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In a long, low aspect ratio, two-dimensional cavity, where gaseous motion is permitted along
transpiring walls, a time-dependent field is established when low amplitude, sinusoidal pressure
oscillations with nonzero mean are introduced. An accurate solution is extracted here for the
time-dependent field by way of small parameter perturbations. Contingent upon small
pressure-wave amplitudes, Navier–Stokes equations are linearized to the order of the mean flow
Mach number to furnish interaction equations governing the unsteady field. The latter is
decomposed into acoustic and solenoidal fields coupled through Dirichlet-type boundary conditions.
Solving for the solenoidal field from the momentum equation employs separation of variables and
multiple scale expansions based on a careful choice of an inner scale. In fact, the unique inner scale
used in the two-variable derivative expansion method is original in the sense that it stems from an
unconventional, nonlinear variable transformation. A uniformly valid solution is formulated
subsequently for the temporal field. This explicit solution discloses the character of the acoustic
boundary layer evolving from damped traveling waves. The rate of decay is found to depend on a
viscosity parameter, revealing that deeper penetration of rotational waves is possible at low
viscosity. Characterization of the boundary layer region is covered in addition to a standard error
analysis. In closing, results are verified through comparisons to accurate numerical predictions.
© 1999 Acoustical Society of America.@S0001-4966~99!00907-8#

PACS numbers: 43.20.Hc, 43.20.Mv, 43.28.Py@LCS#
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INTRODUCTION

When harmonic disturbances are introduced insid
rectangular cavity with transpiring walls, a rotational comp
nent of the time-dependent velocity is produced along w
the plain, irrotational, acoustic field. The resulting tim
dependent field can be difficult to analyze since it must
clude the influence of the steady flow component. The tra
tional approach to resolve the resulting coupled equation
paved with numerous mathematical obstructions that pre
exacting analytical solutions in finite form. Based on a te
nique used recently by the author,1 an assault on the problem
will be attempted here. The method relies heavily on regu
and multiple scale perturbation tools, making use of natur
occurring similarity parameters that happen to be sm
quantities. By way of example, in linearizing the Navie
Stokes equations, the ratio of the acoustic-to-mean pres
amplitude will be used as a primary perturbation parame
The Mach number at the transpiring wall will be found to
another instrumental perturbation parameter that is
quently encountered. Later, in resolving the solenoidal fie
a small parameter reminiscent of the Stokes number will
cur, providing a gauge to expand the solenoidal velocity i
series of progressively diminishing terms.

The originality of this work stems from the mathema
cal treatment of the interaction equations developed for
time-dependent field. This treatment involves a singu
boundary value problem whose solution features a no
scaling transformation. In previous work, Majdalani and V
Moorhem1 have tackled a similar problem involving un
steady axisymmetric motion inside a cylindrical tube a
different boundary conditions. The former analysis employ
the so-called ‘‘composite-scale technique,’’ a hybrid pert
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bation method that involved reducing three spatial len
scales into one, nonunique, composite-scale function, be
applying the derivative expansion method. The current me
odology does not invoke composite-scale matching,
rather standard perturbation tools. In the process, one un
virtual scale will be identified as the outcome of a nonline
variable transformation. To the author’s knowledge, the n
linear transformation that will be presented has not been
dressed previously in multiple scale analysis. Contrary to
ad hoc approach employed previously by Majdalani and V
Moorhem,1 a mathematically rigorous approach will be in
vested here in constructing the uniformly valid asympto
formulation.

The practical motivation stems, in part, from the need
obtain an approximate solution for the time-dependent fi
that can be helpful in explaining and elucidating obser
tions reported by Ma2–4 and Barron5 in two experimental
investigations that involved a two-dimensional geometry.
both instances, sublimating carbon dioxide originating fro
the flat surface of heated blocks of dry ice was used to sim
late the transpiring gas inside a long, segmented, rectang
chamber. In both cases, harmonic pressure waves were
duced by means of a variable speed, reciprocating piston
Barron’s apparatus, a Scotch-yoke mechanism was use
drive the piston by imparting a purely sinusoidal motion a
well-prescribed frequency, a substantial improvement o
Ma’s slider-crank mechanism which could only approxima
sinusoidal motions. In any event, both investigations suffe
from a lack of applicable analytical models, a problem tha
hoped to be remedied in the present development.

