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A new multiple scale technique is applied to the linearized momentum equation arising
in the context of a fluid performing small oscillations about the mean base flow in a
channel with porous walls.  In extracting a time-dependent formulation for the ensuing
velocity field, the celebrated Taylor solution is assumed for the undisturbed state
associated with large wall injection.  The mathematical procedure is based on introducing
two virtual scales in space: a base and an undetermined, arbitrary scale.  The latter is
left unspecified during the derivation process until flow parameters are constructed.
Physical arguments are later invoked to define the undetermined scale, –which could not
have been conjectured a priori.  The resulting ‘undetermined scale solution’ offers
numerous advantages.  Its leading order term is simpler, shorter, and more accurate
than any previous formulation.  Most of all, it clearly unveils the relationship between
physical parameters that decree the final motion, and provides unambiguous means to
quantify the corresponding vortical wave amplitude, rotational depth of penetration,
near-wall velocity overshoot, and surfaces of constant phase.  In particular, it discloses a
viscous parameter that has a strong influence on the depth of penetration, and furnishes
a closed form expression for the maximum penetration depth in any oscillation mode.
These unexpected findings open new avenues and possibilities to thoroughly quantify the
location of the shear layer and accompanying penetration depth.  By way of theoretical
verification, comparisons to a rigorously tested regular perturbation formulation are
gratifying.  The most striking result is, perhaps, the completely satisfactory agreement
found between asymptotic predictions and newly acquired data obtained from numerical
simulations of the full, nonlinearized, Navier-Stokes equations.

 I. Introduction!

HE fate of shear layers in well-established
flows remains a major topic in fluid mechanics

that has drawn considerable attention in the past.
Almost every conceivable prototypical flow has
undergone much scrutiny in this manner, including
channel flows with porous walls.  Indeed,
numerous boundary layer studies have been
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undertaken in conjunction with various
approximate solutions to the well-known Berman
equation.  Examples abound in the literature and
the interested reader is invited to consult the
references cited in the companion paper
(Majdalani, J., “Vorticity Dynamics in a Porous
Channel of the Closed-Closed Type.  Part I: A
Regular Perturbation Technique, AIAA Paper 99-
3769, hereafter named Paper I).

When harmonic pressure disturbances are
superimposed on the steady field of a channel with
porous walls, a rich vortical structure can be
expected, as discussed in Paper I.  To complete
our flow field investigation, we extend our previous
work by devising alternative formulations that
have the capability of elucidating the boundary
layer structure and emerging flow features.  To
that end, we develop a more sophisticated and
general strategy, based on WKB and multiple

T
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scale theories, to obtain greater accuracy and
shorter representation of the velocity field.  In the
process, we introduce a space-reductive procedure
that holds advantages over our former
perturbation solution set out in Paper I.  The
main objectives are therefore both dual and
interlaced: to present alternative asymptotic
procedures, and to elucidate the nature of the
boundary layer, whose predicament is possible in
light of the new formulations.

The scheme to be followed is well-conceived.
Contrary to our previously used methodology,
instead of working with the vorticity transport
equation, we shall extrude the velocity directly
from the momentum equation.  This can be
accomplished in Sec. II via separation of variables
but will result in a singular ordinary differential
equation.  We proceed thereafter by expanding the
separated equation via standard WKB and two-
variable multiple scales.  In principle, the method
of multiple scales is both powerful and
straightforward since the leading-order term is
usually more compact and accurate than its
counterpart arrived at using other perturbative
schemes.  The improved accuracy can be ascribed
to multiple scale formalism which draws
information from the first order solution in
constructing the zero order term.  In practice,
nonetheless, the technique can be very involved
because it presupposes the knowledge of the
modified scales associated with the boundary layer
structure.  The current problem is, in fact,
exacerbated by the presence of injection at the
walls.

As pointed out by Proudman,1 a shear layer can
only exist on a porous boundary when fluid is
extracted therefrom.  When injection is present,
Catheral2 explains how the viscous shear layer is
pushed a distance from the wall in a manner to
delineate two regions of virtually inviscid flow: the
first being the axially drifting main stream, and
the second consisting of the incoming fluid.  The
added difficulty, according to Proudman,1 stems
from the inability to predict, a priori, the free-
floating position of the viscous layer.  This
viewpoint is shared by numerous authors,
including Cole and Aroesty,3 in their classic
treatment of the ‘blowhard’ problem over a porous
plate.  Qualitatively, we know from Terrill4 that
the viscous layer draws nearer to the core with
successive increases in the cross-flow Reynolds
number R .  The size of the layer is also confirmed

in several investigations to be of !( / )1 R .  Thus
it becomes more difficult to capture the layer for
large values of R .  To avoid embarking on

wasteful endeavors, we shall adopt the concept of
penetration depth to denote the rotational region
extending from the wall to the shear layer.  The
penetration depth, which is sometimes confused
with the boundary layer thickness, defies in this
problem Prandtl’s classic usage of the word, which
is usually restricted to flows where the dependence
on the kinematic viscosity is consistent with
conventional knowledge.

