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Vorticity Dynamics in a Porous Channel of
the Closed-Closed Type.  Part I:

A Regular Perturbation Technique

J. Majdalani*
Marquette University, Milwaukee, WI 53233

In the presence of time-harmonic pressure oscillations, the linearized Navier-Stokes
equations have been solved to obtain an accurate description of the time-dependent field
in a channel having a rectangular cross section and two equally permeable walls.  Using
regular perturbations, we present a closed form solution that becomes asymptotically
exact as the kinetic Reynolds number increases indefinitely.  We insist on verification
and find that the validity of the asymptotics is strongly supported by evidence from
numerical simulations.  Furthermore, it appears that our formula embraces Stokes’ exact
solution when injection is suppressed.  Indeed, when injection is reduced beyond the
rigid wall diffusion speed, injection becomes insignificant, and we find our analytical
formulation to agree favorably with the known exact solution.  This reassuring
observation is confirmed by quantifying the absolute error.  The latter is found to
exhibit a clear asymptotic behavior.  Additionally, our analytical formulation reveals rich
vortical structures and discloses the link between harmonic pressure oscillations and
rotational waves.  In the process, the explicit roles of variable injection, viscosity, and
oscillation frequency are singled out.

 I. Introduction!

HIS paper is aimed at developing asymptotic
formulations for the oscillatory flow field

established inside a long and narrow rectangular
channel where steady fluid transmission is
permitted across a pair of counterfacing,
permeable walls.  The presumed oscillatory motion
is instigated by self-excited harmonic pressure
disturbances.  The presence of intrinsic pressure
oscillations can be ascribed, in practice, to the
onset of a natural acoustic environment created,
inevitably, by small fluctuations in the injectant
rate at the porous walls.  Undoubtedly, the strong
coupling between oscillatory pressure gradients
and bulk fluid motion entails rich structures that
our model will attempt to capture.  Aside from its
pure scientific merit and relevance to fluid
mechanists, the mathematical idealization to be
pursued may have direct applications in rocket
propulsion; namely, in understanding the unsteady
flow character inside enclosures with transpiring
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walls.  Since transpiring fluids can originate from
slabs of burning propellant, surface ablation, phase
sublimation, and ejection or withdrawal at solid
boundaries, other possible applications include
filtration, sweat and ablation cooling, dispensing of
chemicals in cleaning facilities, gas diffusion in
binary mixtures, and other membrane separation
processes.

Consider, for example, the industrial separation
of U 235  from U 238  by gaseous diffusion.  This
process involves vaporizing uranium and forcing
the gaseous product through porous walls.  Since
differences in molecular weights cause dissimilar
diffusion rates, the final concentration of a desired
component depends, in part, on a judicious
assessment of velocity and pressure distributions.
Motivated by the need for economic product
optimization, this practical application led
Berman1 to precipitate an ubiquitous study into a
broad class of flows influenced by porous
boundaries.  To gain perspective on the problem at
hand, some of these studies will be briefly
reviewed.

Assuming a similarity transformation credited to
Hiemenz,2 Berman investigated the laminar, two-
dimensional flow of a viscous incompressible fluid
driven by uniform injection (or suction) in a
rectangular channel with porous walls.  Posing
that the steady, normal velocity component is
independent of the streamwise coordinate, he

T
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reduced the Navier-Stokes equations to a single,
nonlinear, fourth-order, ordinary differential
equation with four boundary conditions and a
cross-flow Reynolds number R .  The latter was
based on the normal injection speed vw  and
channel half-spacing h .  For small R , he
employed a regular perturbation scheme to derive
an asymptotic formulation.  In subsequent work,
Berman3 managed the same perturbative approach
in the circular tube and annulus.  Countless
studies of channel flows with permeable walls
followed.

For large suction, Sellars4 obtained the first term
of an approximation that was further expanded by
Terrill,5 who also extended Berman’s small R
case.  Using an integral approach, Proudman6

investigated the large R  case with both equal and
dissimilar injection or suction velocities.  Using
numerical curve-fitting principles, Morduchow7

invoked, this time, the method of averages to
arrive at simple approximations over the entire
injection range.  In contrast, White et al.8

furnished, for any arbitrary R , an absolutely
convergent power series whose coefficients were
relegated to numerical trial-and-error routines.

For large injection, two contemporaneous and
independently derived solutions were reported by
Taylor,9 and Yuan,10 the former being a subset of
the latter in the limiting case of an infinite R .  A
minor setback in Yuan’s regular perturbation
expansion was its inability to annex the viscous
layer near the core, thus giving rise to singularities
in its third derivative.  This impediment was
removed by Terrill11 who employed matched
asymptotic expansions to capture the inner layer.

Using regular perturbations, Terrill and
Shrestha12 also analyzed electrically conducting
fluids, injected or extracted at low R , in the
presence of a transverse magnetic field.  For large
R , Shrestha13 employed matched asymptotic
expansions in treating the corresponding
magnetohydrodynamical problem.

For unsymmetrical flows brought about by
different wall permeabilities, injection or suction
velocities, Terrill and Shrestha14 constructed a
generalized perturbation series for small R .  For
large injection, Shrestha and Terrill15 extended
Proudman’s one-term expression using the method
of inner and outer expansions.  In continuation of
asymmetric solutions, Cox16 tackled, years later,
the practically attractive case of an impermeable
wall counterfacing a transpiring wall by relying on
numerical simulations to support matched
asymptotic predictions.

Spurred on by the need to study long slender
droplets trapped in extensional flows, Brady and
Acrivos17 presented an exact solution to the
Navier-Stokes equations for a flow driven by an
accelerating surface velocity and symmetric
boundary conditions.  When the accelerating walls
were made permeable, a purely academic
formulation was addressed by Watson et al.18.
The latter generalized previous work by
incorporating both coupled mechanisms in
constructing asymptotic expansions for small and
large R .  In the same context, the case of
asymmetrically accelerating walls was examined by
Watson19 as well.

The spatial stability of steady solutions of the
Berman family was considered by several authors,
including Varapaev and Yagodkin,20 Raithby and
Knudsen,21 Hocking,22 Sviridenkov and
Yagodkin,23 Brady,24 and Durlofsky and Brady.25

Some of their results suggested that injection flows
tended to be absolutely stable and well-behaved,
asymptotically in R , and that increasing R
reduced the steady flow development length.
Conversely, suction flows appeared to be more
amenable to instability and reversal, exhibiting
inflection points and dual solutions in some ranges
of R .

