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Technical Notes

TECHNICAL NOTES are short manuscripts describing new developments or important results of a preliminary nature. These Notes cannot exceed 6 manuscript
pages and 3 figures; a page of text may be substituted for a figure and vice versa. After informal review by the editors, they may be published within a few
months of the date of receipt. Style requirements are the same as for regular contributions (see inside back cover).

Boundary-Layer Structure The time-dependent velocity consists of a linear juxtaposition of

. . . inviscid, irrotational and viscous, rotational fields. From Eq. (1) one
m Cyhndrlcal Rocket Motors can infer that the vortical wave amplitude is controlled by two terms:
1) an exponentially decaying term—made possible by retention of

. ox viscous effects—that diminishes with increasing distance from the

. J Ma_].dalam . . wall and 2) a sinusoidal term—made possible by inclusion of down-

Marquette University, Milwaukee, Wisconsin 53233 stream convection of unsteady vorticity by the mean flow—which,

in addition to its monotonic decrease with r, varies harmonically
with the streamwise coordinate. Because the exponentially decay-

Introduction ing wave amplitude depends directly on § = w?v R/ V}?, increasing
N recent years the boundary-layer structure in solid rocket motors the viscosity causes the amplitude to decay more rapidly. The role
has received much attention in the rocket combustion stability of viscosity is hence to impede the inward penetration of vorticity.
community. This attention might be attributed to the role that it plays Equation (1) also indicates that the axial variation in the wave am-
in connection with a number of combustion mechanisms that occur plitude along the centerline is controlled exclusively by the acoustic
in the vicinity of the burning surface. On that account the focus of field, whereas the radial variation is decreed by the rotational field.
this Note will be to analyze the acoustic boundary-layer structure via On a separate note, recalling that the phase of the rotational wave
two recent analytical models that have been shown to agree favor- is uniform along lines where (.t + ®) is constant, Eq. (1) yields
ably with available numerical and experimental data in the forward . the radial speed of wave propagation. The latter can be readily de-
half of a rocket chamber.' Historically, the first model was derived termined to be equal to Culick’s radial mean flow velocity.'> The
by Flandro? using the vorticity transport equation and regular pertur- solution thus appears to exhibit the proper coupling between mean
bations. The second was derived by Majdalani and Van Moorhem'-* and time-dependent components.

using the momentum equation and a composite-scale perturba-
tion technique. Despite their dissimilar analytical expressions, both
models have been shown to concur over a wide range of physical
parameters.' The latter offers a compact expression for the velocity
field where information about the boundary layer can be extracted

Boundary-Layer Envelope
From Eq. (1), the rotational wave amplitude that controls the
evolution of the acoustic boundary-layer envelope can be recognized

explicitly. The current Note will exploit this feature to explain the in- to be

fluence of various flow variables and address several related issues, - . . .

including the penetration depth of the rotational region, the peculiar Ja® H = (eu/y) sin0 sin(knz sinO)exp(nr’csc®0/5,)  (3)
Richardson overshoot,* and the phase difference between oscilla-

tory pressure and velocity. The reader is cautioned that the present where §, = 1/£ is the so-called penetration number.! The point di-
treatment will be applicable to laminar conditions only and may not rectly above the wall where this amplitude reaches 1% of its irrota-
apply to aft rocket motor sections where turbulence is more likely to tional counterpart defines the edge of the rotational boundary layer.
exist. In fact, we expect our analytical formulations to overpredict In this case the point must be calculated by finding the root r,, of
the velocity’s rotational wave amplitudes and depths obtained in tur-

bulent regimes. For discussions concerned with turbulent behavior, sin[(n / 2)r,f]sin{k,,,z sin[(n /2)rﬁ] }

the reader is referred to the Refs. 5-14 and the references therein.
x exp{r) esc*[(w/2)r2Jn(r,)/S,} — alsinkn)| =0 (4)