Reverting back to our proposed strategy, it is
clear that more than a standard inner coordinate
transformation is necessary here.  The presence of
a blown-off shear layer is usually commensurate
with an intricate scale constitution that involves a
triple-deck of inner, outer, and intermediate scales.
For this and other technical reasons, we opt to
choose an undetermined coordinate transformation
to begin with.  At the conclusion of the asymptotic
analysis, this unspecified transformation will be
determined from physical arguments.  At that
juncture, it will become clear why the unspecified
scale could not have been guessed beforehand.  It
may be worthwhile mentioning that the leading-
order WKB solution, that we develop early on,
will be recoverable from the one-term multiple
scale expression when smaller order quantities are
ignored in the latter.

As we insist on thorough verifications, results
from the multiple scale solution are compared with
the former solution of Paper I in Sec. III.  This is
accompanied by comparisons with computational
data retrieved from numerical simulations of the
nonlinear Navier-Stokes equations.  Having
established a high level of confidence in the
asymptotic formulations, the Richardson velocity
overshoot factor is evaluated in both magnitude
and location.  The penetration depth is also
quantified.  The error associated with the multiple
scale expansion is computed and compared to its
precursor in Paper I.  Lastly, we recapitulate and
conclude our analysis in Sec. IV.

 II. Mathematical Formulation

A. Separation of Variables
In Paper I, the rotational velocity was produced

from the vorticity and vorticity transport
equations following a number of successive
approximations.  Here, we shall extract ~u  directly
and explicitly from the momentum equation,
written to !( )M .  Using the same notation as
before, we rearrange (4.14) of Paper I into

x
u
x

S y
!
!

" 2
2!
!csca f
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sin cosy u y

u
y

u
y

a f a f . (2.1)

We then call for separation of variables in order to
investigate a solution of the type

u x y X x Y y( , ) ( ) ( )" . (2.2)

Inserting (2.2) back into (2.1), and setting $ !" 2 y
renders,

2
2

2

2

S
Y

Y
Y
y

Y
y!

$ " $ " $ #!csc sin cosa f a f a fi
d
d

d
d

$ $ %
RST

UVW
" "

x
X

X
x n

d
d

% , (2.3)

where %n  must be strictly positive for a nontrivial

outcome.  For every %n , a solution Xn  and Yn

must be realized.  Integration of the axially
dependent equation is straightforward.  The exact
result is X x c xn n

n( )" % , where cn  is a simple
integration constant.  Owing to the linearity of
(2.1), the general solution takes the form

u x y c x Y yn n

n

n( , ) ( )"& %

%
, (2.4)

where Yn  must be determined from the no-slip
boundary condition at the wall that is chiefly
responsible for the strong coupling between
pressure and vorticity modes.  As a consequence of
this, rotational and irrotational components of the
axial velocity must be equal and opposite at the
wall.  This is fulfilled when, ~ !u u" $ , or

u x k xm( , ) sin0 "$i a f . (2.5)

Inserting (2.5) into (2.4), writing out the
MacLaurin series expansion for the Sine function,
and equating summation terms yields

c x Y
k x

nn n

n
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m

n

n

n%

%
& &'$
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( )
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0
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2 1
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0

i
a f a f
a f , (2.6)

which will be true if, for integral values of n ,

%n n" %2 1, ,  c
k

nn

n
m

n

" $
$

%

%

i
1

2 1

2 1a f a f
a f! , (2.7)

Yn ( )0 1" , (2.8)
turning (2.4) into

u x y
k x

n
Y y

n
m

n

n
n

( , )
!

( )" $
$

%

%

"

(

&i
1

2 1

2 1

0

a f a f
a f . (2.9)

Finally, the velocity eigenfunction Yn  is left to be
determined from (2.3), viz.

# " $ " % $!d

d

d

d
i

2

2 2 1 0
Y

y

Y

y
Yn n

n n$ % $ % "cos sina f
(2.10)

which must satisfy the two existing boundary
conditions:

Yn 0 1a f" , and 
d

d

Y

y
n ( )1

0" . (2.11)

Unfortunately, (2.10) does not possess an exact,
closed-form solution.  The presence of a small
multiplier in the highest derivative suggests,
however, the possibility of a perturbation
treatment.  Due to the oscillatory solution
behaviour, both WKB and two-variable multiple
scale expansions appear to hold promise.  In fact,
the latter technique has been shown by Majdalani5

to result in partially valid local solutions
corresponding to outer, inner, and intermediate
scales.  In the same work, a uniform two-scale
expansion was presented using a hybrid technique.
The technique was based on the choice of a so-
called ‘composite scale’ that reproduced the inner,
outer, and transition scales in their respective
domains.  Instead of constructing the composite
scale from our foreknowledge of inner, outer, and
modified scales, we now attempt a different route
to determine the necessary scaling transformation.

