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In a long, low aspect ratio, two-dimensional cavity, where gaseous motion is permitted along
transpiring walls, a time-dependent field is established when low amplitude, sinusoidal pressure
oscillations with nonzero mean are introduced. An accurate solution is extracted here for the
time-dependent field by way of small parameter perturbations. Contingent upon small
pressure-wave amplitudes, Navier—Stokes equations are linearized to the order of the mean flow
Mach number to furnish interaction equations governing the unsteady field. The latter is
decomposed into acoustic and solenoidal fields coupled through Dirichlet-type boundary conditions.
Solving for the solenoidal field from the momentum equation employs separation of variables and
multiple scale expansions based on a careful choice of an inner scale. In fact, the unique inner scale
used in the two-variable derivative expansion method is original in the sense that it stems from an
unconventional, nonlinear variable transformation. A uniformly valid solution is formulated
subsequently for the temporal field. This explicit solution discloses the character of the acoustic
boundary layer evolving from damped traveling waves. The rate of decay is found to depend on a
viscosity parameter, revealing that deeper penetration of rotational waves is possible at low
viscosity. Characterization of the boundary layer region is covered in addition to a standard error
analysis. In closing, results are verified through comparisons to accurate numerical predictions.
© 1999 Acoustical Society of Amerid&0001-496@09)00907-9
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INTRODUCTION bation method that involved reducing three spatial length

When harmonic disturbances are introduced inside 5cales into one, nonunique, composite-scale function, before
rectangular cavity with transpiring walls, a rotational compo—applylng the derivative expansion method. The current meth-

nent of the time-dependent velocity is produced along witi?d0l0gy does not invoke composite-scale matching, but
the plain, irrotational, acoustic field. The resulting time- rather standard perturbation tools. In the process, one unique
dependent field can be difficult to analyze since it must in.virtual scale will be identified as the outcome of a nonlinear

clude the influence of the steady flow component. The tradivariable transformation. To the author's knowledge, the non-

tional approach to resolve the resulting coupled equations igh€ar transformation that will be presented has not been ad-
paved with numerous mathematical obstructions that preverdr€ssed previously in multiple scale analysis. Contrary to the
exacting analytical solutions in finite form. Based on a tech-2d hoc approach employed previously by Majdalani and Van
nique used recently by the autoan assault on the problem Moorhem! a mathematically rigorous approach will be in-
will be attempted here. The method relies heavily on regula¥ested here in constructing the uniformly valid asymptotic
and multiple scale perturbation tools, making use of naturallyormulation.
occurring similarity parameters that happen to be small ~ The practical motivation stems, in part, from the need to
quantities. By way of example, in linearizing the Navier— obtain an approximate solution for the time-dependent field
Stokes equations, the ratio of the acoustic-to-mean pressufat can be helpful in explaining and elucidating observa-
amplitude will be used as a primary perturbation parametertions reported by Ma* and Barrofi in two experimental
The Mach number at the transpiring wall will be found to beinvestigations that involved a two-dimensional geometry. In
another instrumental perturbation parameter that is freboth instances, sublimating carbon dioxide originating from
quently encountered. Later, in resolving the solenoidal fieldthe flat surface of heated blocks of dry ice was used to simu-
a small parameter reminiscent of the Stokes number will relate the transpiring gas inside a long, segmented, rectangular
cur, providing a gauge to expand the solenoidal velocity in &éhamber. In both cases, harmonic pressure waves were pro-
series of progressively diminishing terms. duced by means of a variable speed, reciprocating piston. In
The originality of this work stems from the mathemati- Barron’s apparatus, a Scotch-yoke mechanism was used to
cal treatment of the interaction equations developed for theérive the piston by imparting a purely sinusoidal motion at a
time-dependent field. This treatment involves a singulamwell-prescribed frequency, a substantial improvement over
boundary value problem whose solution features a noveMa’s slider-crank mechanism which could only approximate
scaling transformation. In previous work, Majdalani and Vansinusoidal motions. In any event, both investigations suffered
Moorhent have tackled a similar problem involving un- from a lack of applicable analytical models, a problem that is
steady axisymmetric motion inside a cylindrical tube andhoped to be remedied in the present development.
different boundary conditions. The former analysis employed  For the purpose of attaining a reliable solution, the paper
the so-called “composite-scale technique,” a hybrid pertur-starts in Sec. | with a brief description of the two-
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(note that thex* axis is perpendicular to the plane of view in
Fig. 1. Since the chamber width is larger than its height,
variations in thex* direction are ignored. Under idealized
conditions, the flow is perfectly symmetrical about the cen-
y X * i i
e tral planey* = 0. Taking advantage of symmetry, the domain
0 o* 2H AH 6H SH investigation is limited to the half-space extending from the
compliant wall to the central plane.
FIG. 1. Chamber half-space showing mean flow streamlines. In the orthogo- Superimposed on the mean fluid motion. a two-

nal coordinate system indicated, thie axis is perpendicular to the plane of dimensional time-harmonic acoustic field of small amplitude
view, y* is the normal distance measured from the rigid wall, zhds the - . . p .
axial distance measure from the head end. (frequencyw, and pressure amphtud@p) is admitted. This

acoustic environment can be induced externally or triggered

dimensional geometry and bulk fluid motion, along with anaturally from ir)ternally pr.opagating pressure distt_erances.
statement of the fundamental criteria whose violation is in/n the forthcoming analysis, details of the acoustic source
admissible. This is followed in Sec. Il by a formulation of Will not be addressed.