Analysis
Wave Characteristics where o =0.01 defines the 99% based boundary-layer thickness.
We begin by considering the time-dependent velocity derived in In general this penetration depth will depend on the penetration
Ref. 1 [cf. Eq. (63)]. Using the same notation as in Ref. 1, we write number, the mode number, and the axial location. The larger the
Irrotational part Rotational part
uV(r z,0) = v sin(k,,z) sin(k,,t) —sin @ sin(k,z sin6) exp ¢ sintknt + @) | + OM,) )
Y ~
Wave amplitude Propagation
where penetration number, the larger the penetration depth will be because
_ 33 o 1 of a smaller argument in the exponential term arising in Eq. (4). The
§(r) = &n(ryresc’d, ®(r) =7"5r b tan 30 upper limit on the boundary-layer thickness (ypm = 1 — r,n) canbe

8 = (/2)r, c= % ) determined from the inviscid formulation of the penetration depth.
Setting vy =0 in Eq. (4) precipitates
n(r) = —y[l +cy*yr™' = ctar)}™!
I sin[ (7/2)r2,, ] sin{knz sin[ (/2)r2, ]} - afsin(kn2)| = 0 (5)
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can be evaluated from a one-term perturbation expansion extruded
from Eq. (5):

4 |sin(ky, :
ypm=1~[;'—sw] +0(5,) ®

Because the minimum possible y,,, is 74.8% at z=0, r,,, cannot
exceed a value of 0.252. Subsequently, the maximum error associ-
ated with Eq. (6) can be calculated to be 0.000259 « M,,. This error
can affect the depth of penetration only in the third or fourth decimal
places, a practically negligible contribution.

Comparisons

In Ref. 1 a comparative study of time-dependent velocity profiles
has indicated that both regular perturbation’ and composite-scale
models' exhibited similar velocity profiles. Naturally, one would
expect their penetration depths to be in agreement as well. In fact, the
penetration depths can be evaluated analytically and are compared
in Fig. 1 to the numerical solution described in Ref. 1 for z*/L = %
and a wide range of Sr and Re,. When plotted against §,, entire
families of curves, such as those shown in Fig. 1, collapse into
single curves per axial location. This event allows us to condense all
information about the penetration depth on one graph per oscillation
mode. As borne out in Fig. 2, characteristic curves of penetration
depths at several axial locations spanning the length of the chamber
can be conveniently depicted for the fundamental oscillation mode.
Collapsing the results onto a single graph provides unambiguous
means to interpret the boundary-layer structure.

As can be inferred from Fig. 2, the dependence of the penetra-
tion depth on the axial location z is minute in the forward half of
the chamber and becomes more pronounced in the aft half. The
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Fig. 1 Trace of the penetration depth obtained numerically and from
two analytical models'+ for a wide range of control parameters and one
axial station. CST, compesite-scale technique.
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Fig. 2 Locus of the laminar penetration depth obtained numerically
and from two analytical models'-? for a wide range of control parameters
spanning the chamber length. The penetration of vorticity is expected
to be less pronounced under turbulent conditions. CST, composite-scale
technique.
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Fig.3 Trace of the maximum penetration depth for the first four acous-
tic modes. Results correspond to laminar conditions that tend to over-

predict the penetration depth in the chamber’s aft half when turbulence
is present.

increased sensitivity of the boundary-layer thickness to z with in-
creasing axial distance from the head end is attributed to vortical
intensification in the streamwise direction. For fundamental oscil-
lation modes the axial dependence is found to be important only
in the aft half of the chamber when z becomes relatively large.
For small penetration numbers the penetration depth is found to
be directly proportional to the penetration number, independently
of the axial location. In practice this could take place when the
mean flow injection speed is very small, resulting in insignificant
vortical intensification in the streamwise direction. Evidently, this
range does not correspond to rocket motors characterized by size-
able penetration numbers and, therefore, substantial penetration
depths.