B. The WKB Approach
In searching for an asymptotic solution to the

boundary value problem set out in (2.10)-(2.11),
two cases may arise depending on the order of the
Strouhal number.

1. The Outer Expansion

For small Strouhal numbers, " " !( )1 , and the

leading-order term of the outer solution Yn
o  can be

obtained straight-forwardly from

$ % $ % "" $ " % $!cos sin
d

d
i

Y

y
Yn

o

n n
o

2 1 0a f . (2.12)

Fulfillment of Yn 0 1a f"  gives

Y y S yn
o n" %%[cos ] exp ln tan! %

!
!

2
1 2

4 1a f a fm ri

' % $(cos ) exp( )$ $!
2 2 2 1n Si gd . (2.13)

where gd$1  is the inverse Gudermannian function.
Since the cosine factor in Yn

o  decays rapidly as
y ) 1 , the other boundary condition at the core is
self-satisfied by the first derivative.  This
eliminates the need for an inner solution at this
order.  On a separate note, the exponential term in
Yn

o  denotes an oscillatory behavior that is
commensurate with the size of S .  The first order
correction can be found in a similar fashion.  The
resulting outer solution, at !( )#2 , is

Y Sn
o n" % $(cos ) exp( )($ $!

2 2 2 1 1i gd

$ % % %* +$ $# $ $ $ ! $!S S n{ ( sec tan )1 2 1 11gd gd

$ %* + % % $ $! $ $ $ $n n1 2 11
2a f[sec tan ln cos ln( sin )]
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% %iS n2 3
2

2a f tan })$ . (2.14)

Due to the !( )#S 3  correction term in (2.14), a
secular behavior can be expected at large S .
Since oscillations often occur at S , 10 , a WKB
analysis will be more appropriate in practice.

2. The WKB Expansion

For large Strouhal numbers, " -- 1 , and rapid
oscillations occur on a short scale while a slow
drift takes place on the scale x " !( )1 .  The WKB
ansatz can be formulized from

$ . % "cos !
2 0y Y SYn na f i , Yn ( )0 1" ,

or Y Sn " $exp( )2 1
! $i gd . (2.15)

Setting Y g y Sn " $( )exp( )2 1
! $i gd  and substituting

back into (2.10) gives
. % % %* + "$g S n g S# $ ! $ #3 3 21cos tan ( )! . (2.16)

The leading-order WKB formulation, at !( )#S 2 ,
can be obtained therefrom:

Yn
n0 2 2

0 0" $%(cos ) exp( )$ & i' ,
 where

& ( $ $ $!0
1 1"$ %$( sec tan )gd ,

/0
2 1"$ $
! $Sgd . (2.17)

Here ( # )" " $S k hvw
3 2 3  controls the exponential

rate of decay as y ) 1 .  The superscript in Yn
0

refers to the zero order WKB expansion whose
derivative automatically satisfies the remaining
boundary condition at the core.

C. The Multiple Scale Approach

Following the approach described by Majdalani,5

we introduce two independent virtual coordinates,
y y0 " , and y s y1 " # ( ) , where ‘s ’ is an
undetermined scale function that we propose to
find.  Note that the proposed transformation
represents a slight departure from conventional
linear transformations bearing y y1 " * #( ) .  The

current stipulation of y1  offers the necessary
freedom that will lead to a uniformly valid
solution.  As prescribed by multiple scale
formalism, functions and derivatives can be
expanded, following this virtual transformation,
via
    Y y y Y y y Y y yn ( , ) ( , ) ( , ) ( )0 1 0 0 1 1 0 1

2" % %# #! ,

d
d

d
dy y

s
y y

" %
+
+

#
+
+0 0 1

, 
d
d

2

2

2

0
2y y

" %
+
+

#!( ) . (2.18)

After substitution into (2.10), we segregate terms
of the same order to arrive at the following set of
coupled, partial differential equations

+
+

!
% $ $

Y

y
S Yn

0

0
0 0 02

1 0% % $L
NM

O
QP "a f a f a ftan seci , (2.19)

+
+

!
% $ $

Y

y
S Yn

1

0
0 0 12

1% % $L
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O
QPa f a f a ftan seci

"$ %
d
d
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y

Y

y
S

Y
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0

1
0

2
0

0
2

+
+

$
+

+
seca f ; (2.20)

where $ !
0 2 0" y .  In much the same way, boundary

conditions given by (2.11) can be converted into

Y0 0 1a f " ,  
+
+
Y

y
0

0

1 0a f" . (2.21)

Next we integrate (2.19) in a straightforward
fashion to get

Y C S yn
0 1 0

1
0

2
4

1" % %LNM
O
QP

RST
UVW

%exp ln(cos ) ln tan$
!