For over two decades now, the daunting proof of
solution multiplicity at different R  values seems
to have attracted intensive labors from several
workers.  To name a few, we cite Robinson26,
Skalak and Wang27, Shih,28 Hastings et al.,29 Lu et
al.,30 MacGillvray and Lu,31 and Lu.32  Insofar as
injection is concerned, both Shih28 and Hastings et
al.,29 the latter using a simpler approach, were able
to prove irrevocably the existence of a unique
solution for all R , a conclusion noted previously,
without rigorous proof, by Skalak and Wang.27

Recently, the temporal stability of such flows
has received attention vis-à-vis studies made by
Zaturska et al.,33 Taylor et al.,34 and Watson et
al.18,19  Among other deliberations, such studies
ascertained that steady symmetric flows
corresponding to the wall injection type were
stable to time-dependent perturbations.

While the majority of studies, recounted earlier,
relied on numerical simulations for validation
purposes, some drew conclusions from
experimental observations.  Confirmatory
laboratory experiments on steady channel flow
through porous sheets conducted by Taylor,9

Varapaev and Yagodkin,20 Raithby and
Knudsen,21 and Sviridenkov and Yagodkin23

indicated that Taylor’s or Yuan’s similarity
solutions with injection were indeed observed to
develop rapidly within the channel.
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The addition of longitudinal pressure oscillations
in channels with plane porous walls was achieved
experimentally by Ma et al.,35,36 Barron et al.,37

Avalon et al.38 and Casalis et al.39  Both Ma and
Barron borrowed the concept of producing an
alternating flow by external means from
Richardson and Tyler40 who used electric motors
to control the reciprocating motion of a piston
mounted at the end of a crank.  Naturally, the to-
and-fro piston motion caused the transpiring gas
inside the channel to vibrate harmonically.  The
main disparity between Ma’s apparatus and
Barron’s is that the latter used a Scotch-yoke to
drive the piston, which resulted in pure sinusoidal
piston displacements.  This, of course, constituted
an improvement over Ma’s slider-crank mechanism
which produced undesirable harmonics.  In both
instances, carbon dioxide was expelled from flat
blocks of sublimating dry ice to simulate the
injectant.  More recently, Avalon et al.38 and
Casalis et al.39 demonstrated the existence of
intrinsic, self-induced harmonic oscillations in their
‘VECLA’ facility which comprised a long channel
with two counterfacing permeable and
impermeable walls.  As uniform air injection was
maintained through the plane porous sections of
their apparatus, small unavoidable fluctuations in
the injectant rate led decidedly to the onset of a
strong acoustic environment.  In all three
experiments, the placement of a choked orifice or
nozzle at the downstream end determined whether
or not the oscillation mode character was of the
closed-closed or closed-open type.  In the current
paper, we shall focus on the basic laminar flow
model that corresponds to pressure oscillations of
the closed-closed type.

The objective will be, therefore, to derive an
accurate asymptotic solution to the two-
dimensional oscillatory field in a channel with
plane porous walls using successive
approximations.  We hope that the detailed
knowledge we seek will help develop physical
intuition into more realistic flows in channels and
tubes.

The forthcoming treatment is organized in the
following manner.  We start in Sec. II by defining
the geometry at hand, Berman’s mean flow
solution, and pertinent assumptions.  This is
followed in Sec. III by linearizing the Navier-
Stokes equations via regular perturbations in the
injection Mach number and harmonic pressure
amplitude.  In Sec. IV we invoke a powerful
theorem that permits decomposing the time-
dependent field into irrotational and solenoidal
components.  Whereas the irrotational, pressure-
driven solution can be obtained rather straight-

forwardly, the solenoidal, vorticity-driven
component demands a careful treatment and is
deferred to Sec. V.  Hence Sec. V constitutes the
heart of the analysis wherein new formulations are
delivered.  Results are compared to numerical
solutions of the linearized Navier-Stokes equations
in Sec. VI.  In the process, the time-dependent
vortical structure is closely examined along with
the error associated with the asymptotic formulas.
Since one would expect the transpiring walls to
become inactive when injection is suppressed, our
asymptotic formulation is compared to the
corresponding exact solution of the Stokes type for
a plane, periodic flow between parallel walls. By
way of closure, we retire with concluding remarks
in Sec. VII.

 II. Model Description

A. Geometry

The flow to be studied takes place in a long
rectangular channel of length L  and width w ,
bounded by plane porous walls that are 2h  apart.
Through these walls, a Newtonian fluid is injected
with constant uniform velocity vw .  In this paper,
we shall, in fact, limit our attention to a perfect
gas.  Taking one side of the cross section to be
smaller than the other two enables us to treat the
problem as a case of two-dimensional flow.  We
note parenthetically that it has been demonstrated
by Terrill5 (cf. p. 309-310) that the ratio of the
width to the height of the channel does not have
to be large to justify ignoring the influence of
passive side walls.  Accordingly, a ratio of
w h/ ! 4  is reasonably large enough.  When both
channel walls are taken to have equal
permeability, one can assume perfect symmetry
about a plane midway between the walls.
Symmetry reduces the solution domain by half,
making it sufficient to investigate the flow
behavior over half of the channel, extending from
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Fig. 1  Mean flow streamlines shown in the
bottom half of the domain counterfacing a vector
plot in the opposite half.
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one permeable wall to the meridian plane.  As
shown schematically in Fig. 1, a coordinate system
can be chosen with the origin at the porous wall.
After normalizing all spatial coordinates by h , the
streamwise, transverse, and spanwise coordinates
are denoted by x , y , and z , respectively.  The
benefit of selecting y  to be the normal distance
measured from the wall will materialize in later
discussions of boundary layer issues.  Disregarding
the influence of rigid boundaries, we assume no
variations in z  and confine our solution to
0 " "x l , and 0 1" "y , where l L h# / .