The sensitivity of the penetration depth to variations in the pene-
tration number decreases at higher values of the penetration number
associated with frictionless flows. As the penetration number be-
comes large, such as when exceeding 100 in Fig. 2, the value of the
penetration depth becomes independent of the penetration number
and can be estimated from the inviscid formulation given by Eq. (6).
This maximum possible penetration depth y,,, that can occur at any
axial location is compared in Fig. 3 with the numerical solution of
Eq. (5) for the first four oscillation modes. Clearly, the maximum
penetration depth increases with the axial location and the mode
number. The axial increase is not monotone because y,,, reaches a
maximum at the acoustic velocity nodes where the boundary layer
extends to the core. The reader is cautioned that, because our cur-
rent estimates correspond to laminar conditions, they tend to over-
predict the penetration depth when z*/L > % In fact, in aft-rocket
portions, the onset of turbulence has been shown to impede the vor-
tical wave propagation. The reader is referred, for example to Fig. 13
inRef. 13, where laminar and turbulent acoustic boundary layers are
compared.

Unsteady Velocity Overshoot
The phase difference between vortical and acoustic solutions
causes a periodic overshoot of the time-dependent velocity that can
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Fig. 4 Analytical'’? and numerical predictions of the locus and mag-

nitude of Richardson’s velocity overshoot at z*/L = % and a wide range
of control parameters. This overshoot is less intense under turbulent
conditions. CST, composite-scale technique.

£ exp(—&y)sin(—ySr) + Srexp(—&Ey)cos(—ySr)

From Eq. (1), B, = arctan[—A,, sin /(1 — A, cos )], where
Ap = sin[(/2)r*|[sin(kn2)] ™" sinfknz sinf[(/2)r*]}

x explen(ryricsc*[(n/2)r*)) ®

Hence, for any axial location, the angle by which the pressure leads
the velocity is simply o,, = (7/2) — B,,. Near the wall the angle ¢
can be expressed in a Taylor-series form expanded about y = 0. The
result is

&(r) = a7'Sr bo tan[(7r/2)r%]

= Sr[-y+ 3 + 0] = —ySr ©)

The effective composite scale 7 that appears in Eq. (8) also exhibits
an asymptotic form near the wall." Indeed, because 5(r) = —y at
y =0, the vortical velocity amplitude given by Eq. (8) simplifies to
A, = explEn(r)]= exp(—£y). At the outset, 8,, and a,, become

Bn(y =0) = arctan[ lim

y >0 £ exp(—£y)cos(—ySr) — Srexp(—§y)sin(—ySr)

reach almost twice the acoustic wave amplitude. This overshoot is a
well-known effect that is characteristic of oscillatory flows and was
first discovered in experiments on sound waves in resonators by
Richardson,* who first realized that maximum velocities occurred
in the vicinity of the wall. Theoretical verifications of this peculiar
phenomenon were carried out by Sexl,'6 and additional experiments
were conducted by Richardson and Tyler'” on reciprocating flows
subjected to pure periodic motions.

In our problem the overshoot factor OF can be determined from
Eq. (1) along with the distance yy.x extending from the wall to the
point where maximum overshooting occurs. Figure 4 summarizes
the observed trends that indicate that the overshoot increases with
decreasing kinematic viscosity and frequency. The overshoot occurs
in the vicinity of the wall, roughly, in the lower 25% of the solution
domain. Indubitably, this corresponds to the most sensitive region
near the burning surface. Because this overshoot is not captured by
the one-dimensional model currently in use, the need to incorpo-
rate the two-dimensional field, presented here, becomes even more
important, especially when proper coupling with the combustion
process is desired near the propellant surface. When compared to
the impermeable wall overshoot of about 113% (Ref. 18), the 200%
magnification observed here is more significant. Plots of velocity
overshoot and loci of these velocity extrema given in Fig. 4 are al-
most indistinguishable from corresponding numerical predictions.
Note that the loci are independent of Re; (i.e., viscosity) and de-
pend only on Sr. For the regular perturbation model of ©(1/5r),?
slight deviations from numerical predictions can be discerned when
OF < 1.75 or Sr < 20.