the linearized Navier—Stokes equations which rests on de-

composing variables into mean and small time-dependerf- Principal criteria

fluctuations. In the process, interaction equations that incor- |y order to pursue a theoretical formulation of the time-
porate the influence of the mean flow are derived for thejependent field, standard perturbation tools are implemented
time-dependent field to the order of the surface Mach numin conjunction with a fundamental assumption of a low mean
ber. In Sec. lIl, the classical mean flow velocity establishedtiow Mach number ofO(1073). In common nonreacting
inside a rectangular cavity is analyzed. The time-dependenfows characterized by a typical speed of sound of 350 m/s,
field is decomposed in Sec. IV into acoustic, irrotational,the |ow Mach number criterion casts a limit of 2 m/s on the
pressure-driven, and rotational, solenoidal, vorticity-drivenmean flow speed. In reality, this upper threshold for the
elements. Equations governing each set are produced alofgach number is not too restrictive since, in many applica-
with pertinent boundary conditions. Unlike the acoustic setjons, it corresponds to a condition of intense mean flow
which can be read”y I‘esolved, the solenoidal set demandst?ansmission known as “hard b|owing_” Another basic as-
special treatment and is conveniently deferred to a separatgmption that must be tolerated to manage a solution con-
section. Hence, in Sec. V, separation of variables accompasgrains the acoustic pressure amplitédeto remain small by
nies a careful scaling analysis in the development of a Unicomparison to the mean pressysg at the chamber head
formly valid solution to the rotational field. AttemptS to elu- end. The latter must be uniform in order to maintain rigor
cidate particular features of the new finding and to explain itgng consistency in comparing terms of various orders of
impact on the overall time-dependent solution are undertakemagnitude arising in the perturbation process which rests
in Sec. VI where the time-dependent boundary layer is charstrongly on the pressure wave amplitude,/p,, a gauge to
acterized. The global error associated with the analytical forwhich other quantities are compared. This criterion is found
mulation is evaluated and the order of the truncation error i$o pe contingent upon a geometrical restriction lofH
established. Throughout this study, verifications are made at 100. When these criteria are met, the forthcoming analysis

various stages by comparing analytical predictions to reliablgyill be seen to be applicable everywhere except near the
computational data. By way of closing, several conclusionghoked end #* =L).

are reiterated in Sec. VII.

%

II. EQUATIONS OF MOTION

|. PROBLEM FORMULATION o . -
A standard normalization and small parameter lineariza-

We begin by describing the idealized geometry alongtion of the governing equations precedes the development of
with important criteria that must be met for the mathematicathe interaction equations.
model to hold.
A. Conservation laws

A. Geometry Invoking Stokes’ hypothesis of zero bulk viscosity, as-

The two-dimensional acoustic field is considered in thesuming constant viscosity, and disallowing body forces, con-
half-space of a long rectangular cavity of lengithwidth W, servation of mass and momentum can be cast in dimension-
and heightH(W=H,L>H), with one acoustically compli- less form into
ant membranésimulating a transpiring wall through which

mean transmission of a gdsf kinematic viscosityv) oc- ﬁ_p+v_(pu):0’ (1)
curs at a steady blowing speed Wf,. Gas entering the at

chamber ay* =H is led to change course, swerve, and head Du Vp 1[4

downstream. As represented schematically in Fig. 1, the pﬁ=—7+R—e §V(V-u)—V><(V><u) , 2

chamber is acoustically hard at the head emti<{0). The
sound field under investigation is choked at the downstrearwhere density and pressurp are normalized by their mean
end due to a constriction in flow ar¢aot shown. In addi-  values,p, and py, at the chamber head end, velocities are
tion, the lateral walls normal to the* axis are impenetrable normalized by the chamber’s intrinsic speed of soaRd
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spatial coordinatesx, y, z) are the laboratory coordinates u* (y,z,t)=VyU(y,z) +u*V(y,z1t), (6)
(x*, y*, z*) normalized byH, and timet(=agt*/H) is
made dimensionless by referring to the average time it i ) :
takes for a pressure disturbance to travel from the compliantf‘e nondimensional counterpa}rt is of the order of the yvall
wall to the centerline,fl/ay). The Reynolds number Re in Mach number,Mb; the latter is a secondary perturbatlon
Eqg. (2) is (agH/vy), 7y is the ratio of specific heats, and parameter by virtue °%W<Mb<1' Note thate, remains
u(y,zt) is the total velocity, including both steady and un- V€'Y small, as defined in Edd) and Sec. IIB, being the

steady components. Exacting the latter constitutes the maﬁr{np“tUde of the Sm"_T_IL prg_ssure_dlslturbanTes_ nobrmallzed by
purpose of this article. the mean pressure. The dimensionless velocity becomes

u(y,z,t) =MuU(y,2) +u(y,z). @)

we normalize by the chamber speed of soapa@nd find that

B. Approach
. . . D. Interaction equations
The procedure consists of decomposing the internal flow

field into a steady and a time-dependent part. This is accom-  Substituting Eqs(4), (5), and(7) into Egs.(1)~(2), one
plished by writing each of the independent variables as #btains, at the leading order expansion in the wave ampli-
sum of their steady and time-dependent components. A smdfde, a set for the steady flow motion:
parameter perturbation scheme is suitable by virtue of the vy y=o, (8)
fundamental premise requiring the acoustic amplitude to be a
small quantity relative to its mean countergat breaking VU=
the analysis into digestible pieces, we assume that the pres- ~""~  MyRe
ence of time-dependent oscillations does not alter the gener@ . . . i