When the channel is closed at the head end and
choked at the downstream end, small fluctuations
in the injectant rate give rise to harmonic pressure
oscillations.  These small pressure fluctuations can,
in turn, couple with the mean flow and give rise to
a time-dependent field that we wish to investigate.
The streamlines depicted in Fig. 1 correspond to
typical flow patterns pertaining to the undisturbed
state.

B. Criteria
In managing a closed-form solution, several

criteria must be met.  In connection with the mean
flow motion, we demand that steady conditions
prevail in a laminar, rotational, and incompressible
regime where neither swirling nor mixing between
incoming streams can take place.  After ignoring
external gravitational or electromagnetic forces,
the condition of uniform porosity is simulated by
prescribing a constant normal velocity at the wall
that is independent of position.  On the one hand,
we limit our scope to cross-flow Reynolds numbers
satisfying R v hw# $/ ! 20 , where !  is the
kinematic viscosity.  The advantage is that, in this
range, the mean flow can be adequately expressed
by the well-known Taylor solution, which offers
substantial mathematical simplifications on route
to extracting a time-dependent solution.  The
upper limit imposed on R  is decreed, on the other
hand, by the need to maintain an injection Mach
number M v aw s# /  of order 10 3% , with as

referring to the stagnation speed of sound.  The
reason is this.  In linearizing the Navier-Stokes
equations, we shall employ M  as a perturbation
parameter.  Consequently, our final formulation
will entail an error of !( )M . Since as  far exceeds

vw  in most applications, M  will be very small in
practice.

In what concerns the time-harmonic field
performing small oscillations about the base flow,
we constrain the oscillatory pressure amplitude A
to remain small by comparison to the stagnation

pressure ps  evaluated at x # 0 .  This enables us
to construct another small parameter that scales
with A ps/ .  Since the mean pressure depreciates
in the streamwise direction, we limit the channel
length to l & 100 , for consistency in perturbation
levels.  Finally, in order to break down the
analysis into digestible pieces, we assume that the
presence of isentropic oscillations does not affect
the bulk fluid motion.

C. Mean Flow Definition
In the absence of harmonic disturbances, the

Navier-Stokes equations can be solved exactly
using a similarity transformation.  As
demonstrated by Berman,1 when the steady
stream function '  varies linearly in the
streamwise direction, viz. ' #%xF y( ), one can
write (cf. Varapaev20 or Proudman6),
( , ) ( , )u v xF F0 0 # % ( , where u0 0 0# ( , )u v  is the

mean velocity vector normalized by vw .  The
separable component F  must satisfy Berman’s
equation, F R F F FFiv ) ( (( % ((( #( ) 0 , which
depends on R  ($ 0  for injection) and four
boundary conditions: (F ( )0 # F( )1 # ((F ( )1 # 0 ,

and F( )0 1# .  Although it is possible to manage a
time-dependent formulation for arbitrary F , we
incline to use a simple and practical solution

corresponding to F y# cos "
2a f , which becomes

exact as R *+ .  More sophisticated Berman
functions can give rise to technical issues that tend
to complicate and slightly obscure the upcoming
analysis.  This ideal solution, attributed to
Taylor,9 has been thoroughly verified both
numerically and experimentally to be a reasonable
approximation for R $ 20 .  In this range,
Varapaev20 notes minimal solution changes and
almost no changes for R $ 100 .  With this choice
of F , the velocity and vorticity fields are
expressible by

u0 2 2 2# ( sin , cos )" " "x y ya f a f , # " "
0 4 2

2
# % x ycosa f (2.1)

which satisfy all the boundary conditions,
including the no-slip at the wall.  After
normalizing the mean pressure by $ps , (where $
is the ratio of specific heats), one can integrate the
ideal momentum equation to get

p x y M x y0
2

4
2 2

21 2
2

( , ) / cos /# % )$ " "a f . (2.2)

The last formula makes it abundantly clear that
the error associated with a uniform mean pressure
assumption will be less than a few percent when
x " 100 .  Were it not for this limitation, our
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analysis would have been applicable to a semi-
infinite channel.

 III. Linearized Navier-Stokes Equations

A. Fundamental Equations

Assuming constant kinematic viscosity and
negligible bulk viscosity, the differential
conservation of mass and momentum can be cast
into the familiar nondimensional form

, , )- #! ! !% %/ t . ua f 0 , (3.1)
! ! ! !
% , , ) -u u. u/ t a f
# %- ) -- %-. -.%! ! !

p R 1 4 3.u ua f a f/ , (3.2)

where the total instantaneous velocity 
!
u  is

normalized by the speed of sound as , spatial
coordinates by h , and time is made dimensionless
by reference to h as/ , the average time it takes for
a pressure disturbance to travel from the wall to
the core.  Using asterisks for dimensional variables,
the instantaneous pressure and density can be
referenced to stagnation conditions.  Setting
! !
p p ps/ * / ( )$ , 

! !% % %/ * / s , the acoustic Reynolds

number R  that appears in (3.2) will be ash /! .

B. Variable Decomposition
When periodic oscillations are introduced at a

radian frequency k , the instantaneous pressure
can be written as a sum of its steady and
fluctuating components.  Using subscripts for
perturbation orders, the total pressure can be
expanded into
!
p p x y p x y t0 # )0 1

* * * * * * *( , ) ( , , )

# ) %p AP x y kt0
* * * *( , )exp( )i , (3.3)

where P  is a spatial function of !( )1  that will be
determined in Sec. IV(D).  Normalizing and using
p ps0

* # , we get
!
p x y t P x y k t M xm( , , ) / ( , )exp( ) ( )# ) % )1 2 2$ & i !