!% i a f
'C y y1 1 0a f a f, , (2.22)

where C1  is an integration function that must be
determined in a manner to ensure a secular-free
series expansion in Yn .  Differentiating (2.22), and
plugging the results back into (2.20) gives
+
+

!
% $ $

Y
y

S Yn
1

0
0 0 12

1% % $L
NM

O
QPa f tan seci

" $
RST

%
d
d

d

d
s
y

C y

y
C y

0

1 1

1
1 1 0

a f a f sec $

# $ % % $
L
NM S Sn n

3 2
0

2
2

04
1 1sec tan$

!
% % $a fb g

$ %FHG
I
KJ

O
QP
UVW

i! % $ $ ,S yn
2

0 0 0

1
2

sec tan a f , (2.23)

Removing secular-producing terms demands that
the right-hand side of (2.23) be nil.  Otherwise,
the asymptotic series will contain terms whose
quotient between two successive orders can be
unbounded.  Fortunately, the resulting first-order
differential equation in C1  can be easily integrated
in closed form.  After reverting back to our
laboratory coordinate, satisfaction of (2.21)
furnishes

C y y1
3 2

2

0
4

a f a f a f" $ $ %
RSTexp sec( - $ - ("

!

# % $ %1 1 02% $- % $ -n nya f a fb g a fsec tan

$ %FHG
I
KJ

UVWi!(" % - $ $
1
2

2
n ya f sec tan , (2.24)

where the viscous parameter ( #" S 3  makes its
appearance here along with the effective scale
functional -( )y  .  The latter is defined by

- y s y s ya f a f' ./ ( ) . (2.25)
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The leading-order term can now be summoned
from (2.24) and (2.22) by gleaning knowledge from
both zero and first order perturbation levels.  In
like fashion, further terms in the series of !( )#2

can be obtained, but they become increasingly
complicated, and one may wish to relinquish the
effort to a symbolic program.  Since the overall
solution is sought at !( )M , and M , # , there is

no justification for retaining other than Y0 , and
the expansion in (2.18) reduces to

Y
Sn n

n" $ $ % %
%

cos exp sec$ ( - $ -
!

( %
%a f a fm a f1 3

2

2
0

4
1

# $ % % $- $ % $ - $!sec tann S2 2 11 0b g a f i gd

$ %FHG
I
KJ

UVW%i!
(

% - $ $ #
S n

1
2

2sec tan ( )! . (2.26)

Obviously, the undetermined scale function
remains, at present, unspecified.  However, one can
verify that, near the wall, an asymptotic solution
exists for s y y( )" , as shown in detail by
Majdalani.5  Mathematically, this translates into

lim ( ) ( )
y

y y
)

" 0 "
0

0 0- - , (2.27)

which can be used to slightly simplify (2.26) before
eventual substitution into (2.9).  Note that this
simplification is convenient but not necessary for
the success of the current procedure.  At the
outset, we get

~( , , ) cos
cos

!
u x y t

k x

n

n
m

n

n

"$
$

%

%

"

(

&i $
$1

2 1

2 1

0

a f a f
a f

# $ % % %exp sec cos sin(- $ " $ $!3
2

2 21 1 2 2
2

n na fb gn
% % $ % $2

2 4
3
2

22!
$ ! !(" - $ $i i iS n k tmln tan sec tana f a f r

%!( )# , (2.28)
which is a rapidly converging series that displays
distinctly terms of !( )"2 .  In fact, the error
associated with n 1 1  terms can be verified to be
smaller than the !( )#  entailed in the n " 0  term.

D. Closed-Form Solution
Careful examination of (2.28) reveals that a

closed-form equivalent is possible when terms that
do not affect the reported precision are dropped.
This can be accomplished by dismissing the !( )"2

quantities arising in the n 1 1  terms.  In practice,
the equivalent expression reads
~ cos sin cos exp expu k x k tm m"$ $ %i i$ $ &a f a f' (2.29)

where & & &" %0 1

"$ $(- $ (" - $ $!sec sec cos3
2

2 32
2 , (2.30)

and ' ' '" %0 1

"$ % %2
2 4

3
2

2
!

$ ! ! ("- $ $S ln tan sec tana f (2.31)

Clearly, each of the spatial damping function &
and spatial phase angle '  comprises a leading-
order term and a small correction of !( )"2 .