For the purpose of attaining a reliable solution, the pa
starts in Sec. I with a brief description of the two
46(1)/46/11/$15.00 © 1999 Acoustical Society of America
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dimensional geometry and bulk fluid motion, along with
statement of the fundamental criteria whose violation is
admissible. This is followed in Sec. II by a formulation
the linearized Navier–Stokes equations which rests on
composing variables into mean and small time-depend
fluctuations. In the process, interaction equations that in
porate the influence of the mean flow are derived for
time-dependent field to the order of the surface Mach nu
ber. In Sec. III, the classical mean flow velocity establish
inside a rectangular cavity is analyzed. The time-depend
field is decomposed in Sec. IV into acoustic, irrotation
pressure-driven, and rotational, solenoidal, vorticity-driv
elements. Equations governing each set are produced a
with pertinent boundary conditions. Unlike the acoustic
which can be readily resolved, the solenoidal set deman
special treatment and is conveniently deferred to a sepa
section. Hence, in Sec. V, separation of variables accom
nies a careful scaling analysis in the development of a u
formly valid solution to the rotational field. Attempts to elu
cidate particular features of the new finding and to explain
impact on the overall time-dependent solution are underta
in Sec. VI where the time-dependent boundary layer is ch
acterized. The global error associated with the analytical
mulation is evaluated and the order of the truncation erro
established. Throughout this study, verifications are mad
various stages by comparing analytical predictions to relia
computational data. By way of closing, several conclusio
are reiterated in Sec. VII.

I. PROBLEM FORMULATION

We begin by describing the idealized geometry alo
with important criteria that must be met for the mathemati
model to hold.

A. Geometry

The two-dimensional acoustic field is considered in
half-space of a long rectangular cavity of lengthL, width W,
and heightH(W@H,L@H), with one acoustically compli-
ant membrane~simulating a transpiring wall!, through which
mean transmission of a gas~of kinematic viscosityv0! oc-
curs at a steady blowing speed ofVb . Gas entering the
chamber aty* 5H is led to change course, swerve, and he
downstream. As represented schematically in Fig. 1,
chamber is acoustically hard at the head end (z* 50). The
sound field under investigation is choked at the downstre
end due to a constriction in flow area~not shown!. In addi-
tion, the lateral walls normal to thex* axis are impenetrable

FIG. 1. Chamber half-space showing mean flow streamlines. In the orth
nal coordinate system indicated, thex* axis is perpendicular to the plane o
view, y* is the normal distance measured from the rigid wall, andz* is the
axial distance measure from the head end.
47 J. Acoust. Soc. Am., Vol. 106, No. 1, July 1999
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~note that thex* axis is perpendicular to the plane of view
Fig. 1!. Since the chamber width is larger than its heig
variations in thex* direction are ignored. Under idealize
conditions, the flow is perfectly symmetrical about the ce
tral planey* 50. Taking advantage of symmetry, the doma
investigation is limited to the half-space extending from t
compliant wall to the central plane.

Superimposed on the mean fluid motion, a tw
dimensional time-harmonic acoustic field of small amplitu
~frequencyv0 and pressure amplitudeAp! is admitted. This
acoustic environment can be induced externally or trigge
naturally from internally propagating pressure disturbanc
In the forthcoming analysis, details of the acoustic sou
will not be addressed.

B. Principal criteria

In order to pursue a theoretical formulation of the tim
dependent field, standard perturbation tools are impleme
in conjunction with a fundamental assumption of a low me
flow Mach number ofO(1023). In common nonreacting
flows characterized by a typical speed of sound of 350 m
the low Mach number criterion casts a limit of 2 m/s on t
mean flow speed. In reality, this upper threshold for t
Mach number is not too restrictive since, in many applic
tions, it corresponds to a condition of intense mean fl
transmission known as ‘‘hard blowing.’’ Another basic a
sumption that must be tolerated to manage a solution c
strains the acoustic pressure amplitudeAp to remain small by
comparison to the mean pressurep0 at the chamber head
end. The latter must be uniform in order to maintain rig
and consistency in comparing terms of various orders
magnitude arising in the perturbation process which re
strongly on the pressure wave amplitude,Ap /p0 , a gauge to
which other quantities are compared. This criterion is fou
to be contingent upon a geometrical restriction ofL/H
,100. When these criteria are met, the forthcoming analy
will be seen to be applicable everywhere except near
choked end (z* 5L).

II. EQUATIONS OF MOTION

A standard normalization and small parameter lineari
tion of the governing equations precedes the developmen
the interaction equations.

A. Conservation laws

Invoking Stokes’ hypothesis of zero bulk viscosity, a
suming constant viscosity, and disallowing body forces, c
servation of mass and momentum can be cast in dimens
less form into

]r

]t
1¹.~ru!50, ~1!

r
Du

Dt
52

¹p

g
1

1

ReF4

3
¹~¹•u!2¹3~¹3u!G , ~2!

where densityr and pressurep are normalized by their mea
values,r0 and p0 , at the chamber head end, velocities a
normalized by the chamber’s intrinsic speed of sounda0 ,

o-
47Joseph Majdalani: Acoustical mode coupling
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spatial coordinates~x, y, z! are the laboratory coordinate
(x* , y* , z* ) normalized byH, and time t(5a0t* /H) is
made dimensionless by referringt* to the average time i
takes for a pressure disturbance to travel from the compl
wall to the centerline, (H/a0). The Reynolds number Re i
Eq. ~2! is (a0H/v0), g is the ratio of specific heats, an
u(y,z,t) is the total velocity, including both steady and u
steady components. Exacting the latter constitutes the m
purpose of this article.