: . . .Grouping terms that are comparable in magnitude to the first
motion of the mean flow. This assumption can be later veri- : : ) . .

order in the wave amplitude, a linearized expansion of the

fied by realizing that terms that incorporate the time-. . . ; . .
. . interaction equations incorporating mean flow effects is at-
dependent effects on the mean flow field are indeed secongﬂ

%V(V.U)—VX(VXU) . 9)

ary. Conversely, mean flow effects on the acoustic field areamecj:
extraordinarily important and cannot be dismissed. Since su- dpV/at+V.uV=-M,V.(pPU), (10)
perposition of the coupled elements is sought ultimately, 1)

equations that incorporate the coupling between steady and
time-dependent components must be developed as well. De-  dt
tails are furnished below. v 1

=My[uP X (VXU)+UX(VXxuP)—v(ub U]

4
N (1)) — (1)
+ 2g 3 V(VU) =V x(Vxu®) .

C. Variable decomposition

11
E&uations(lO)—(ll) reveal the intricate coupling between
nean and time-dependent flow components which strongly
affects the time-dependent solution character.

The local pressure can be expressed as the sum of i
steady and acoustic components. Using, heretofore, asteris
to denote dimensional variables, and superscripts for pertu
bation orders, the dimensional pressure is split into

p* =p* O(y*,z%) +p* D(y*,z* t*) Ill. MEAN FLOW FIELD

=p* O+ Ayf(y*,z%)cod wot*), ©) When a classical mean flow stream function is assumed
where p*(©), subject to later verification, is taken to be a for the geometry at hand, both velocity and pressure distri-
constant. In the time-dependent part of E8), A, defines ~ butions are determinable.
the acoustic pressure amplitude, dnsl a normalized spatial
function of O(1). After normalizing byp,, and substituting A- Velocity field

p*©@=p,, Eq.(3) becomes The velocity fieldU can be determined from the stream
p=1+e€,f(y,2)cod wot*) =1+ pV(y,z,t) (4  function S;="¥e, obtained for a flow inside a rectangular

. ) cavity’ whereU=V X S;. Using the classical stream func-
where €, =A,/pg is the primary gauge parameter that pro-tjgn V(y,z)=—yz we have

vides a scale to which other terms can be compared. Density

can be expanded in a similar way: U=Uyey+UZeZ:£ey— ﬂef ~ye,tze, (12
iz ay ’

potp*™
p(y,zt)= p—o=1+P(l)(y,Z,t)- (5 which does satisfy Eq€8)—(9).

Velocity decomposition needs to be assessed carefully sin
its mean value is of the order ®,U(y,z), whereU(y,z) is

a function ofO(1) to be described in Sec. Ill. Note that the Having evaluated the velocity field from the stream
term V,, defines the magnitude of the mean flow velocity function independently of mean pressure variations, one can
crossing the plang=1. Expanding the dimensional velocity use the steady momentum equation to deduce the pressure
into associated with the resulting field. Without incurring any loss

%€ Mean pressure correction
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1.00 ; ST T e A. Irrotational and solenoidal fields
(0) ; - . . .
p : The time-dependent velocity vectaf®) is decomposed
0.95 b Mach Number into two vectors of distinct characters, one that is irrotational
....... 0.001 and one that is solenoidal
B 000 U = Uirotatonart Usolenoigar 0+ T (16)
-------------- 0'004 contingent upony X 1=0, andV - G=0. Similar decomposi-
0.85 by 0.005 tion of a small amplitude disturbance into two modes of
------- — : i fluctuations, a pressure mode and a vorticity mode, has been
i H i accomplished previously by numerous authors, including
0 10 20 , 30 40 50 Chu and Kovaznay® Carrier and Carlso and Flandrd!

Plugging Eq.(16) back into Eqs(10)—(11), the interac-
S,. . . .
tion equations for small disturbances can be written for each
of the modes. The total time-dependent velocity field can be
in generality, one can sep(y,zt)=1+p.(y,z)+pY)  constructed, thereafter, by superimposing the solution vec-
X(y,z,t), where p.(y,z) is a spatial pressure correction tors linearly. Designating the irrotational mode variables by
term that we propose to determine. An auxiliary conditionthe circumflex (), and the solenoidal variables by the tilde
that must be met specifies that pressure at the chamber he@d, We express the time-dependent quantities as

FIG. 2. Steady pressure distribution for practical mean flow Mach number

enod must be identical to the mean stagnatior! pressure 'Where 0W=VxuV=3=VxT, 17)
p®=1+p.(0,0)=1, or p,(0,0=0. The pertinent spatial
correction can be obtained directly from E@) by direct pV=p, (18)
substitution: (D)~
p=p, (19
MpU.V(MpU)=— Vp°+i where vorticity is produced exclusively by the rotational
Re mode and acoustic pressure is caused predominantly by the

4 _ irrotational pressure mode. The pseudo-pressure generated
X[EVIV-(MpU)]=VX[V(MpU)]] by the vortical mode is ignored, being of second order in the
(13 wave amplitudé.

or
B. Time-dependent equations of motion

Substituting Eqs.(16)—(19) into the first order time-
dependent set, given by Eq40)—(11), yields the following
two independent sets that are coupled through existing

pO(y,z)=1—(yl2)M2(y?+2?). (15)  boundary conditions:

Vp./(yM3)=—-U.VU. (14)

Equation (14) can be integrated to obtain, fop.(0,0)
=0, pO(y,z) =1— (y/2)M&(y?+ Z?); wherefrom

Note that in Eq(15) they-dependence can be safely ignored 1. Acoustical model
by comparison to the-dependence, the former being smaller

than unity, whereag? varies from the order of unity to the Iplot+V-0==MpV-(pU), (20
order of 1. Additionally, sinceM, is of O(10™ %), andzis a0 vp A 4V (V.0)
less than 100, the error in assuming a constant steady pres- 5 =~ > MpV(G-U)+ “3Re (21

sure is insignificant, being of ordeMﬁzz. The corrected
pressure distribution, shown in Fig. 2, indicates that axial2

- . - . . Vortical model
pressure variations are indeed negligible except in very long

chambers with large Mach numbers. Since the Mach number V-0=0, (22
in the majority of cases does not exceed 0.005, the assump- v VXD
tion of a uniform mean value needed to represent the steady — =M, [UX®—V(T-U)]— (23

pressure distribution is well justified. Having described the Re -

steady flow field character, its impact on the acoustic com- . N
ponent is examined next. C. Auxiliary conditions
In order to determine the total time-dependent velocity
u®, irrotational and vortical components have to be deter-
IV. TIME-DEPENDENT EIELD mined separately by solving EqR0)—(21), and Eqs(22)—
(23). Resulting solutions must be superimposed in a manner
In order to resolve the effects of the steady field on theto correctly satisfy two existing boundary conditio} Ve-
time-dependent field, the interaction equations are developddcity adherence at the wall demanding the axial time-
for small amplitude pressure and vorticity-driven distur- dependent component of the velocity to vanislyatl, thus
bances inside the chamber. Proper boundary conditions asgeldingT,(1,z) = —0,(1,z), and(2) symmetry aty=0, giv-
also examined. ing su®(0,2)/9y=0.
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D. Irrotational solution Ny IV,

. . —+—=0, 36
Equations(20)—(21) can be cast into a second order hy- ay Jz (36)
perbolic partial differential equatioPDE), namely,
25 A iV i (V,U,)+U —aVy+v &Uy}
J 9 =0l —
E‘;—szF—Mb v. a—?u +yV2(0.U) ], (24) Yoolay Y TRoz - E oz
, _ _ AV, PV,
which can be solved to the first order in the Mach number by —€ > —], (37
) ) o 9z 9yoz
separation of variables. Following similar arguments to those
presented in Ref. 1, the solution for the acoustic pressure J E\Y; oU
a Ny o z z
p(z,t) can be expressed as iV,=o E(VzUzHUyW“LVyW
p(z,t)=¢€, codkpnz)exp —ikmyt), (25 2V, &ZVy
where the dimensionless wave number is given Ky —€ ay?  ayaz)’ (38)

=mwH/L, m=1,2,3,..., andnis the acoustic mode number. _ _ . .
The acoustic velocity companion is determined directly fromwhich reveal that direct analytical solutions to the coupled

the momentum conservation EQ1) of orderM,. The re-  Set are not tractable without exploitation of an important re-
sult is sult that can be verified numerically, and proven theoreti-

cally, only a posteriori Subject to later verification, the nor-
mal vortical velocityV, is assumed to be o®(M;) by
comparison to the axial componelt,. Being a smaller
Note that bothz andt are dimensionless quantities, as eX_quantity, ignoringV,, at the first perturbation expansion level
lai ; of V will not affect the solution which, let us recall, is only
plained in Sec. Il A. - )
accurate to the first order in the Mach number. On that ac-
count, Eq.(38) becomes

a(zt) =i e—;vsin(kmz)exq—ikmt)ez. (26)

2

_ P FVARF VA
IVZZO' E(VZUZ)'FUyW _6(9_y2_+O(Mb).

E. Fundamental vortical equations (39)

Using Euler’'s notation, we express rotational velocity

and vorticity components in the following fashion:
V. VORTICAL SOLUTION

T(y,zt)=V(y,z)exp —ikpt), (27)

~ _ . Using separation of variables, a careful scaling analysis,

a(y,z,1) = a(y.z)exp(—iknt), (28)  and two-variable multiple scale expansions, an explicit solu-
where tion to the solenoidal velocity component is sought.

V(y.2)=V,e+Vse,, (29 A. Separation of variables

0=VXV=we (30) Inserting Eq{(12) into Eq.(39), expanding and rearrang-

are complex functions. It follows that the vortical mass andnd, One gets

momentum conservation equations, given by Egg—(23), Y i N. € 2V
become Z—z=(——1)Vz+y—z+——ZZ, (40
Jz o ady o dy
V.Vv=0, 31 . . . . . .
S which suggests using separation of variables in order to in-
iV=0[V(V.U)-UX @]+ eVXw, (32  vestigate a solution of the type
where VY, 2)=Y(Y)Z(2). (41)
My, 1 W <0(10°Y) 33 When inserted back into Eq40), Eq. (41) allows splitting
7 Km Sr  wgH ' the original PDE into two linear ordinary differential equa-
tions (ODES, coupled through a separation constapt
1 1 \Y Vola)o 2 4 p g p H
€<l Re Ra |\ H <0(10°%) (34) zdz (i y dY e d?Y
mR€ R& s—=|——1|+5—+—==%=\,, (42)
Zdz \o Y dy o dy

are naturally occurring dimensionless groupings representing
the reciprocals of the Strouhal and kinetic Reynolds numwhere\, must be strictly positive for a nontrivial outcome.