E. Other Vortical Components
Having obtained an accurate expression for ~u ,

the transverse component ~v  can be extracted from
mass conservation.  To that end, we proceed
heuristically by setting an ansatz of the form

~ ( )cos cos exp expv G y k x k tm m" $ %$ &a f a fi ' ,(2.32)

where G y( )  is a subsidiary function that must be
determined in a manner to satisfy continuity,
namely, ! ! % ! ! "~ / ~/u x v y 0 .  After some
algebraic operations, continuity is indeed fulfilled
in leading-order quantities when G Mv" 0

3 .
Henceforth,
~ cos cos cos exp expv M k x k tm m" $ %3 $ $ &a f a fi '

(2.33)
indicating that our initial claim of ~ / ~ ( )v u M" !
was perfectly legitimate.  Indubitably, this
analytical realization can be verified numerically
as well.  Next in line, temporal vorticity can be
issued directly from the velocity formulation.  In
fact, straightforward differentiation begets

~( , , ) sin exp. &x y t S k xv k tm m" $ $ %0a f a fi ' . (2.34)

F. Specifying the Undetermined Scale

1. Velocity Consideration

One may proceed by contending that the
multiple scale formula should match, in leading
order, the uniformly valid WKB expansion.  This
can be achieved by suppressing terms of !( )"2  in
(2.26) and equating the resulting expression to
(2.17).  At the outset, we find that

$ "$ %$(- $ ( $ $ $!sec ( sec tan )3 1 1gd ,

 or - $ $ $ $!" %$1 1 2(cos tan )cosgd (2.35)

From (2.25), one may solve for the appropriate
scale function via . $ "$s s- 1 0 .  Recalling that

s( )0 0" , direct integration yields

s y
y

( ) exp ( )" $z - / /1

0
d

" % %sec tan ln tan! ! !
2 2 4 1y y ya f a f a f . (2.36)

With this choice of s , the multiple scale solution
given by (2.29) will coincide with the
corresponding WKB formulation when
&1 1 0" "' .  Retention of the first order
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corrections &1  and '1  in (2.29) slightly increases
the accuracy of the multiple scale formulation
beyond its WKB counterpart.

2. Vorticity Consideration

The current expression for vorticity can be
compared to its counterpart in Sec. V(F) of Paper
I.  Knowing that the exponential decay of time-
dependent vorticity must be decreed by the same
agents irrespective of the perturbation technique,
the spatial damping function &  must be the same
as that obtained previously.  This contention
implies that, in (2.30), we must have

$ "$ % %- !
!

! ! !sec ln tan sec tan3
2

1
4 2 21y y y ya f a f a f a f ,

(2.37)
which leads to the same expressions obtained from
velocity consideration.

3. Comparison with Previous Work

Fortuitously, we are able to manage, this time,
an exact expression for the nonlinear
transformation, y s y1 " # ( ) , that leads to a
uniformly valid, multiple scale solution.
Obviously, the complexity of formula (2.36)
precludes the possibility of guessing this coordinate
transformation beforehand, as demanded by
conventional multiple scale procedures.  It also
justifies the need to deploy the ‘reverse
engineering’ process in tracking the scales.  The
most striking result is, perhaps, the agreement
between our current didactic formulation and the
ad hoc formulation obtained by Majdalani5 using a
forward approach.  In the previous analysis, a

composite scale s y y y y( ) ( ) / /2" $ $1 3 3 2  was
constructed ab initio in a manner to reproduce
asymptotically the inner, outer, and intermediate
scales cropping up in the problem.  As a result,
usage of the composite scale reduced the number
of spatial scales to two, which was necessary for
the success of the multiple scale expansion.
Subsequently, the effective scale functional -  was

derived and then substituted into the solution.  In
the current analysis, -  is determined first, and
only at the conclusion of the analysis that one may
verify that the space-reductive coordinate does
indeed reduce to the proper spatial scales in their
regions of applicability.  For instance, in the
vicinity of the transpiring wall and core, one can
recover the scales found by Majdalani.5  Thus,

y y y y1 2 2 4 1" % %# ! ! !sec tan ln tana f a f a f
) ) $ )$# #y y y y, , ( ) ,0 1 12k p (2.38)

For the sake of illustration, -  and s  obtained
herein are compared in Fig. 1 with their
counterparts from Majdalani.5  Clearly, predictions
from the multiple scale solution agree in general
form with those obtained previously using the
composite scale technique.

 III. Results and Comparisons

A. The Oscillatory Velocity Profile

Since ~ / ~ ( )v u M" ! , ~u  dominates the vortical
description, and the total temporal velocity can be
contrived by juxtaposition of irrotational and
solenoidal fields.  The result, from (2.29), is

u x y t k x k tm m1( , , ) sin exp" $i ia f a fl
$ $ %cos sin cos exp$ $ &k x k tm ma f a f ri ' . (3.1)

As Euler’s notation is no longer needed, the real
part of (3.1) can be retrieved into

u x y t k x k tm m1( , , ) sin sin" a f a f
irrotational part" #$$ %$$

$ %cos sin cos exp sin$ $ &k x k tm ma f a f
wave amplitude wave propagation

rotational part

& '$$$$ ($$$$ & '$$ ($$

" #$$$$$$$ %$$$$$$$
' . (3.2)