B. Approach

The procedure consists of decomposing the internal fl
field into a steady and a time-dependent part. This is acc
plished by writing each of the independent variables a
sum of their steady and time-dependent components. A s
parameter perturbation scheme is suitable by virtue of
fundamental premise requiring the acoustic amplitude to b
small quantity relative to its mean counterpart.6 In breaking
the analysis into digestible pieces, we assume that the p
ence of time-dependent oscillations does not alter the gen
motion of the mean flow. This assumption can be later v
fied by realizing that terms that incorporate the tim
dependent effects on the mean flow field are indeed sec
ary. Conversely, mean flow effects on the acoustic field
extraordinarily important and cannot be dismissed. Since
perposition of the coupled elements is sought ultimate
equations that incorporate the coupling between steady
time-dependent components must be developed as well.
tails are furnished below.

C. Variable decomposition

The local pressure can be expressed as the sum o
steady and acoustic components. Using, heretofore, aste
to denote dimensional variables, and superscripts for pe
bation orders, the dimensional pressure is split into

p* 5p* ~0!~y* ,z* !1p* ~1!~y* ,z* ,t* !

5p* ~0!1Apf ~y* ,z* !cos~v0t* !, ~3!

where p* (0), subject to later verification, is taken to be
constant. In the time-dependent part of Eq.~3!, Ap defines
the acoustic pressure amplitude, andf is a normalized spatia
function ofO(1). After normalizing byp0 , and substituting
p* (0)>p0 , Eq. ~3! becomes

p511ewf ~y,z!cos~v0t* !511p~1!~y,z,t !, ~4!

whereew5Ap /p0 is the primary gauge parameter that pr
vides a scale to which other terms can be compared. Den
can be expanded in a similar way:

r~y,z,t !5
r01r* ~1!

r0
511r~1!~y,z,t !. ~5!

Velocity decomposition needs to be assessed carefully s
its mean value is of the order ofVbU(y,z), whereU(y,z) is
a function ofO(1) to be described in Sec. III. Note that th
term Vb defines the magnitude of the mean flow veloc
crossing the planey51. Expanding the dimensional velocit
into
48 J. Acoust. Soc. Am., Vol. 106, No. 1, July 1999
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u* ~y,z,t !5VbU~y,z!1u* ~1!~y,z,t !, ~6!

we normalize by the chamber speed of sounda0 and find that
the nondimensional counterpart is of the order of the w
Mach number,Mb ; the latter is a secondary perturbatio
parameter by virtue ofew,Mb!1. Note thatew remains
very small, as defined in Eq.~4! and Sec. II B, being the
amplitude of the small pressure disturbances normalized
the mean pressure. The dimensionless velocity becomes

u~y,z,t !5MbU~y,z!1u~1!~y,z,t !. ~7!

D. Interaction equations

Substituting Eqs.~4!, ~5!, and~7! into Eqs.~1!–~2!, one
obtains, at the leading order expansion in the wave am
tude, a set for the steady flow motion:

¹.U50, ~8!

U.¹U5
1

Mb ReF4

3
¹~¹.U!2¹3~¹3U!G . ~9!

Grouping terms that are comparable in magnitude to the
order in the wave amplitude, a linearized expansion of
interaction equations incorporating mean flow effects is
tained:

]r~1!/]t1¹.u~1!52Mb¹.~r~1!U!, ~10!

]u~1!

]t
5Mb@u~1!3~¹3U!1U3~¹3u~1!!2¹~u~1!.U!#

2
¹p~1!

g
1

1

ReF4

3
¹~¹.u~1!!2¹3~¹3u~1!!G .

~11!

Equations~10!–~11! reveal the intricate coupling betwee
mean and time-dependent flow components which stron
affects the time-dependent solution character.

III. MEAN FLOW FIELD

When a classical mean flow stream function is assum
for the geometry at hand, both velocity and pressure dis
butions are determinable.

A. Velocity field

The velocity fieldU can be determined from the strea
function Sf5Cex obtained for a flow inside a rectangula
cavity7 whereU5¹3Sf . Using the classical stream func
tion C(y,z)52yz, we have

U5Uyey1Uzez5
]C

]z
ey2

]C

]y
ez52yey1zez , ~12!

which does satisfy Eqs.~8!–~9!.

B. Mean pressure correction

Having evaluated the velocity field from the strea
function independently of mean pressure variations, one
use the steady momentum equation to deduce the pres
associated with the resulting field. Without incurring any lo
48Joseph Majdalani: Acoustical mode coupling
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in generality, one can setp(y,z,t)511pc(y,z)1p(1)

3(y,z,t), where pc(y,z) is a spatial pressure correctio
term that we propose to determine. An auxiliary conditi
that must be met specifies that pressure at the chamber
end must be identical to the mean stagnation pressure w
p(0)511pc(0,0)51, or pc(0,0)50. The pertinent spatia
correction can be obtained directly from Eq.~2! by direct
substitution:

MbU.¹~MbU!52
¹pc

g
1

1

Re

3@ 4
3 ¹@¹.~MbU!#2¹3@¹~MbU!##

~13!

or

¹pc /~gMb
2!52U.¹U. ~14!