bers, and satisfying

elo=vyl(VpyH)<1. (35

For every\,,, a solutionZ, andY,, are manageable. Integra-
tion of the axially dependent equation is straightforward. The
exact result iZ,(z) =c,z"n, wherec, is an integration con-

Indubitably, Rg=2\2 is another form of the Stokes number, stant associated with,,. Since the governing equation is
\s, which is expected to play a nontrivial role in oscillatory linear, any linear combination of two or more solutions is
flows. Equationg31)—(32) can be expanded in scalar form also a solution, and one can write, in general, for all possible
into An
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d?y d?y dy
Vy,2)= 2 ciZ'nYy(y), (43) ! = e 20y " (q+1) o 54
Ay 2 CZYnlY ay? ~d€ Ty T ayig s (g )Olyl (54)
where A, must be determined from the no-slip boundary Substituting back into Eq49), we get
condition at the wall giving rise to the strong coupling be- 42y qy
tween pressure and vorticity modes. As a consequence, rota:— 2642y 2 +20 2n +qyi[ €720(q+1)y2— o] 5 n
tional and irrotational components of the axial velocity can- dyy Y1
cel out aty=1. This is achieved whet,=—0,, or L= (14N 0]Y, =0, (55)
V,(12)=—(e,/y)isin(k,2). (44)

which clearly indicates thag=2 is a key stretching expo-
Inserting Eq.(44) into Eq. (43), writing out the MacLaurin  nent that corresponds to a distinct limit for which balance
series expansion for the Sine function, and equating summdetween various terms in E¢55) will exist. The rescaled

tion terms lead to equation becomes
*° 2n+1 2
An __ Sy CDUkn) T 4 3—2—d Y”+2 3y,— %‘I— i—(1+\,)0]Y,=0
2 o)== ot @9 Yigy ta(3ya o) Gt li= (1+h) o1Y,=0,
56
which holds true when ,=2n+1,n=0,1,..., and (58
where the modified scale is
ew. (= 1)"(ky) " .
_ 1 ; iatic thicle.
Y.(1)=1, 47) Thus wheny=0(€'?), representing the characteristic thick

ness of the inner layer negr= 0, the new variablg, will be
turning Eq.(43) into of O(1), which allows resolving accurately the rapid
n on+1 changes that can occur in such a small interval.
(y,z)=— Z u (y) (48)
Vv == o s o )
In order to satisfy Eq(42), the velocity eigenfunctioiY ,(y) C. Two-variable multiple-scale expansions
remains to be determined from the two-point boundary value

. Having determined the form of the inner scale, a stan-
problem prescribed by

dard multiple-scale procedure can be implemented to trans-
d2y, dy, form Eq. (49 into a PDE that is function of two virtual

n .
€ dy? +‘7yd_y+['_(1+)‘n)0]Yn:0' (49 variablesy,=y, andy,= ey 2. This requires expanding the
) ] derivatives in terms of the new variables
a second order ODE that is constrained by two naturally
occurring auxiliary conditions: d o9 dy, o dy; 4
dy " aye dy "oy dy ayg 20 gy 9
Yo(1)=1 (no-slip), (50) y oy dy dy, dy ayo y1'
dv,(0) e _
dny =0 (axial symmetry. (51 d_y2 ayg+0( €). (59

Equation(49) exhibits a practical closed form solution fol- Note that the current choice of an inner scale represents a
lowing a careful application of the derivative expansionMinor departure from the conventional formofe*, includ-

method. This approach is presented next. ing y;=y/\e, which would be ordinarily attempted by a
skilled perturbation proponent. The latter form, recom-

mended by most books on the subject, does not lead to a
meaningful solution in the case at hand. Substituting Egs.

B. Scaling analysis (58)—(59) back into Eq.(49), we obtain the following PDE:
The first step for the derivative expansion method to 2Y, v,

work is the judicious identification of the scale at which e — +oy0<(9 +[I—0'(1+)\ )1Yn

order balance is achieved between locally significant terms Yo Yo

in the governing ODE. To that end, we make the conjecture | o(¢2)=0. (60)

that, near the regular singularity ) o )
Next, Y, is expanded as a sum consisting of a leading order

y=e"y; , (52 term and a series of consistently decreasing terms:
wherey, is the relevant local scale arglis a stretching Y ZY(O)+€Y(1)+O(62) (61)
exponent that must be carefully determined. The derivatives
become whereY(?) is the leading order term that we propose to find.
Inserting the two-term expansion 8f, into Eqg. (60), rear-
dY”:_qefllqyiH/q % (53 ranging and collecting terms dd(1) and O(e), we get,
dy dy; respectively,
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Yy Ya(y) =y exp[— [ 1- o\ (1+ Ny Iy 2= 1)/2

€ oy ﬁy“ +i—(1+ Ay 0]YP=0, (62) . , L

0 i[lny+&o(1+2N\,)(y 1)/2])/o}+O(e),
v " (71)
€ Yo Yo FL= (@A) oYy where é=¢€/0°® is a nondimensional parameter that has a

strong influence on the damping rateof.

oY 52yl
-2 n n

=20Y,

J 2 (63) . L .
Y1 o D. Analytical solution in infinite series form
Partial integration of Eq(62) givesY{?: Employing Eq.(71) in Eq. (48), letting n=(y 2—1)/2

0 ) for convenience, and summing up over all possible ren-
Yo' (Yo.y1) =Ca(yDexpl[(1+Nn) —il/alinyo}, (64  gers

where the constant of integratidd; can, in general, be a €w < (—1)"(kz)2+L

function of y;; following traditional multiple-scale argu- Vz(y,z)z——iE ﬁy(zmz)
ments,C,; must be determined in a manner to ensure that Y n=0 (2n+1)!