In a sense, formula (3.2) is the apex of our
labors.  Clearly, the first term in (3.2) abbreviates
the pressure-driven, inviscid response, and the
second term represents the vorticity-driven,
viscous response.  In conformance with existing
knowledge, formula (3.2) assumes a traditional
constitution encountered in studies of periodic
flows of the Stokes type, reminiscent of equation
(10.3) in Rott.6  As such, it vividly displays the
vortical wave characteristics that permit exacting
explicit formulations for the vortical depth of
penetration, velocity overshoot, and surfaces of
constant phase.  Unlike theoretical studies that are
concerned with infinitely long channels with
oscillatory motions induced by pistons at infinity,
a dependence on the axial coordinate x  is brought
about here by the body’s finite length.  Further
examination of (3.2) reveals that the vortical
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Fig. 1  Comparing the effective scale functional -
in (a) and corresponding scale function s  in (b) to
existing composite scale results given by
Majdalani.5  Superscripts refer to ‘multiple’ or
‘composite’ scale solutions.
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amplitude is decreed by two separate terms: an
exponentially damped function owing to viscous
dissipation, and a space-harmonic function made
possible by inclusion of axial mean flow convection
of vorticity fluctuations.  Whereas both terms
depreciate with increasing distance from the wall,
the latter varies sinusoidally in the streamwise
direction.  Moreover, inspection of the spatial
damping function &  reveals that successive
increases in viscosity promote vortical
degeneration.  This counterintuitive effect will be
clarified below.

B. Comparison with Computational Data
In order to ascertain the validity of our

asymptotics, we insist on comparisons with
computational predictions.  These are obtained
from a dual time-stepping code, developed totally
independently by Roh et al.7 to manage the
nonlinearized Navier-Stokes equations.  The code
is devoted to analyzing gas-phase processes based
on the complete conservation equations of mass,
momentum, and energy.  Originally designed to
treat propellant combustion in rocket motors, this
implicit dual time-stepping integration method has
proved its efficiency and robustness in reacting
flows at all speeds.  When launched, the algorithm
invokes pressure decomposition and
preconditioning techniques to circumvent
difficulties encountered in low-speed compressible
flows.  Subsequently, the set of governing
equations with appropriate boundary conditions is
solved numerically by means of a finite-volume
approach.  A fully-coupled implicit formulation is
then used to enhance numerical stability and
efficiency.  The scheme has the advantage of
achieving a high degree of temporal accuracy with

only a modest increase in computational cost.
Moreover, since the governing equations are solved
implicitly, the numerical method is very stable.
As a result, the selection of the integration time
step is dictated by the individual process, and not
by numerical stability constraints.

For the same physical parameters employed in
our asymptotic formulas, numerical simulations
are monitored until convergence is ensured.  This
is done while keeping the number of binary places
as high as possible in order to mitigate the
machine’s restriction to fixed-point arithmetic.
The code relies on a uniform mesh resolution and
therefore requires more points at higher Strouhal
numbers to capture the depreciating vortical
waves near the core.  We find results obtained for
a large number of test cases to be completely
satisfactory.

For illustration purposes, we show in Fig. 2 both
asymptotics and numerics at three orders of the
kinetic Reynolds number.  Cases corresponding to
K " 107  and higher become nearly inviscid and
bear a striking resemblance to Fig. 2(c).   In every
case, the velocity profiles, characterized by
oscillations that progressively decay from the wall,
are depicted at two successive times separated by
a ! / 2  phase difference.  The small disparity
between theoretical and computational data can be
attributed to small discretization errors and
nonlinearity effects that elude our analytic
formulation.  This agreement is consistent at
higher modes where an increasing number of cycles
is required for convergence.

On that account, we show in Fig. 3 both
asymptotic and computational predictions for
m " 2  at the conclusion of several iteration cycles.
After fifteen cycles, the discrepancy between
theoretical and numerical experiments is hardly
visible.  In the absence of an exact solution to the
case at hand, this comparison to a full Navier-
Stokes solution is pivotal.  Since the end justifies
the means, it certainly gives our approach a
‘raison d’ être’ by reconciling between our final
analytical formulation and the nonlinear Navier-
Stokes predictions.

C. Theoretical and Numerical Comparisons
In Table 1, we now compare numerical

simulations of the linearized Navier-Stokes
equations, described in Paper I, to the asymptotic
results obtained from the multiple scale solution,
given by (3.2), and the perturbation solution of
Paper I.  We select a test case with flow
parameters that fall in the middle of the physical
range under investigation.  The last two columns

0

½

1

-1 0 1

(a)

 

-1 0 1

(b)

 

-1 0 1

(c)

 

Fig. 2  Comparing the asymptotic solution (full
curves) to numerical computations of the
nonlinear Navier-Stokes equations (chain curves)
at two successive times.  Here S " 25 , x / l " ½,
and m " 1.  Using a 40x300 mesh resolution,
simulation results are shown after 9 iteration
cycles for (a) K " 104, (b) K " 105 , and (c)
K " 106.
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give the percentage deviation of the preceding
entries relative to the numerical approximations
obtained with a high level of confidence.  In fact,
by observing the results at different tolerances and
mesh sizes, the numerically reported data entries
seem to be correct to all decimal places quoted.
We have actually tested our numerical code on
other differential equations that possess exact
solutions.  It is very satisfying to note the
agreement, in many cases, to three or more
decimal places, between our theoretical predictions
and the corresponding numerical benchmark.