Equation ~14! can be integrated to obtain, forpc(0,0)
50, p(0)(y,z)512(g/2)Mb

2(y21z2); wherefrom

p~0!~y,z!512~g/2!Mb
2~y21z2!. ~15!

Note that in Eq.~15! they-dependence can be safely ignor
by comparison to thez-dependence, the former being smal
than unity, whereasz2 varies from the order of unity to the
order of 103. Additionally, sinceMb is of O(1023), andz is
less than 100, the error in assuming a constant steady p
sure is insignificant, being of orderMb

2z2. The corrected
pressure distribution, shown in Fig. 2, indicates that ax
pressure variations are indeed negligible except in very l
chambers with large Mach numbers. Since the Mach num
in the majority of cases does not exceed 0.005, the assu
tion of a uniform mean value needed to represent the ste
pressure distribution is well justified. Having described t
steady flow field character, its impact on the acoustic co
ponent is examined next.

IV. TIME-DEPENDENT FIELD

In order to resolve the effects of the steady field on
time-dependent field, the interaction equations are develo
for small amplitude pressure and vorticity-driven distu
bances inside the chamber. Proper boundary conditions
also examined.

FIG. 2. Steady pressure distribution for practical mean flow Mach numb
49 J. Acoust. Soc. Am., Vol. 106, No. 1, July 1999
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A. Irrotational and solenoidal fields

The time-dependent velocity vectoru(1) is decomposed
into two vectors of distinct characters, one that is irrotatio
and one that is solenoidal8

u~1!5uirrotational1usolenoidal5û1ũ ~16!

contingent upon,¹3û50, and¹•û50. Similar decomposi-
tion of a small amplitude disturbance into two modes
fluctuations, a pressure mode and a vorticity mode, has b
accomplished previously by numerous authors, includ
Chu and Kova´sznay,9 Carrier and Carlson,10 and Flandro.11

Plugging Eq.~16! back into Eqs.~10!–~11!, the interac-
tion equations for small disturbances can be written for e
of the modes. The total time-dependent velocity field can
constructed, thereafter, by superimposing the solution v
tors linearly. Designating the irrotational mode variables
the circumflex (̂ ), and the solenoidal variables by the tild
(˜ ), we express the time-dependent quantities as

v~1![¹3u~1!5ṽ[¹3ũ, ~17!

p~1!5 p̂, ~18!

r~1!5 r̂, ~19!

where vorticity is produced exclusively by the rotation
mode and acoustic pressure is caused predominantly by
irrotational pressure mode. The pseudo-pressure gene
by the vortical mode is ignored, being of second order in
wave amplitude.9

B. Time-dependent equations of motion

Substituting Eqs.~16!–~19! into the first order time-
dependent set, given by Eqs.~10!–~11!, yields the following
two independent sets that are coupled through exis
boundary conditions:

1. Acoustical model

]r̂/]t1¹•û52Mb¹•~ r̂U!, ~20!

]û

]t
52

¹ p̂

g
2Mb¹~ û–U!1

4¹~¹.û!

3 Re
. ~21!

2. Vortical model

¹•û50, ~22!

]ũ

]t
5Mb@U3ṽ2¹~ ũ–U!#2

¹3ṽ

Re
. ~23!

C. Auxiliary conditions

In order to determine the total time-dependent veloc
u(1), irrotational and vortical components have to be det
mined separately by solving Eqs.~20!–~21!, and Eqs.~22!–
~23!. Resulting solutions must be superimposed in a man
to correctly satisfy two existing boundary conditions:~1! Ve-
locity adherence at the wall demanding the axial tim
dependent component of the velocity to vanish aty51, thus
yielding ũz(1,z)52ûz(1,z), and~2! symmetry aty50, giv-
ing ]u(1)(0,z)/]y50.

s.
49Joseph Majdalani: Acoustical mode coupling
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D. Irrotational solution

Equations~20!–~21! can be cast into a second order h
perbolic partial differential equation~PDE!, namely,

]2p̂

]t2 2¹2p̂52MbF¹.S ] p̂

]t
UD1g¹2~ û.U!G , ~24!

which can be solved to the first order in the Mach number
separation of variables. Following similar arguments to th
presented in Ref. 1, the solution for the acoustic press
p̂(z,t) can be expressed as

p̂~z,t !5ew cos~kmz!exp~2 ikmt !, ~25!

where the dimensionless wave number is given bykm

5mpH/L, m51,2,3,..., andm is the acoustic mode numbe
The acoustic velocity companion is determined directly fro
the momentum conservation Eq.~21! of order Mb . The re-
sult is

û~z,t !5 i
ew

g
sin~kmz!exp~2 ikmt !ez . ~26!