1 )1 1/ ( , , )$ &p x y t , (3.4)

where k kh am s# /  is the nondimensional

frequency, and & $# A ps/ ( )  is the wave
amplitude, a gauge parameter that provides a scale
to which other quantities can be compared.  Other
fluctuating variables can be expanded in a similar
fashion.  For example, one can define % &% %1 1

* / s ,

and u u1 1
* / &as , where %1  and u1  are time-

dependent functions of !( )1  that can be later
evaluated.  At the outset, one can write

!% % % % &%( , , ) / ( , , )*x y t x y ts s# ) # )1 11a f . (3.5)

In much the same way, velocity lends itself to
decomposition.  Knowing the mean solution from
(2.1) and (2.2), we may follow Lighthill41 by
assuming small velocity oscillations about the
mean and expand the dimensional velocity as
!
u u u* ( , , ) ( , ) ( , , )* * * * * * * * * *x y t x y x y t# )0 1

# )v x y x y twu u0 1( , ) ( , , )* * * * * * . (3.6)

Normalizing by as  begets, for the velocity and
vorticity companion,!

u u u( , , ) ( , ) ( , , )x y t M x y x y t# )0 1& ,

and  
!! ! !( , , ) ( , ) ( , , )x y t M x y x y t# )0 1& . (3.7)

C. Linearization
Inserting (3.4) through (3.7) back into (3.1)-

(3.2) precipitates the zero order expansion in the
wave amplitude which is already satisfied by the
mean flow.  Collecting terms of !( )& , the first
order linearized expansion of the fundamental
equations is attained:

, , )-2 #% -2% %1 1 1 0/ t Mu ua f , (3.8)

, ,u1 / t

# % - 2 % . -. % . -.M u u u u u u0 1 1 0 0 1a f a f a f
%- ) --2 %-. -.%p R1

1
1 14 3u ua f a f/ . (3.9)

This set encapsulates the implicit influence of bulk
fluid motion on the time-dependent field.  The
reader unfamiliar with this set may, if so inclined,
derive it straight-forwardly or apply to the author
for a typescript.

 IV. Vector Superposition

A. Flow Field Decomposition
It proves expedient to decompose the time-

dependent vector into an irrotational and a
solenoidal component, the former being the
gradient of a scalar s , and the latter being the
curl of a vector q .  This notion correlates to a
known mathematical theorem cited in
Sommerfeld,42 which can be used to synthesize the
total harmonic disturbance out of two components
associated with irrotational, pressure-driven, and
solenoidal, vorticity-driven modes.  Using a
circumflex to designate irrotational parts, and a
tilde for solenoidal parts, the time-dependent
velocity can be expressed as

u u u q1 # ) / - )-." ~ s . (4.1)

Evidently, -. #"u 0 , and - 2 #~u 0 .  Similar
decomposition of a small disturbance into pressure
and vorticity modes has been effectuated
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previously by numerous authors, including Chu
and Kovásznay,43 Carrier and Carlson,44 and
others.  Then, by definition,
! !1 1/ -. # / -.u u~ ~  , p p1 # " , % %1 # " . (4.2)
In other words, time-dependent vorticity is
ascribed to the rotational mode and harmonic
pressure is associated with the irrotational mode.
The pseudo-pressure arising in the vortical mode
analysis can be safely dismissed, being of second
order.  The last term in (4.2) stems from the
known relation, ˆp̂ %# , for a perfect gas
undergoing isentropic oscillations.

B. Splitting the Navier-Stokes Equations
When (4.1)-(4.2) are substituted back into (3.8)-

(3.9), two independent sets of formulas ensue.
These are coupled through existing boundary
conditions and are given by

1. Irrotational Set

, , )-2 #% -2" / " "% %t Mu u0a f , (4.3)

, , # %- ) --2%" / " / " /u ut p R$ 4 31 a f
% - 2 % . -.M " "u u u u0 0a f a f . (4.4)

2. Solenoidal Set

- 2 #~u 0 , (4.5)

, , # % -. -.%~ / ~u ut R 1 a f
% - 2 % . -. % . -.M ~ ~ ~u u u u u u0 0 0a f a f a f . (4.6)

C. Auxiliary Conditions

In attaining u1 , both "u  and ~u  must be first
determined and then superposed in a manner to
correctly satisfy two auxiliary conditions: velocity
adherence at the wall demanding that u x1 0 0( , )# ,

or "( , ) ~( , )u x u x0 0 0) # , and symmetry at y # 1

requiring that , , #u x y1 1 0( , )/ .

D. Irrotational Solution

When ˆp̂ %#  is utilized, standard manipulation
of (4.3)-(4.4) condenses the set into a single
hyperbolic partial differential equation,
, , %- #2 2 2" / "p t p

3 4 3 4 3 45 62
0 0 0ˆ ˆˆ/M p t 7 8% - 2 , , %- 2 )- 2 . -.9 :u u u u u

.
(4.7)

At this juncture, a solution can be managed to
!( )M  by applying separation of variables and the
rigid wall boundary conditions.  Since l $$ 1 , the

lowest naturally excited frequencies will
correspond to the least damped longitudinal
oscillation modes, making it safe to neglect
transverse modes of higher frequencies.  In
practice, laboratory experiments confirm that low
oscillation modes tend to dominate because lower
modes require less energy to excite.  For axial
harmonic waves in a long channel with constant
cross section, a solution to (4.7) can be retrieved
from most textbooks on wave propagation.
Expressed in Euler’s notation, the harmonic
pressure reads

" , cos exp ( )p x t k x k t Mm ma f a f a f# % )i ! , (4.8)

where the dimensionless wave number is given by
k kh a m l mm s# # #/ / ,"  1, 2, 3,# ; m  being the
oscillation mode number.  The velocity companion
can be integrated from (4.4) to render

" , sin exp ( )u ix t k x k t Mm ma f a f a f# % )i i ! . (4.9)

E. Solenoidal Equations

Letting u( , ) ( , )x y u v/ , and ! / -. #u k# ,
we use Euler’s notation and write the vortical
fluctuations as

~( , , ) ( , )expu ux y t x y k tm# %ia f ,
~( , , ) ( , )exp! !x y t x y k tm# %ia f . (4.10)

In lieu of (4.5)-(4.6), we now have
- 2 #u 0 , (4.11)

iu u u u u# - 2 % . % .0 0 0a f ! ! / S

)-.! / K , (4.12)
where

S
k

M
kh
v

m

w

# # , and K
kh h

k
# #

2 2

2! !( / )
. (4.13)

The two emerging similarity parameters are the
Strouhal number S , and the kinetic Reynolds
number K , each representing the quotient of
time-dependent inertia to either mean flow
convection or diffusion.  Practically, since the
kinematic viscosity of most gases happens to be
very small, the parametric variation in K
reported by many researchers has fallen into the
range 10 104 8& &K .  On that account, we define
& / %K 1  to be a primary perturbation parameter.
For similar reasons, since unsteady flows are
characterized by appreciable Strouhal numbers, we
define ' # 1/ S .  We note that &  is always

smaller than '  since the ratio ' & !/ /# v hw  is
the cross-flow Reynolds number R , which is large
irrespective of frequency.