Acoustic Pressure Phase Shift

In Eq. (1), ®(r) is the phase angle of the vortical velocity com-
ponent with respect to the acoustic counterpart. This function is
proportional to Sr and controls the propagation speed of the rota-
tional wave. The angle o,, by which the sinusoidal pressure wave
leads the time-dependent velocity can be determined in the follow-
ing fashion: First, the time-dependent pressure and velocities can
be written as harmonic functions of time, viz., p =g, sin[k,t
+ (v /2)]1 cos(k,,z), and

uD = (£,/7)y/ (1 — Ap cos ®)? + (A, sin )2

X sin(kpt + Bm) sin(knz) D

] = arctan(SrS,) (10)

V2
an(y=0)= I arctan(SrS,) = T _arctan( ——
2 2 WV

SIS

VAL
- arctan( b ) (1)
miwagvy

This exact analytical limit is common to all rotational models
whether one dimensional>'? or two dimensional'->2" and whether
using purely analytical means,!” regular perturbations,>?" or com-
posite-scale techniques.'3 Furthermore, this limit can be verified
by numerical computations. Near the centerline, where the acous-
tic velocity is the only nonzero component, the rotational velocity
vanishes, B, vanishes, and o,, will be 90 deg. Thus, the acoustic
pressure leads the velocity by an angle that varies from a small
value at the wall to 90 deg at the centerline. Not unlike the velocity
profile, there exists a phase overshoot that can reach 180 deg or twice
the phase difference between acoustic pressure and velocity. By in-
spection of Eq. (11), the phase angle depends on the product of the
Strouhal and penetration numbers. In dimensional form this product
scales with the convection-to-diffusion-speed ratio of the rotational
disturbances introduced at the wall. Lower injections, shorter cham-
bers, higher oscillation modes, higher viscosities, or higher speeds
of sound result in a larger pressure-to-velocity phase lead at the
wall. The largest phase shift will occur, for instance, in a small solid
rocket motor. Practically, this angle is a few degrees or less.

Relevance

The current analysis discloses the importance of the rotational
flow component in altering the acoustic boundary-layer character.
The actual structure of the boundary layer is quite different from the
thin acoustic layer assumed in one-dimensional models. By analogy
to Culick’s steady flow solution,'® the current solution could be
incorporated into existing codes to improve prediction capabilities.

By analogy to the Stokes number that governs the thickness of
the boundary layer in periodic flows with inert walls, the penetra-
tion number appears to play a similar role when the walls are made
porous. In dimensional form this number S, = V w;?v; ' R™! indi-
cates that the thickness of the acoustic boundary layer will depend
chiefly on the injection velocity. The circular frequency is second
in importance. Doubling the frequency decreases the penetration
number by a factor of four, which, at sufficiently large frequen-
cies, reduces the boundary-layer thickness by a factor of four also.
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Because S, is inversely proportional to vy, viscosity plays the role of
a wave-attenuation agent. Moreover, the chamber geometry appears
to have an effect on the penetration number. In fact, decreasing the
motor’s effective radius causes the penetration depth to grow pro-
portionately larger, which is to be expected because the effect of
blowing becomes more appreciable when the cross-sectional area
is reduced.

Conclusions

The classical concepts of boundary-layer theory regarding in-
ner, near-wall, and outer, external regions are almost reversed for
unsteady flows over transpiring surfaces. Near the wall, instead of
observing the traditionally thin viscous layer, a thick rotational layer
is established near the solid boundary when sidewall injection is in-
troduced, and this can be ascribed to the strong vortical transport
in the radial direction. The acoustic boundary layer, in the context
described here, is a region of highly concentrated vorticity. The cor-
responding penetration depth is, therefore, a measure of the vortical
reach into the core. The thin layer where viscous friction is impor-
tant is removed from the wall to the edge of the rotational region.
The penetration depth appears to be a direct function of a similarity
parameter that is 1) proportional to the cube of the injection speed,
2) inversely proportional to the square of the frequency, and 3) in-
versely proportional to the viscosity and chamber effective radius.
This dependence is in agreement with empirical observations and
numerical simulations. Finally, the pressure-to-velocity phase shift
is found to vary from a few degrees or less at the wall to 90 deg along
the core after undergoing a phase overshoot that is reminiscent of the
Richardson effect. At the wall the phase shift is controlled by
the quotient of the convection and diffusion speeds of the vortical
waves.
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