Note that bothz and t are dimensionless quantities, as e
plained in Sec. II A.

E. Fundamental vortical equations

Using Euler’s notation, we express rotational veloc
and vorticity components in the following fashion:

ũ~y,z,t !5V~y,z!exp~2 ikmt !, ~27!

ṽ~y,z,t !5v̄~y,z!exp~2 ikmt !, ~28!

where

V~y,z!5Vyey1Vzez , ~29!

v̄5¹3V5v̄ex ~30!

are complex functions. It follows that the vortical mass a
momentum conservation equations, given by Eqs.~22!–~23!,
become

¹.V50, ~31!

iV5s@¹~V.U!2U3v̄#1e¹3v̄, ~32!

where

s5
Mb

km
5

1

Sr
5

Vb

v0H
,O~1021!, ~33!

e5
1

km Re
5

1

Rek
5SAn0 /v0

H D 2

,O~1024! ~34!

are naturally occurring dimensionless groupings represen
the reciprocals of the Strouhal and kinetic Reynolds nu
bers, and satisfying

e/s5n0 /~VbH !!1. ~35!

Indubitably, Rek52lS
2 is another form of the Stokes numbe

lS , which is expected to play a nontrivial role in oscillato
flows. Equations~31!–~32! can be expanded in scalar for
into
50 J. Acoust. Soc. Am., Vol. 106, No. 1, July 1999
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]Vy

]y
1

]Vz

]z
50, ~36!

iVy5sF ]

]y
~VyUy!1Uz

]Vy

]z
1Vz

]Uy

]z G
2eS ]2Vy

]z2 2
]2Vz

]y]zD , ~37!

iVz5sF ]

]z
~VzUz!1Uy

]Vz

]y
1Vy

]Uz

]y G
2eS ]2Vz

]y2 2
]2Vy

]y]zD , ~38!

which reveal that direct analytical solutions to the coup
set are not tractable without exploitation of an important
sult that can be verified numerically, and proven theore
cally, only a posteriori. Subject to later verification, the nor
mal vortical velocity Vy is assumed to be ofO(Mb) by
comparison to the axial componentVz . Being a smaller
quantity, ignoringVy at the first perturbation expansion lev
of V will not affect the solution which, let us recall, is onl
accurate to the first order in the Mach number. On that
count, Eq.~38! becomes

iVz5sF ]

]z
~VzUz!1Uy

]Vz

]y G2e
]2Vz

]y2 1O~Mb!. ~39!

V. VORTICAL SOLUTION

Using separation of variables, a careful scaling analy
and two-variable multiple scale expansions, an explicit so
tion to the solenoidal velocity component is sought.

A. Separation of variables

Inserting Eq.~12! into Eq.~39!, expanding and rearrang
ing, one gets

z
]Vz

]z
5S i

s
21DVz1y

]Vz

]y
1

e

s

]2Vz

]y2 , ~40!

which suggests using separation of variables in order to
vestigate a solution of the type

Vz~y,z!5Y~y!Z~z!. ~41!

When inserted back into Eq.~40!, Eq. ~41! allows splitting
the original PDE into two linear ordinary differential equ
tions ~ODEs!, coupled through a separation constantln :

z

Z

dZ

dz
5S i

s
21D1

y

Y

dY

dy
1

e

s

d2Y

dy2 5ln , ~42!

whereln must be strictly positive for a nontrivial outcome
For everyln , a solutionZn andYn are manageable. Integra
tion of the axially dependent equation is straightforward. T
exact result isZn(z)5cnzln, wherecn is an integration con-
stant associated withln . Since the governing equation i
linear, any linear combination of two or more solutions
also a solution, and one can write, in general, for all poss
ln
50Joseph Majdalani: Acoustical mode coupling
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Vz~y,z!5(
ln

cnzlnYn~y!, ~43!

where ln must be determined from the no-slip bounda
condition at the wall giving rise to the strong coupling b
tween pressure and vorticity modes. As a consequence,
tional and irrotational components of the axial velocity ca
cel out aty51. This is achieved whenũz52ûz , or

Vz~1,z!52~ew /g!i sin~kmz!. ~44!

Inserting Eq.~44! into Eq. ~43!, writing out the MacLaurin
series expansion for the Sine function, and equating sum
tion terms lead to

(
ln

cnzlnYn~1![2
ew

g
i (
n50

`
~21!n~kmz!2n11

~2n11!!
, ~45!

which holds true whenln52n11, n50,1,..., and

cn52
ew

g
i
~21!n~km!2n11

~2n11!!
, ~46!

Yn~1!51, ~47!

turning Eq.~43! into

Vz~y,z!52
ew

g
i (
n50

`
~21!n~kmz!2n11

~2n11!!
Yn~y!. ~48!