Subject to confirmation at the conclusion of the
forthcoming asymptotic analysis, we now make the
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conditional stipulation that v u/ # !( )M .  This
proviso is necessary to forge ahead with the
leading-order approximation.  Being a smaller
quantity, v  can be omitted at the first
perturbation level with no effect on the solution
desired at !( )M .  On that account, (4.12)

collapses at !( )M  into

iu
x

uu v
u
y

u
y

#
,
,

)
,
,

L
NM

O
QP%

,
,

' &0 0

2

2
a f ,

or iu
x

uu v
y

#
,
,

%L
NM

O
QP)

,
,

' # &
#

0 0a f . (4.14)

 V. Solenoidal Field

A. Vorticity Transport Equation
Taking the curl of (4.12) and using (4.10), the

vorticity transport equation emerges:
i! ! ! !#% -. . ) . % - )' &u u0 0

2a f !( )M (5.1)

This can be rearranged in a scalar form that places
leading-order terms on the left-hand side:

,
,
% )

,
,

# %
,
,

)
,
,

)
,
,

F
HG

I
KJ

# #
'

# # &
'

# #
y v

u
v x

u
v x v x y

i

0

0

0 0

0

0

2

2

2

2

(5.2)
The right-hand side quantities representing the
steady vorticity gradient and the viscous diffusion
of time-dependent vorticity can be ignored at the
first perturbation level.  This can be justified by
stretching the normal scale over the Mach number
range.  Introducing momentarily the magnified
scale Y y M# /  into (5.2) yields

,
,;

% )
,
,

# # #ik

v
M

u

v x
m

0

0

0

# %
,
,

)
,
,;

)
,
,

F
HG

I
KJM

u
v x v R M x0

0

0
2

2

2

2

2

1 1# # #
. (5.3)

Thus it can be argued that, since the right-hand
side of (5.3) contains terms of !( )M  and smaller,
subsequent leading-order expansions in M  will not
be affected by their presence.  Physically, these
terms symbolize viscous dissipation and axial
convection of mean flow vorticity by virtue of the
time-dependent vortical action.  The latter is
insignificant because of our original stipulation
restricting unsteady flow effects on mean flow
parameters to remain marginal.  The third term
on the left-hand side is retained, despite its
misleading appearance of !( )M , because it
represents the downstream convection of vorticity.
This phenomenon is vital to preserve two-
dimensional physics by providing an outlet to
incoming vorticity.  The base solution can now be

achieved by expanding #  in powers of M , viz.,
# ( (# ) )0 1

2M M!( ) .  Following substitution
into (5.2), the leading-order term can be retrieved,
by separation of variables, from

,
,

% )
,
,

#
( (

'
(0 0

0

0

0

0 0
y v

u

v x

i
. (5.4)

This, of course, must be contingent upon
satisfaction of both the no-slip condition at the
wall, and the no-flow restriction at the head end.
Letting (0 # X x Y y( ) ( ) , (5.4) becomes

  
x
X

X
x

y
Y

Y
y

y n

d
d

d
d

i
# % F

HG
I
KJ ) F

HG
I
KJ #

2
2

1 2
2"

"
"'

"
)cot csc ,

(5.5)
where )n  must be a strictly positive real number
for a nontrivial solution.  Integrating and summing
linearly over all possible solutions yields

(
"

"'
"

)

)

0 2
2

4
1# F

HG
I
KJ

L
NM

O
QP )L

NM
O
QP

RST
UVW<c x y yn

n

n

cos exp ln tan
i a f

(5.6)
where (0  contains a denumerable set of arbitrary

constants cn  associated with each )n .  These must
be specified in a manner to satisfy the no-slip
condition at the wall, written for vorticity.  The
latter requires a delicate treatment and shall be
addressed separately.

B. Pressure-Driven Vorticity

It is instructive to reduce (3.9), vis-à-vis our
current state of knowledge, into

, , # % - 2 % . % .u u u u u1 1 0 1 0 0 1/ t M a f ! !

%- % -.%p R1
1

1! , (5.7)
whose projection along x  reads

,
,

# %
,
,

) % %L
NM

O
QP

u
t

M
x

u u v v v v1
0 1 0 1 1 0 0 1a f # #

%
,
,

%
,
,

p

x R y
1 11 #

. (5.8)

Recalling that # #1 #
~ , v v1 #

~ , p p1 # " , and that

u x t1 0( , , )  must vanish to prevent slippage, (5.8)
collapses, at the wall, into

0
1

0 0 0#%
,
,

% %L
NM

O
QP%

,
,
%

,
,

M
x

vv v v
p
x y

~ ~ ~ " ~a f # #
#

R
(5.9)

Rearranging, and using " cos exp ,p k x k tm m# %a f a fi

the no-slippage translates into

~ " ~ ~
~#

&
'

# "
#

,
,
)

,
,
)
,
,
)

1
4

2

M
p
x y

v
x

xv

# % % )
,
,
)S k x k t

R y
Mm msin exp

~
( )a f a fi

1 #
! ,(5.10)
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which can be recast into

#
#

( , ) sin ( )x S k x
y

Mm0
1

# % )
,
,

)a f
R

! . (5.11)

Equation (5.11) indicates that ‘fresh’ vorticity
owes its origin at the wall to the oscillatory
pressure gradient that is at right angles to
incoming fluxes.  We also deduce that vorticity is
most intense at x l n m/ ( )/ ( )# %2 1 2 , n m" ,
coinciding with pressure nodes, where the
‘pumping-like’ pressure-induced "u  has maximum
amplitude.  By comparison to the pressure, time-
dependent vorticity is larger by !( )S .  This
observation can be verified in the final formulation
and stresses the appreciable role of vorticity.