D. Wave Characteristics
For the purpose of confirming that our current

formulation coincides with the perturbation
solution of Paper I, the maximum velocity
overshoot factor that occurs near the wall is
quantified in Fig. 4.  Practically, the calculated
overshoot is the same, in both magnitude and
location, irrespective of the formulation used.  As
discussed in Paper I, this phenomenon is a key
feature of periodic flows that appears to be
decidedly more significant in the presence of wall
injection.

From (3.2), the normal speed of propagation of
rotational waves, d dy t* */ , can be determined
explicitly due to the compact formulation.  The
wave speed is thus found to match the steady flow
velocity (v vw 0 ).  As a result, the normalized
spatial wavelength can be deduced to be
(2 0!v S/ ), implying progressively diminishing

vortical wavelengths near the core, where v0  is
small, and at high Strouhal numbers.  This
certainly explains our need to refine the
computational mesh near the core to capture the
rotational effects occurring at increasingly smaller
length scales.  It also confirms the slower
convergence rate, borne out in Fig. 3, between
theoretical and numerical predictions near the
core.

Unlike its counterpart in Paper I, our formula
permits defining the surfaces of constant phase in
closed form.  From the wave propagation term of
(3.2), we read cos ( / ) .k t km m% "' const , and
reap, by way of the Gudermannian function, the
equation for the characteristic surfaces at various
c  values, y M t c" $ $4

2 1!
!arctan[ ( )] .

0

½

1

-1 0 1

(a)

 

-1 0 1

(b)

 

-1 0 1

(c)

 

Fig. 3  Comparing the asymptotic solution (full
curves) to numerical computations of the
nonlinearized Navier-Stokes equations (chain
curves) at two successive times.  Here
K " #2 106, S " 50 , x / l " ¼, and m " 2 .
Using a 40x300 mesh resolution, simulation results
are shown after (a) 9, (b) 12, and (c) 15 iteration
cycles.

Table 1  Oscillatory velocity predictions for
S " 50 , K " 106, k tm " !

2 , and m " 1

y numeric
paper I
asymp.

paper II
asymp.

paper I
error %

paper II
error %

0.00 0.00000 0.00000 0.00000 0.00000 0.00000
0.05 1.79517 1.79519 1.79516 0.00105 0.00051
0.10 0.70421 0.70418 0.70430 0.00508 0.01227
0.15 0.73320 0.73323 0.73298 0.00376 0.02996
0.20 1.67981 1.67981 1.68009 0.00013 0.01683
0.25 0.14482 0.14480 0.14465 0.01650 0.11603
0.30 1.83552 1.83557 1.83541 0.00263 0.00610
0.35 0.27291 0.27282 0.27335 0.02991 0.16226
0.40 1.62642 1.62655 1.62574 0.00807 0.04205
0.45 0.42048 0.42031 0.42118 0.04276 0.16582
0.50 1.56396 1.56411 1.56364 0.00939 0.02037
0.55 0.53014 0.53030 0.52958 0.02991 0.10554
0.60 1.14062 1.13981 1.14204 0.07086 0.12412
0.65 1.27183 1.27244 1.27121 0.04772 0.04885
0.70 0.96405 0.96548 0.96323 0.14745 0.08547
0.75 0.93011 0.93169 0.92984 0.17065 0.02819
0.80 1.04257 1.04424 1.04280 0.16040 0.02256
0.85 0.98924 0.98734 0.98839 0.19249 0.08601
0.90 0.99654 0.99549 0.99582 0.10554 0.07238
0.95 0.99995 1.00001 1.00000 0.00546 0.00512
1.00 1.00000 1.00000 1.00000 0.00000 0.00000
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Fig. 4  For the first oscillation mode, we compare
the Richardson velocity overshoot in both
magnitude and location over a wide spectrum of
physical parameters half way across the channel.
To the accuracy of the graph, asymptotic results
from Paper I (full curves) and Paper II (broken
curves) are indistinguishable.



