred previously in Paper I.  As one can infer from
the graph, the order of the error approaches unity very
rapidly as !) 0 .  Also, there is a slight improvement
in the maximum error associated with the space-
reductive multiple-scale formulation.

F. Comparison with Computational Data

In order to ascertain the validity of our asymptotics,
we insist on comparisons with computational
predictions.  These are obtained from a dual time-
stepping code, developed totally independently by Roh
et al.21 to manage the nonlinearized Navier-Stokes
equations.  The code is devoted to analyzing gas-phase
processes based on the complete conservation equations
of mass, momentum, and energy.  Originally designed
to treat propellant combustion in rocket motors, this

implicit dual time-stepping integration method has
proven its efficiency and robustness in reacting flows at
all speeds.  When launched, the algorithm invokes
pressure decomposition and preconditioning techniques
to circumvent difficulties encountered in low-speed
compressible flows.  Subsequently, the set of governing
equations with appropriate boundary conditions is
solved numerically by means of a finite-volume
approach.  A fully-coupled implicit formulation is then
used to enhance numerical stability and efficiency.  The
scheme has the advantage of achieving a high degree of
temporal accuracy with only a modest increase in
computational cost.  Moreover, since the governing
equations are solved implicitly, the numerical method is
very stable.  As a result, the selection of the integration
time step is dictated by the individual process, and not
by numerical stability constraints.

For the same physical parameters employed in our
asymptotic formulas, numerical simulations are
monitored until convergence is ensured.  This is done
while keeping the number of binary places as high as
possible in order to mitigate the machine’s restriction to
fixed-point arithmetic.  The code relies on a uniform

0.875

0.900

0.925

0.950

0.975

1.000

 

m = 2
ypm

 

 

a)

m = 1

 Analytic

 Numeric 

0 0.2 0.4 0.6 0.8 1
0.875

0.900

0.925

0.950

0.975

1.000

x*/L 

m = 4

ypm

0 0.2 0.4 0.6 0.8 1

 

 b)

m = 3

 Analytic

 Numeric 

Fig. 4  Trace of the maximum boundary-layer
thickness for the first four acoustic modes: a) m = 1,
2 and b) m = 3, 4.  In concurrence with Fig. 3, note
the very small axial sensitivity for the first
oscillation mode.
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mesh resolution and therefore requires more points at
higher Strouhal numbers to capture the depreciating
vortical waves near the core.  We find results obtained
for a large number of test cases to be completely
satisfactory.

For illustration purposes, we show in Fig. 6 both
asymptotics and numerics at three orders of the kinetic
Reynolds number.  Cases corresponding to K ! 107

and higher become nearly inviscid and bear a striking
resemblance to Fig. 6c.   In every case, the velocity
profiles, characterized by oscillations that progressively
decay from the wall, are depicted at two successive
times separated by a " / 2  phase difference.  The small

disparity between theoretical and computational data
can be attributed to small discretization errors and
nonlinearity effects that elude our analytic formulation.
This agreement is consistent at higher modes where an
increasing number of cycles is needed for convergence.

On that account, we show in Fig. 7 both asymptotic
and computational predictions for m ! 2  at the
conclusion of several iteration cycles.  After fifteen
cycles, the discrepancy between theoretical and
numerical experiments is hardly visible.  In the absence
of an exact solution to the case at hand, this comparison
to a full Navier-Stokes solution is pivotal.  Since the
end justifies the means, it gives our approach a raison
d’ être by reconciling between our final analytical
formulation and true Navier-Stokes predictions.

 IV. Conclusions
In this paper, we have formulated a closed-form

asymptotic solution to the two-dimensional time-
dependent flowfield established inside a porous channel
of the closed-open type.  The formulation rested on a
space-reductive concept that allowed reducing a triple-
deck scaling constitution into one single virtual
function.  This was an interesting aspect of our
theoretical investigation that could possibly be extended
to other practical problems.  In particular, one may
exploit the manner in which the inclusion of an
undetermined scale can precipitate the exact

specification of the variable transformation needed for a
uniformly valid solution.

The flowfield description emerging from the space-
reductive two-scale technique carries numerous
advantages: 1) It provides an alternative formulation
that can be used to verify the asymptotic solution of
Paper I.  2) It reduces to the WKB expansion when its
leading-order arguments are solely retained.  3) It
provides an explicit expression for the velocity
modulus, which helps explain the ensuing flowfield
patterns.  4) It provides the means to quantify the
acoustic boundary layer.  The latter is found to strongly
depend on the same dynamic similarity parameter
appearing in the closed-closed configuration.  5) Its
error exhibits a clear asymptotic behavior that provides
the formal mathematical evidence of its validity.  6) It
compares well with numerical simulations of both
linearized and nonlinear Navier-Stokes solutions.  In a
sense, we are happy that our analysis could be brought
to fruition despite numerous technical challenges.
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Fig. 5  Maximum absolute error entailed in a) the
space-reductive multiple-scale solution of Paper II,
and b) both asymptotic solutions of Papers I and II.
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Fig. 6  Comparison between the asymptotic solution
(full curves) and numerical simulations of the
nonlinear Navier-Stokes equations (chain curves) at
two successive times.  Here S ! 25 , x / l ! 1 , and

m ! 1 .  Using a 40x300 mesh resolution, simulation
results are shown after 9 iteration cycles for a)
K ! 104 , b) K ! 105 , and c) K ! 106 .
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Fig. 7  Comparison between the asymptotic solution
(full curves) and numerical simulations of the
nonlinearized Navier-Stokes equations (chain
curves) at two successive times.  Here K ! $2 106 ,
S ! 50 , x / l ! 1 / 3 , and m ! 2 .  Using a 40x300

mesh resolution, simulation results are shown after
a) 9, b) 12, and c) 15 iteration cycles.
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