C. Inviscid Vorticity
Equation (5.11) can now be used in conjunction

with (5.6) to specify the separation eigenvalues:

(0 0

2 1

0

1

2 1y m

n
m

n

n

S k x S
k x

n#

)

#

+

# % / %
%

)<sin
!

a f a f a f
a f , (5.12)

)n n# )2 1 ,c S k nn
n

m
n# % % )
)

1 2 1
2 1a f a f a f/ ! , (5.13)

whence

( "
0 2

2 1

0

1

2 1
( , )

!
cosx y S

n
k x y

n

m

n

n

#
%

)
%

R
S|
T|

U
V|
W|

)

#

+

<
a f
a f a f

. )exp ln tan2 i"
"S y4 1a fm r . (5.14)

Recalling Taylor’s mean flow stream function from
Sec. II(C), we recognize that the infinite series
between braces is a Sine function of ' .  At the
outset, we let =( , )x y / k x ym'( , ) , and simplify
(5.14) into

(0 0( , ) sin( )exp( )x y S# %= >i , (5.15)
where the temporal phase lead of the vortical wave
is found to depend on

>0
2

4
2 1

21#% ) #% %
"

"
"

"S y S yln tan gd ( )a f (5.16)

The inverse expression gd( )* # 2 2arctan( )* "%
relates to the Gudermannian function described in
Abramowitz and Stegun.45

D. Inviscid Stream Function
We now resort to the time-dependent stream

function s k"""" + , where u / -.s , to replace

the velocity components via u y# , ,+ /  and

v x#%, ,+ / .  Starting with the vorticity
equation,

#
+ +

#
,
,
%
,
,

# %
,
,

%
,
,

v
x

u
y x y

2

2

2

2
, (5.17)

we then proceed heuristically by posing that +
must possess the same axial dependence as # .
Since we shall be using successive approximations,
we set + + (0 0# c , and substitute back into (5.17).
Balancing leading-order terms implies that

+ ' "
c y# 2 2

2cos a f  or

+ ' " "
0

2
2 2 0# % %cos sin[ cos ]exp( )y k x yma f a f i> .(5.18)

Having determined the inviscid flow stream
function, it follows that the companion velocity is

u i j# ) %i icos sin( ) cos cos( ) exp ." "
2

3
2 0y M ya f a f a f= = >

(5.19)

E. Viscous Corrections
Subject to verification at the conclusion of this

section, we state without proof that both u  and
#  must possess the same axial dependence as
their inviscid counterparts.  This statement is
implemented by setting

u x y u yc( , ) ( )sin( )exp# %= >i 0a f ,
# (( , ) ( )sin( )expx y yc# %= >i 0a f , (5.20)

where viscous correction multipliers, uc  and (c ,
must be evaluated.  After substitution into the full
vorticity transport equation, given by (5.2),
several terms cancel out except for lower order
terms and terms of !( )S 2 .  Balancing leading-
order terms demands that

d d( , (" "
c c cy y u/ sec) % #3

2 4

2
0a f , (5.21)

where , # k M Rm
2 3/ ( )  appears as a dynamic

similarity parameter, chiefly in control of the
viscous correction multiplier.  In seeking a
relationship between uc  and (c , we resort to
(4.14) and find

u y yc c# )i' ,' (" "cos sec2
2

2a f a f . (5.22)

Inserting this formula into (5.21) leads to an
ordinary differential equation in (c :

d d i( , ' (" " "
c cy y y/ sec cos) % #3

2 4 2

2
0a f a f , (5.23)

which, after some algebra, gives
( -c y C( ) exp# , (5.24)

where, by omitting the spurious imaginary
argument in -  of effective !( )'2 , we find

- , . . , . .#% #%% %z zv F
y y

0
3

0

3

0
( ) ( )d d

# % ) )1
4 2 21"
" " ", ln tan sec tany y ya f a f a f . (5.25)
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F. Corrected Vorticity
The complex constant of integration C  can be

evaluated from the vorticity boundary condition at
the wall as specified by (5.11).  Updating (c

gives, at !( , )M '2

C x1 0 0 02
0% ( % (L

NM
O
QP

RST
UVW,' - ( ) ( ) sin ( , )i> =

. % #%exp ( ) ( ) sin- 0 00i> S k xma f , (5.26)

where 

( # %- ,( )0 ; >0 0( # %( ) S ; -( ) ( )0 0 00# #> .(5.27)

Direct substitution gives C S( ) ( )1 2% # )i,' '! .
Choosing, henceforward, ‘r ’ and ‘ i ’ superscripts
to designate real and imaginary parts, we write

C S Sr # )3 2 2/ ( ), ,   C S Si # ), ,2 2 2/ ( ) .(5.28)
Backward substitution into (5.24), (5.20), and
(4.10) yields, at last,

~( , , ) sin( )exp# -x y t C k tm# % %= >i i0a f . (5.29)

G. Corrected Axial Velocity
In much the same way, the velocity corrective

multiplier can be deduced from (5.22), viz.

u y y C Bc # ) /i i' ,' - -" "cos sec exp exp2
2

2a f a f ,

(5.30)
where

B C v C vr r i# )' ,'0 0/b g , B C v C vi i r# %' ,'0 0/b g
(5.31)

so that ~u  is soluble by backward substitution into
(5.20) and (4.10).  At length, we find that

~( , , ) sin( )expu x y t B k tm# % %i i i= >- 0a f . (5.32)

H. Normal Velocity
In principle, the normal component ~v  can be

extracted from continuity.  In practice, this may
prove difficult unless we proceed heuristically by
first proposing an ansatz of the form
~ ( )cos cos expv g y k x y k tm m# % % %" -2 0a f a fi i> . (5.33)

Later substitution into (4.5) furnishes g y( ) .

Setting , , / %, ,~/ ~/v y u x , we find, to leading

order, g MBv# 0
2 .  Therefore,

~( , , ) cos( )expv x y t MBv k tm# % %0
2

0= >- i ia f , (5.34)

which lends support to the former stipulation
contending that ~ / ~ ( )v u M# ! .

I. The Real Time-Dependent Solution
Retracing our steps, the meaningful components

of time-dependent axial and normal velocity are

recapitulated below along with their vorticity
companion.

u k x k tm m1 # sin sina f a f
% %B B k xr i

msin cos exp sin cos/ / - 0b g a f , (5.35)

v Mv B Br i
1 0

2#% )cos sin/ /b g
.exp cos cos- 0k xma f , (5.36)

# / / - 01 """" ####C C k xr i
mcos sin exp sin cos)b g a f (5.37)

where

0 "# 2 y , and /
"

" 0
# % )FHG

I
KJk t Sm

2
4 2

ln tan . (5.38)

Since the harmonic motion is, in essence, driven by
the oscillatory pressure field, the first term in
(5.35) can be envisaged as the inviscid response to
the fluctuating pressure, and the second term can
be interpreted as the viscous and vortical response
that disappears asymptotically with increasing
distance from the wall.