Y remains uniformly valid, viz..Y(¥'>eYY) vy. This xexp{—[1—a?(2n+1)(2n+2)]én

will occur when the first order term in Eq61) remains .

smaller that the leading order term in the series expansion for —i[lny+é&0%(4n+3)nllo}+0(e). (72

all'y. This can only happen when the right hand side of EqfFrom Eq.(27), T, can be written in an infinite series form

(63) is zero. Differently stated, if the right hand side of Eq. that clearly displays the leading order quantities and smaller
(63) is not zero, the solution fo (" will include what is  quantities 0f0(c2):

known in perturbation theory as “secular” terms. These are
undesirable terms that mak&!, in some regions of the
solution domain, grow untitY(? exceedsy'?). Evidently,
this condition cannot be tolerated since it violates the origi- 5
nal premise and, furthermore, invalidates the regular pertur- Xexp—[1=o%(2n+1)(2n+2)]én
bation expansion of, in a series of decreasing order terms. —i[Iny+&o?(4n+3) /o —iknt} +O(e).
To suppress the source of secular terms, we set 73

[

N T o
Uy, 20== 7Y 20— 5

0 52\(0
Dgy-2 Yy )_ YY) Fortunately, Eq(73) is a rapidly converging series.
1 0

where the derivatives are E. Accurate closed form equivalent

Equation(73) can be written in a closed form by disre-

(0) (0)
Al dC, Ya (66) garding small terms that do not affect the order of the error

ayr d_yl C_1 associated with the infinite series itself. The result is a prac-
2270 v(© tical, closed form equivalent
—r =m0 (AN —ilo] -5, (67) 3 fw. )

Yo Yo uz(y.z,t)=—7ly sin(kmyz)exd —(1—20%)én

which, when substituted back into E@5), yield . ) ]
—i(Iny+3éc°np)o—iknt]+0O(e). (74
dc, ()\n—i/(r)[(l-i-)\n)—i/a]c

dy; 20 1=0, ©8 Graphical verification
which can be easily solved f&; : In order to verify that Eqs(73) and(74) are concurrent,
_ _ we first construct a solution fon™ by adding the irrota-
c—C Ap=ila)[(1+N,)—ilo] - tional component tdi, in Eq. (59). This can be accomplished
1= 0 &X 20 Yif- (69 using either one of the two versions represented by &@.

) 72 . ) and(74). In either case, the penetration deptbf the result-
Recalling thaty; =ey~*, the general, uniformly valid solu- jnq time-dependent velocity can be evaluated and compared

tion for Y, is to a reliable numerical solution to E¢9) achieved using a
Runge—Kutta scheme of order sevénn Fig. 3, a typical
Yn(y)=Cq exp{[(1+ Ay —ilo]iny example is furnished that illustrates the excellent agreement

between analytical predictions for, and the numerical so-

lution to Eq.(23). Since locatings is sensitive to error accu-
+0(e), (70 mulation, we overlay analytical predictions s o in Fig.

4 for a wide range of physical parameters as obtained from
whereC, can be determined readily from E(p0). Subse- Egs.(73) and (74). Reassuringly, no discernible discrepan-
quently, cies are detected anywhere, indicating that &4) can be

eNp—i/)[(1+N,)—ilo]
* 20y°
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1.0 = T T that Ju,/dy=—du,/dz is satisfied in the leading order

y o terms. This occurs when
05T I G(y)=—Myy?, (76)
o) .
0.6 J rendering
' £=125
€
o4k =002 £=10° ] 'ﬂy(y,z,t)z—7WMby3cos{kmyz)exp:—(l—ZUZ)gn
- - - from Eq. (73) _ _
02k from Eq. (74) ] —i(Iny+3¢c®n)lo—iknt]+O(e). (77
- = - - numerical Clearly, the original assumption @, /li,= O(M,)—leading
L L to Eq. (39—is justifiable. Furthermore, numerical computa-
0.0 0.5 1.0 L5 0 20 tions of T, indicate that Eq(77) is indeed accurate. Such
yule, comparisons with numerical predictions @f are excluded

FIG. 3. Virtually indistinguishable results for the total time-dependent ve-here for brevity.
locity at chamber midspan as predicted from numerical, infinite series, and
closed form expressions corresponding to E@8) and (74).
VI. SOLUTION CHARACTER

exchanged for Eq(73) without any appreciable loss in ac- The behavior and character of the time-dependent veloc-

curacy. This conclusion can be further confirmed by runninqty can now be examined along with its accompanying

a standard error calculation. . boundary layer structure. The global error associated with
In addition to its simplicity and remarkable precision, he analytical outcome can also be evaluated to confirm the-

Eq. (74) discloses the leading order terms which control the, qtical predictions.