In order to satisfy Eq.~42!, the velocity eigenfunctionYn(y)
remains to be determined from the two-point boundary va
problem prescribed by

e
d2Yn

dy2 1sy
dYn

dy
1@ i 2~11ln!s#Yn50, ~49!

a second order ODE that is constrained by two natur
occurring auxiliary conditions:

Yn~1!51 ~no-slip!, ~50!

dYn~0!

dy
50 ~axial symmetry!. ~51!

Equation~49! exhibits a practical closed form solution fo
lowing a careful application of the derivative expansi
method. This approach is presented next.

B. Scaling analysis

The first step for the derivative expansion method
work is the judicious identification of the scale at whic
order balance is achieved between locally significant te
in the governing ODE. To that end, we make the conject
that, near the regular singularity

y5e1/qy1
21/q , ~52!

where y1 is the relevant local scale andq is a stretching
exponent that must be carefully determined. The derivati
become

dYn

dy
52qe21/qy1

111/q dYn

dy1
, ~53!
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d2Yn

dy2 5qe22/qy1
112/qFqy1

d2Yn

dy1
2 1~q11!

dYn

dy1
G . ~54!

Substituting back into Eq.~49!, we get

e122/qq2y1
212/q d2Yn

dy1
2 1qy1@e122/q~q11!y1

2/q2s#
dYn

dy1

1@ i 2~11ln!s#Yn50, ~55!

which clearly indicates thatq52 is a key stretching expo
nent that corresponds to a distinct limit for which balan
between various terms in Eq.~55! will exist. The rescaled
equation becomes

4y1
3 d2Yn

dy1
2 12y1~3y12s!

dYn

dy1
1@ i 2~11ln!s#Yn50,

~56!

where the modified scale is

y15ey22. ~57!

Thus wheny5O(e1/2), representing the characteristic thic
ness of the inner layer neary50, the new variabley1 will be
of O(1), which allows resolving accurately the rap
changes that can occur in such a small interval.

C. Two-variable multiple-scale expansions

Having determined the form of the inner scale, a sta
dard multiple-scale procedure can be implemented to tra
form Eq. ~49! into a PDE that is function of two virtua
variables,y05y, andy15ey22. This requires expanding th
derivatives in terms of the new variables

d

dy
5

]

]y0

dy0

dy
1

]

]y1

dy1

dy
5

]

]y0
22ey0

23 ]

]y1
, ~58!

d2

dy2 5
]2

]y0
2 1O~e!. ~59!

Note that the current choice of an inner scale represen
minor departure from the conventional form ofy/el, includ-
ing y15y/Ae, which would be ordinarily attempted by
skilled perturbation proponent. The latter form, reco
mended by most books on the subject, does not lead
meaningful solution in the case at hand. Substituting E
~58!–~59! back into Eq.~49!, we obtain the following PDE:

e
]2Yn

]y0
2 1sy0S ]Yn

]y0
22ey0

23 ]Yn

]y1
D1@ i 2s~11ln!#Yn

1O~e2!50. ~60!

Next, Yn is expanded as a sum consisting of a leading or
term and a series of consistently decreasing terms:

Yn5Yn
~0!1eYn

~1!1O~e2!, ~61!

whereYn
(0) is the leading order term that we propose to fin

Inserting the two-term expansion ofYn into Eq. ~60!, rear-
ranging and collecting terms ofO(1) and O(e), we get,
respectively,
51Joseph Majdalani: Acoustical mode coupling
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]Yn
~0!

]y0
1@ i 2~11ln!s#Yn

~0!50, ~62!

e: sy0

]Yn
~1!

]y0
1@ i 2~11ln!s#Yn

~1!

52sy0
22

]Yn
~0!

]y1
2

]2Yn
~0!

]y0
2 . ~63!

Partial integration of Eq.~62! givesYn
(0) :

Yn
~0!~y0 ,y1!5C1~y1!exp$@~11ln!2 i /s# ln y0%, ~64!

where the constant of integrationC1 can, in general, be a
function of y1 ; following traditional multiple-scale argu
ments,C1 must be determined in a manner to ensure t
Yn

(0) remains uniformly valid, viz.,Yn
(0).eYn

(1) ,;y. This
will occur when the first order term in Eq.~61! remains
smaller that the leading order term in the series expansion
all y. This can only happen when the right hand side of E
~63! is zero. Differently stated, if the right hand side of E
~63! is not zero, the solution forYn

(1) will include what is
known in perturbation theory as ‘‘secular’’ terms. These a
undesirable terms that makeYn

(1) , in some regions of the
solution domain, grow untileYn

(1) exceedsYn
(0) . Evidently,

this condition cannot be tolerated since it violates the or
nal premise and, furthermore, invalidates the regular per
bation expansion ofYn in a series of decreasing order term
To suppress the source of secular terms, we set

2sy0
22

]Yn
~0!

]y1
2

]2Yn
~0!