 VI. Results and Comparisons

A. Numerical Verification
In order to gain confidence in the asymptotic

formulas based on (5.35), we rely on computer-
generated numerics and numerics combined with
physical arguments.  To that end, we use a
shooting method to handle the two-point boundary
value problem posing itself via (4.14) and the two
auxiliary conditions described in Sec. IV(C).
Careful choices of initial guesses and direction of
integration across the channel are often necessary
to ensure convergence.  Our preference is to guess
small nonzero values at the core and integrate
backwards using a seventh order Runge-Kutta

0

½

1

-1 0 1

m = 1
 

-1 0 1

m = 2

 

-1 0 1

m = 3

 

Fig. 2  A plot of u1  versus y  at four successive
times separated by a " / 2  phase difference.  For
every oscillation mode, profiles are depicted at the
last harmonic pressure node, where
x / l m / m# %(2 1) 2 .  Here S m# 25  and
K # 106m .  To the accuracy of the graph,
asymptotics (full lines) and numerics (broken
lines) are indistinguishable.
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scheme until the no-slip condition at the wall is
fulfilled.  Uniform steps, albeit very minute ones
because of the desired accuracy, are found to be
adequate for the most part.  If the spatial grid is
too coarse, then a numerical overflow occurs.
Naturally, the numerical difficulty arises at large
kinetic Reynolds numbers due to the failure of the
integration routine or the divergence of the
shooting scheme.  This spurious numerical artifact,
which can be prevented by grid refinement, is
ascribed to the stiffness of the differential equation
which is commensurate with the smallness of
1/ K .  Continual spatial grid refinement is hence
necessary at successive increases in K .  The
number of grid points needed for convergence
varied in our monitored routine from 10,000 to
20,000,000 points, but no effort was made to
optimize the number by employing non-uniform
meshes.  If this were done, far fewer grid points
would have been necessitated near the wall, since
the smaller steps are only required near the core to
capture the exponentially depreciating vortical
wavelength.

For typical values of the control parameters, the
velocity’s numerical solution is compared in Fig. 2
with its asymptotic counterpart evaluated from
(5.35).  For the first three oscillation modes,
profiles are shown at four selected times of a
complete cycle.  For the fundamental mode, u1

starts at zero at the wall, in satisfaction of the
velocity-adherence condition, then undergoes a
velocity overshoot of twice the irrotational core
amplitude, before decaying gradually to its inviscid
form.  This overshoot near the wall is a well-
known feature of oscillatory flows that has been
first reported by Richardson.46  The observed
doubling in amplitude takes place when rotational
and irrotational waves happen to be in phase.
This virtual 100 percent amplification is far more
intense than the 13 percent overshoot described in
Rott47 (cf. p. 402) and reported in laboratory
experiments conducted, in the absence of wall
injection, by Richardson,46 and Richardson and
Tyler.40

For higher modes, similar damped waves are
observed in the upstream portion,
0 1& &x l m/ / , delimited by the first internal
velocity node.  In the downstream portion,
additional structures emerge.  Specifically, a
premature decay in the rotational wave is noted
m%1  times downstream of the mth  velocity node.
Such structures are depicted in Fig. 2 for m # 2
and 3 , at the location of the last pressure node
where irrotational velocity amplitudes are largest.
Beyond these premature rotational velocity

‘nodes,’ so to speak, the vortical field recuperates
some strength before resuming its normal
depreciation.  In order to justify the presence of
such intellectually challenging rotational nodes, a
characterization of the time-dependent vortical
structure is deemed necessary.  In the process, we
attempt to capture the influence of varying wall
injection and kinematic viscosity.

B. Time-Dependent Vortical Structure
For m # 1 , formula (5.37) can be used to

generate contour plots showing constant vorticity
lines in percent of the maximum vorticity
amplitude produced at the pressure nodes of the
wall.  When the frequency and kinematic viscosity
are held constant, corresponding to a typical
K # 106  value, the Strouhal number can be
modified by an order of magnitude by reducing the
injectant rate.  The corresponding vortical
structures are shown in Fig. 3, for S # 10 20,  and
100 .  In particular, we note in Fig. 3(a) the deeper
vortical penetration with higher injection, and the
downstream convection of vorticity, originating at
the wall, that follows the mean flow streamlines.
In Figs. 3(a-b), intense vorticity is still present at
the downstream end measuring close to 100
percent of the maximum generated values at the
wall.  When injection is diminished in Fig. 3(c),
the irrotational region anchored at the core
broadens out, resulting in a substantial reduction
in rotational depth.  When this happens, intense
vortical waves are entrained in the vicinity of the
wall, and only weak vorticity persists at the
downstream end.
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Fig. 3  Evenly spaced iso-vorticity lines shown in
(a), (b) and (c) for S #  10, 20 and 100.  In all
cases, m # 1 and K # 106.  This variation can be
ascribed to an order of magnitude depreciation in
wall injection.
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When, instead, vw  and k  are held constant, the
effect of kinematic viscosity can be extrapolated in
a similar fashion by varying K .  We find that,
when viscosity is suppressed, as in Fig. 4, a wider
and deeper spread of vorticity ensues.  As such,
one can envisage viscosity as an attenuation agent
whose role is to resist the propagation of rotational
waves.  This is contrary to the role it plays in
similar configurations with impermeable walls
discussed, for example, in a survey by Rott47 (cf.
p. 397).