AIAA-99-3770

 9
American Institute of Aeronautics and Astronautics

E. Penetration Depth
As explained in Sec. I, one would expect the

shear layer to be pushed away from the wall and
to approach the core asymptotically in R .  Since
it is nearly impossible to produce sharp estimates
of the viscous layer thickness, we are inclined to
focus, instead, on characterizing the penetration
depth 0  of time-dependent rotational waves.  We
thus define 0  to be the normalized distance from
the wall to the point where 99 percent of the
rotational wave amplitude in (3.2) would have
vanished.  Since the viscous layer delineates two
essentially inviscid zones, a rotational one near the
wall, and an irrotational one near the core, 0  may
serve to locate the blown-off layer as well.  From
(3.2), one can seize the point above the wall where
the rotational amplitude reduces to 1 " 1 percent
of its irrotational counterpart.  If y "0  denotes
such a point, then 0  is soluble from

cos sin cos exp ( ) sec! ! !- (2 2
3

20 0 0 0a f a f a fk xm $

$ "1 sin k xma f 0 . (3.3)

Despite its transcendental form, (3.3) indicates
that the exponential decay is a strong function of
a nondimensional penetration number, 2 " $( 1 .

This observation suggests generating curves of 0
versus 2 , for large variations in K  and S .  In
fact, Fig. 5 shows how entire families of
asymptotic curves over wide ranges of K  and S
collapse splendidly into single curves per axial
position.  Here too, asymptotics and numerics
concur.  This interesting result reveals that 0
does not depend on K  and S  separately, but
rather on 2= KS$3 , a parameter that resembles,
in importance, the Stokes or Womersley numbers

in periodic flows over hard walls.  Physically, it
symbolizes the relative intensity of time-dependent
inertia compared to viscous diffusion in the cross-
streamwise direction.  The pertinent ratio scales
with
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In a sense, Fig. 5 along with formula (3.3) bring
into focus the character of the rotational
penetration depth over permeable walls.  For
instance, it is clear that 0  depends on 2 , m  and,
to a lesser degree, on the axial station, especially
within the aft portion of the channel.  For small
2 , the penetration depth 0  varies linearly with
the penetration number 2 , irrespective of x .
Apparently, the larger the penetration number,
the larger the penetration depth will be.  This
dimensionless grouping reveals that increasing
injection, or decreasing viscosity, frequency, or
channel height broadens the depth of penetration.
Notably, our time-dependent solution represents a
strongly damped wave whose penetration depth
into the fluid is inversely proportional to ) .  This
is in sharp contrast to the depth of penetration of
periodic flows over impermeable walls, where the
dependence on the kinematic viscosity is the same
as in boundary layer theory, namely, proportional

to ) .
As borne out in the graph, for sufficiently large

2 , 0  approaches a maximum fixed value per
axial station.  In order to locate this maximum
possible depth, 0 0 2( " )(( , ) ( , , )m x m x , we
realize that, for ideal fluids, rotational waves face
minimum resistance and, thereby, travel the
furthest distance from the wall.  The asymptotic
limit can thus be evaluated from the inviscid
formulation of the penetration depth —which only
relies on the axial station and pressure oscillation
mode.  From (3.3), we read

cos sin cos sin! ! 12 2 00 0( ( $ "a f a f a fk x k xm m , (3.5)

which possesses an accurate asymptotic expansion
with a maximum absolute error of 262 10 4. # $ .
The error occurs at the smallest possible value of
0( "( , ) .1 0 0 9364 .  This formula,

0 0(
$ $

(" $ % $1 12 1 1 3

! 1 sin k x k xm ma f a f! , (3.6)

can be used in exchange for the numerical solution
of (3.5), being correct to !( )10 4$ .

F. Asymptotic Error Behavior
To gain further reassurance, we retrace our

footsteps from Paper I by analyzing the maximum
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Fig. 5  Penetration depth for a wide range of
parameters and axial locations including both
numerical (K " 106) and asymptotic predictions
(10 104 8- -K ).  Part of the graph is enlarged in
the inset.
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absolute error between numerics and asymptotics.
In much the same way, we again calculate the
maximum difference Em  between formula (3.2)
and the corresponding numerical solution of the
linearized equations.  Results are shown in Fig. 6
at several discrete values of the Strouhal number.
We also compare our current error to that
incurred previously in Paper I.  As one can infer
from the graph, the error approaches #  rapidly as
#) 0 .  Also, there is a slight improvement in the
maximum error associated with the multiple scale
formulation.  Overall, both remain at !( )# .

 IV. Concluding Remarks
In this paper, we have presented an accurate

formulation to the periodic flow in a channel with
porous walls.  The adopted strategy led to
considerable mathematical simplifications and
physical clarity.  In addition to extracting closed-
form expressions for a number of flow parameters,
the results revealed interesting physical quantities
that appear in the problem.  Comparisons with
computational data acquired from linearized and
nonlinearized Navier-Stokes solvers were
gratifying.  Another substantial raison d’être for
this paper was to provide dual verifications that
lend support to the overall method used, and to
previously developed formulations.

The interesting mathematical aspect of this
investigation, that could possibly be extended to
other practical problems, is the way in which the
inclusion of an undetermined scale precipitates the
scaling transformation needed to arrive at a
uniformly valid solution.  We hope that the space-
reductive ideas addressed heretofore be exploited
in other physical settings involving a multiplicity
of spatial scales.
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