]y0
2 50, ~65!

where the derivatives are

]Yn
~0!

]y1
5

dC1

dy1

Yn
~0!

C1
, ~66!

]2Yn
~0!

]y0
2 5~ln2 i /s!@~11ln!2 i /s#

Yn
~0!

y0
2 , ~67!

which, when substituted back into Eq.~65!, yield

dC1

dy1
2

~ln2 i /s!@~11ln!2 i /s#

2s
C150, ~68!

which can be easily solved forC1 :

C15C0 expH ~ln2 i /s!@~11ln!2 i /s#

2s
y1J . ~69!

Recalling thaty15ey22, the general, uniformly valid solu
tion for Yn is

Yn~y!5C0 expH @~11ln!2 i /s# ln y

1
e~ln2 i /s!@~11ln!2 i /s#

2sy2 J 1O~e!, ~70!

whereC0 can be determined readily from Eq.~50!. Subse-
quently,
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Yn~y!5y~11ln! exp$2j@12s2ln~11ln!#~y2221!/2

2 i @ ln y1js2~112ln!~y2221!/2#/s%1O~e!,

~71!

where j5e/s3 is a nondimensional parameter that has
strong influence on the damping rate ofYn .

D. Analytical solution in infinite series form

Employing Eq.~71! in Eq. ~48!, letting h5(y2221)/2
for convenience, and summing up over all possibleln , ren-
ders

Vz~y,z!52
ew

g
i (
n50

`
~21!n~kmz!2n11

~2n11!!
y~2n12!

3exp$2@12s2~2n11!~2n12!#jh

2 i @ ln y1js2~4n13!h#/s%1O~e!. ~72!

From Eq.~27!, ũz can be written in an infinite series form
that clearly displays the leading order quantities and sma
quantities ofO(s2):

ũz~y,z,t !52
ew

g
iy (

n50

`
~21!n~kmyz!2n11

~2n11!!

3exp$2@12s2~2n11!~2n12!#jh

2 i @ ln y1js2~4n13!h#/s2 ikmt%1O~e!.

~73!

Fortunately, Eq.~73! is a rapidly converging series.

E. Accurate closed form equivalent

Equation~73! can be written in a closed form by disre
garding small terms that do not affect the order of the er
associated with the infinite series itself. The result is a pr
tical, closed form equivalent

ũz~y,z,t !52
ew

g
iy sin~kmyz!exp@2~122s2!jh

2 i ~ ln y13js2h!/s2 ikmt#1O~e!. ~74!

F. Graphical verification

In order to verify that Eqs.~73! and~74! are concurrent,
we first construct a solution foru(1) by adding the irrota-
tional component toũz in Eq. ~59!. This can be accomplishe
using either one of the two versions represented by Eqs.~73!
and~74!. In either case, the penetration depthd of the result-
ing time-dependent velocity can be evaluated and compa
to a reliable numerical solution to Eq.~39! achieved using a
Runge–Kutta scheme of order seven.12 In Fig. 3, a typical
example is furnished that illustrates the excellent agreem
between analytical predictions forũz and the numerical so
lution to Eq.~23!. Since locatingd is sensitive to error accu
mulation, we overlay analytical predictions ofd vs s in Fig.
4 for a wide range of physical parameters as obtained fr
Eqs. ~73! and ~74!. Reassuringly, no discernible discrepa
cies are detected anywhere, indicating that Eq.~74! can be
52Joseph Majdalani: Acoustical mode coupling
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exchanged for Eq.~73! without any appreciable loss in ac
curacy. This conclusion can be further confirmed by runn
a standard error calculation.

In addition to its simplicity and remarkable precisio
Eq. ~74! discloses the leading order terms which control
solution. These relate to the convection of unsteady vorti
by the mean flow in both axial and normal directions, tim
dependent inertia, and viscous diffusion of time-depend
vorticity.

G. Normal velocity

The normal componentũy can be determined in a man
ner to satisfy continuity. To that end,ũz is used in Eq.~22!
while a guessed function is proposed forũy . From a conjec-
tured form

ũy~y,z,t !5
ew

g
G~y!cos~kmyz!exp@2~122s2!jh

2 i ~ ln y13js2h!/s2 ikmt#1O~e!, ~75!

the unknown functionG(y) must be determined to satisf
continuity. Substituting Eq.~74! and Eq.~75! into Eq. ~22!,
the spatial functionG(y) is extracted in a manner to ensu

FIG. 3. Virtually indistinguishable results for the total time-dependent
locity at chamber midspan as predicted from numerical, infinite series,
closed form expressions corresponding to Eqs.~73! and ~74!.