solution. These relate to the convection of unsteady vorticity

by the mean flow in both axial and normal directions, time- | 6 loci

dependent inertia, and viscous diffusion of time-dependerft- 10tal time-dependent velocity

vorticity. Superimposing rotational and irrotational velocity fields

in Eq. (16), ul!) can be formulated & (M):
G. Normal velocity

€w . . . .
The normal componeiit, can be determined in a man- u(y,z,t) = ! exp( —ikmt){sin(kyz) —y sin(kny 2)
ner to satisfy continuity. To that end, is used in Eq(22)
while a guessed function is proposed Tgr. From a conjec- Xexg —(1-20%)én—i(Iny+3éo?n)/al},
tured form (79)

- € whose real part is
Uy(y,zt)= 7WG(y)cos(kmyZ)eX|C[—(1—202)577 P

acoustic part

—i(Iny+3¢&0?p)lo—ikyt]+O(e), (75 —_

EW . .
the unknown functiorG(y) must be determined to satisfy "il)(y,z,t)=7 sin(kp,z)sin(k 1)
continuity. Substituting Eq(74) and Eq.(75) into Eq. (22),

the spatial functiorG(y) is extracted in a manner to ensure solenoidal part

~

1.0 —ysin(k,yz)exp(—¢{) sin(k,t+®) [, (79
d solenoidal amplitude wave propagation

0.8
where

0.6 {=E1-20%)(y 2112, (80)

d=[Iny+3&a?(y 2—1)/2]l0. (81)

0.4 Evidently, u® is prescribed byu{") which is a harmonic
wave that proceeds from the wal}€£0) and travels in the

0.2 direction of increasing. It is characterized by a wave am-
plitude that diminishes exponentially with increasing dis-

0.0 1 tance from the wall. The decay constant associated with the

107 1072 o 10! exponential decrease can be extrapolated by inspecting Eqs.

G4 p o denth oredictions from infin _ § closed | (79—(80) to be the viscosity parametér The vortical wave
. 4. Penetration depth predictions from infinite series and closed for ; ; . _
expressions, viz., Eq$73) and (74). To the accuracy of the graph, differ- mamp“tUde is actually controlled by two terms: an exponen

ences between both formulations cannot be distinguished. Broken lines Jf_a”){ de_CaY_ing term, made possible_ by inC'PSion of viscous
constant Reare equally spaced. dissipation(i.e., {), that decreases with the distance from the
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FIG. 6. Locus of the rotational boundary-layer thickness at two axial sta-
Sr=100 tions andm=1. Since § grows from the head end, the upper family of
. 1 L L curves(solid lines corresponds to the downstream location.
0.2L 0.4 0.6L 0.8

FIG. 5. Time-dependent velocity patterns shown at several axial stations forr1ent has vanished. the corresponding boundarv laver thick-
Rg=10° and typical values of the Strouhal number. ! P 9 y lay

ness will be the distance from the wall to the point where
#IU(”II becomesa=1% of its irrotational counterpart. The

wall, and a sinusoidal term, made possible by inclusion o : . .
: ) - . normalized penetration dept extending from the wall to
axial mean flow convection of unsteady vorticity, which var-
. ; . ; he edge of the boundary layer can, therefore, be calculated
ies harmonically with the distance from the head end, an -~
romy,=1-4, where

also decreases with the distance from the wall. By inspection
of the spatial damping functioti in Eq. (74) and Eq.(79), Yp sir(kmypz)exq—(l—Z(rz)gn]—a|sin(kmz)|=0.
increasing viscosity is found to cause the rotational wave to (83
decay more rapidly, preventing a deeper inward penetratiop|ots of 5 vs o for a wide range of Rgare shown in Fig. 6 at

of vorticity. This effect is contrary to the boundary-layer yo axial stations that are 5% of the longitudinal length from
“thickening” role played by viscosity in oscillatory flows each end: one near the head eati£0.09.) and the other
between parallel rigid walls. Incorporation of blowing effects near the aft endz* =0.04.). The wide spread in the data
appears to alter the flow character quite dramatically. Results,akes it difficult to interpret the dependenced®n actual
from Eq. (79) are congruent with numerical predictions physical parameters. This problem is alleviated by referring
which are achieved to a high order of accuraeging a step  to Eq. (83) which clearly shows that the term involving ex-
size of 10°° in conjunction with a nine-stage Runge—Kutta ponential boundary layer decay is a strong function of a vis-
scheme that exhibits a global error of order sevérThis  cous damping parametej, This subtle realization motivates
agreement, shown in Fig. 5, causes differences in graphiC@enerating curves o vs & for wide variations in Re As
results to become visually indiscernible. shown in Fig. 7, entire families of curves, such as those

When, in Fig. 5, numerical and analytical velocity dis- shown in Fig. 4(for z*=0.5_) and Fig. 6 at discrete axial
tributions are overlaid, no appreciable discrepancies can be

perceived. Local velocity profiles shown correspond to in-
stantaneous profiles separated by 180 degrees of a full osci |

lation cycle depicted at several axial locations for the funda- S NPT 10° <Re, < 10°
mental pressure oscillation mode. Note that the solenoida oghk oesos X ]
component of the velocity is more pronounced in the down- ™ \\
stream portions of the cavity where time-dependent vorticity ! . . N
o o . Lo . Analytical Numerical S\ i
is intensified. The figure also indicates that the spatial wave- 0.6} o L S\
length of solenoidal waves diminishes at higher Strouhal "—0950 '_0950
. R N
numbers. 04F 0875 0.875 \ 1
------- 0.750 —--0.750
B. Acoustic boundary layer o2} --- 0.500 ~-=mmm 0.500 \i .
-e== 0.050 - 0.050 \