As the oscillation mode evolves to m # 2 3,  and
4 , iso-vorticity lines begin exhibiting interesting
structures.  These are shown in Fig. 5 for typical
values of the control parameters.  In particular,
these structures feature ( )m%1  lines of zero
vorticity amplitude, stemming from the harmonic
pressure antinodes at the wall, for m $ 1 .  These

irrotational streaks partition the channel into m
zones characterized by alternating directions of
particle rotation.  When crossing these delineation
lines, vorticity changes sign and therefore
direction.  This effect is captured graphically by
switching between zones from full lines to broken
lines.  When time-dependent velocity profiles are
superimposed at select axial locations, we find that
the so-called rotational nodes in u1  coincide
precisely with the transverse location of the zero
vorticity streaks.  Apparently, as zero vorticity
streaks drift downstream, they mark their local
imprint by leaving rotational nodes in the velocity
fields that they intersect.  Similar effects are noted
in Fig. 6 where an order of magnitude increase in
viscosity is shown to hinder both vortical wave
propagation depth and amplitude at higher modes
as well.

C. Limiting Process Verification
In order to establish the lower limit that our

mathematical model can tolerate for injection
speeds, we reduce vw  until it drops below the

diffusion speed, v kd # 2 ! .  The latter is
associated with a Stokes’ oscillatory field in a
channel bounded by impermeable wall.  This is
necessitated by the insoluble singularity at vw # 0
in our formulation.  For example, when

v vw d# / 23 , corresponding to S K# ( / )23 ,

and R h k# 21/6 ( / )! , the Stokes number, defined

here as )S K# ( / )2 , will match the viscous

parameter , # S K3 / .  When such conditions are

established ( , )# S ), our asymptotic formulation
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Fig. 4  Evenly spaced iso-vorticity lines shown in
(a) and (b) for K #  105 and 106, when m # 1 and
S # 50. This variation corresponds to an order of
magnitude depreciation in the kinematic viscosity.
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Fig. 5  Evenly spaced iso-vorticity lines shown in
(a), (b) and (c) for the first three harmonics when
S # 25m  and K # 106m .  The oscillatory
velocity u1  is abbreviated by four evenly spread
timelines depicted at select locations coinciding
with harmonic pressure nodes.
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Fig. 6  Same as Fig. 5 except that here
K # 105m , corresponding to an order of
magnitude increase in kinematic viscosity.
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can be compared to the known exact solution
found, for example, in Rott47 (cf. p. 402).  The
latter corresponds to an oscillating field in an
infinitely long impermeable channel that is neither
tailored to accommodate variations in the
streamwise direction, nor oscillation modes
brought about by the finite geometry.  As such, it
maintains a constant core amplitude.  In order to
reproduce this condition caused by ‘pistons-at-
infinity,’ we compare solutions at x l/ ½#  and
m # 1 , where the effects of finite body length are
not felt.  Results are shown in Fig. 7 at eight
successive times separated by a " / 4  phase
difference.  Apparently, our approximate solution
embraces the exact solution when injection is
suppressed.  Thus, although it is possible to
approximate the impermeable channel solution
from ours, the converse is not true.  This
unexpected result may be attributed to the fact
that Taylor's mean flow solution does match, near
the wall, the more accurate formulation derived by
Berman1 for small injection.  In our notation, the
latter is given by F y y# % )1 3

2
2 1

2
3 , which

resembles, near y # 0 , Taylor's

F y y y# # % )cos( ) ( )" "
2 8

2 41 ! .

D. Error Analysis
In arriving at the final asymptotic formulation

set out in (5.35), a number of successive
approximations were made that introduced
uncertainty in the cumulative error entailed.
Fortunately, the penultimate order verification of
the error incurred in the derivation can be realized
by applying a technique described by Bosley.48  To
that end, we define the maximum error Em  to be

the maximum absolute difference between u1

given asymptotically and un
1  computed

numerically.  Then for every m , S , and K , we
can calculate, over a complete oscillation cycle,

E m S K u u
x l
y

n
m( , , ) max# %

" "
" "

0
0 1

1 1 . (6.1)

Suspecting that the error could be of !( )K%1 , we
presuppose an error variation of the form

E m S K m S Km( , , ) ( , )( / )# 2 11 , (6.2)
and determine the slope 1  from the log-log plot of
Em versus 1/ K .  As depicted in Fig. 8 for the
first two oscillation modes, the slope of the
maximum error approaches one asymptotically
irrespective of S .  This result has been confirmed
using the method of least-squares in decreasing
ranges of & , but is omitted here for brevity.  The
consistent asymptotic behavior is gratifying and,
according to Bosley,48 is indicative that our
formulation is an honest and legitimate, uniformly
valid expansion.  This unexpected result shows
that the error is, in fact, of !( )& .  We could not
have done any better since &  is the smallest
naturally occurring perturbation parameter
encountered heretofore.  We do not forget,
however, that the governing equation employed
was correct to !( )M , which ultimately sets the
final error attendant on our idealization.

 VII. Concluding Remarks
In the present treatment, we have considered the

effects of unsteadiness caused by small amplitude
pressure oscillations about the classic Taylor flow
in a porous channel.  We have specifically
excluded questions regarding hydrodynamic
stability or turbulence in order to manage a basic,
laminar solution for large wall injection.  We have
exploited a popular method that breaks down the
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Fig. 7 Velocity profiles of u1  shown at eight
successive time intervals.  Results are obtained
from asymptotic predictions (broken lines) and the
exact Stokes formula (full lines) at two arbitrary
values of K  and # $# S .  In the absence of
surface injection, the penetration of rotationality
is more pronounced with higher viscosity (left).
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Fig. 8 Asymptotic behavior of the maximum
absolute error between numerical and asymptotic
predictions for the fundamental and first harmonic
modes.
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analysis into a steady, fundamentally nonlinear
solution, and a superimposed, linearized, time-
dependent part.  The expressions arrived at were
extruded from the vorticity transport equation
using successive approximations.  The formulas
obtained were instrumental in revealing rich
vortical structures that are by-products of mean
and time-dependent flow interactions.  They also
revealed nondimensional parameters that control
the flow character.  By way of validation,
comparisons to numerical solutions of the
linearized Navier-Stokes equations were reassuring.
Limiting process comparisons with the exact
solution arising in the analogous setting with
impermeable walls were also favorable.  A formal
assessment of the maximum error entailed at the
conclusion of the asymptotic analysis revealed an
unexpected bonus.  The error was found to vary
with the reciprocal of the kinetic Reynolds
number, a practically large quantity.  In a sense,
we are pleased that this work increases our
repertoire of known approximate formulations, and
hope that the tactics presented here be exploited
in other physical settings involving different
configurations and boundary conditions.
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