We start by examining the rotational wave amplitude
which controls the evolution of the time-dependent 0.0 " ! L " " "
boundary-layer envelope: 10 107 107 10" ; 10° 10t 102 10°

||TJ(1)|| = ﬂy sin( kmyz)exp[ —(1- 20.2)57]]_ (82 FIG. 7. The poundary—layer thickness determined n_umerically and analyt_i—
Y cally at five discrete locations. To the resolution of this graph, no changes in

- . .8 seem to occur in the cavity's forward half portion (068 /L<0.5).
Defining the boundary layer to extend from the Compl'amExcept for larget, differences between numerical and analytical predictions

wall to the point where 99% of the rotational wave compo-are hardly noticeable.
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0
m
0.975 -
4
0.950 10
10 107 10 10
&
0.925 FIG. 9. Maximum absolute error.
Analytical
0.900 - - - » Numerical ]
friction and, thereby, travel the furthest distance from the
0.875 . . : ' wall. The asymptotic limit on the thickness of the boundary
0 02 0.4 0.6 08 1 layer can thus be determined from the inviscid formulation
b) z¥/L of the penetration depth—which only depends on the axial

stationz and pressure moda. Settingv,=0 or £=0 in Eq.
183), we get
(1= 8,)si k(1= 8,)Z] — a|sin(kyz)| =0. (84)
stations, collapse splendidly into single curves per axial lo-] N€ resulting expansion formula is
cation. This significant result reveals th&zdoes n_o; depend 8= 1—a[sin(kyz)[/(kyz) + O(1— 8,)%, (85)
on Rg ando separately, but rather af= wguoHV,, °, a key ) o o _
similarity parameter that resembles, in importance, thevhich allows predicting the inviscid depth of peneﬁtza’uon
Stokes number in oscillating flows over nontranspiring walls duite accurately. A maximum truncation error 6{(10")
However, unlike many similarity parameters,cannot be ~Ccorresponds to the smallest value &f, which is 0.9 forz
disclosed by standard dimensional analysis. =0. Having a smaller truncation error th@{M,), Eq. (85
Figures 7 and 8 bring into focus the character of thetan be exchanged for the numerical solution to [Bd). This
boundary-layer thickness over permeable walls that is deis illustrated in Fig. 8 below for the first four acoustic modes
fined in Fig. 3. For instance, it is clear from E@3) thats ~ Where dy, is shown to vary between 90% and 100% of the
=f(&m,z) must depend org, the pressure mode number Solution domain.
and, to a lesser degree, on the axial station within the cham-
ber. For the fundamental pressure oscillation made; 1,
Fig. 7 shows that, for largé, & varies linearly withé, inde- ¢ Global error analysis
pendently ofz. Smalleré imply larger penetration depths due ) ) )
to a smaller argument in the exponentially decaying term, [N order to ensure that no mistakes were committed in
Furthermore, increasing the blowing speed, or decreasin§'® derivation process, and to verify the order of the error
viscosity, frequency, or chamber height seems to enhance tfasSociated with the final expression for the time-dependent
depth of penetration. Eventually, for sufficiently smalls ~ velocity field, viz., Eq.(79), we calculate the maximum ab-
tends asymptotically to a maximum fixed value per axia/Solute errorE,, between the analytical prediction and the

position. This maximum fixed value becomes independent ofumerical outcome of Eq11) following Bosley’s construc-
¢ and the corresponding depth becom@sf(m,z) as & tive recommendatiof? Since the absolute error defined here

represents the deviation from the numerical solution, the lat-
In order to pinpoint this maximum possible penetration!€r iS determined very accurately by using a seventh order
depth,s,,, occurring per axial station and mode number, weRUnge—Kutta scheme and a subinterval of‘iLOAssu_mmg
realize that, for the same geometry and blowing speed, Iargépat the maximum absolute error exhibits the classical form
penetration occurs in fluids with smaller viscosity. In the
ideal case of zero viscosity, rotational waves face minimum  Em= U emerica u(;‘n)alytical max= K€", (86)

FIG. 8. Trace of the maximum boundary-layer thickness corresponding t
ideal fluids and the first four acoustic modés; m=1,2 and(b) m=3,4.

—0.
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dence on¢, the penetration depth of rotational waves is
found to depend on the acoustic mode nuntheand on the
distance from the head end, An accurate expansion for-
mula is extracted for the maximum penetration depth associ-
ated with ideal fluids with small viscosity. Finally, a standard
analysis of the maximum error associated with the analytical
derivation validates the rigor of the perturbation approach
and confirms the order of the reported truncation error. Ex-
perimental verification remains to be addressed in a forth-
Kk — 1. (87) coming article.

e—0

then the order of the errok, can be determined from the
slope of the linear least-squar@sS) fit to the data set gen-
erated by plotting Id,,, vs Ig e for different values ofs. As

it can be inferred from Fig. 9, the order of the errais about
unity. Linear slopes obtained from LS lines with high corre-
lation coefficients confirm that, indeed varies from 0.99 to
0.999999 in decreasing rangeseofin fact, regardless of,

we can write with confidence that

This reassuring observation leads us to conclude that the; Majdalani and W. K. Van Moorhem, “Improved time-dependent flow

error associated with Eq79) is of O(e). field solution for solid rocket motors,” AIAA J36, 241—-248(1998.
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VIl. CONCLUSIONS propellant rocket motor,” Ph. D. dissertation, University of U{a990.

3Y. Ma, W. K. Van Moorhem, and R. W. Shorthill, “Innovative method of
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