FIG. 4. Penetration depth predictions from infinite series and closed f
expressions, viz., Eqs.~73! and ~74!. To the accuracy of the graph, differ
ences between both formulations cannot be distinguished. Broken line
constant Rek are equally spaced.
53 J. Acoust. Soc. Am., Vol. 106, No. 1, July 1999
g

e
y
-
nt

that ]ũy /]y52]ũz /]z is satisfied in the leading orde
terms. This occurs when

G~y!52Mby3, ~76!

rendering

ũy~y,z,t !52
ew

g
Mby3 cos~kmyz!exp@2~122s2!jh

2 i ~ ln y13js2h!/s2 ikmt#1O~e!. ~77!

Clearly, the original assumption ofũy /ũz5O(Mb)—leading
to Eq. ~39!—is justifiable. Furthermore, numerical comput
tions of ũy indicate that Eq.~77! is indeed accurate. Suc
comparisons with numerical predictions ofũy are excluded
here for brevity.

VI. SOLUTION CHARACTER

The behavior and character of the time-dependent ve
ity can now be examined along with its accompanyi
boundary layer structure. The global error associated w
the analytical outcome can also be evaluated to confirm
oretical predictions.

A. Total time-dependent velocity

Superimposing rotational and irrotational velocity fiel
in Eq. ~16!, uz

(1) can be formulated atO(Mb):

uz
~1!~y,z,t !5

ew

g
i exp~2 ikmt !$sin~kmz!2y sin~kmyz!

3exp@2~122s2!jh2 i ~ ln y13js2h!/s#%,

~78!

whose real part is

~79!

where

z5j~122s2!~y2221!/2, ~80!

F5@ ln y13js2~y2221!/2#/s. ~81!

Evidently, u(1) is prescribed byuz
(1) which is a harmonic

wave that proceeds from the wall (y50) and travels in the
direction of increasingy. It is characterized by a wave am
plitude that diminishes exponentially with increasing d
tance from the wall. The decay constant associated with
exponential decrease can be extrapolated by inspecting
~79!–~80! to be the viscosity parameterj. The vortical wave
amplitude is actually controlled by two terms: an expone
tially decaying term, made possible by inclusion of visco
dissipation~i.e., z!, that decreases with the distance from t

-
d

m

of
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wall, and a sinusoidal term, made possible by inclusion
axial mean flow convection of unsteady vorticity, which va
ies harmonically with the distance from the head end, a
also decreases with the distance from the wall. By inspec
of the spatial damping functionz in Eq. ~74! and Eq.~79!,
increasing viscosity is found to cause the rotational wave
decay more rapidly, preventing a deeper inward penetra
of vorticity. This effect is contrary to the boundary-lay
‘‘thickening’’ role played by viscosity in oscillatory flows
between parallel rigid walls. Incorporation of blowing effec
appears to alter the flow character quite dramatically. Res
from Eq. ~79! are congruent with numerical prediction
which are achieved to a high order of accuracy~using a step
size of 1026 in conjunction with a nine-stage Runge–Kut
scheme that exhibits a global error of order seven!.12 This
agreement, shown in Fig. 5, causes differences in graph
results to become visually indiscernible.

When, in Fig. 5, numerical and analytical velocity di
tributions are overlaid, no appreciable discrepancies can
perceived. Local velocity profiles shown correspond to
stantaneous profiles separated by 180 degrees of a full o
lation cycle depicted at several axial locations for the fun
mental pressure oscillation mode. Note that the soleno
component of the velocity is more pronounced in the dow
stream portions of the cavity where time-dependent vortic
is intensified. The figure also indicates that the spatial wa
length of solenoidal waves diminishes at higher Strou
numbers.

B. Acoustic boundary layer

We start by examining the rotational wave amplitu
which controls the evolution of the time-depende
boundary-layer envelope:

i ũ~1!i5
ew

g
y sin~kmyz!exp@2~122s2!jh#. ~82!

Defining the boundary layer to extend from the complia
wall to the point where 99% of the rotational wave comp

FIG. 5. Time-dependent velocity patterns shown at several axial station
Rek5106 and typical values of the Strouhal number.
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nent has vanished, the corresponding boundary layer th
ness will be the distance from the wall to the point whe
i ũ(1)i becomesa[1% of its irrotational counterpart. The
normalized penetration depthd extending from the wall to
the edge of the boundary layer can, therefore, be calcul
from yp512d, where

yp sin~kmypz!exp@2~122s2!jh#2ausin~kmz!u50.
~83!

Plots ofd vs s for a wide range of Rek are shown in Fig. 6 at
two axial stations that are 5% of the longitudinal length fro
each end: one near the head end (z* 50.05L) and the other
near the aft end (z* 50.05L). The wide spread in the dat
makes it difficult to interpret the dependence ofd on actual
physical parameters. This problem is alleviated by referr
to Eq. ~83! which clearly shows that the term involving ex
ponential boundary layer decay is a strong function of a v
cous damping parameter,j. This subtle realization motivate
generating curves ofd vs j, for wide variations in Rek . As
shown in Fig. 7, entire families of curves, such as tho
shown in Fig. 4~for z* 50.5L! and Fig. 6 at discrete axia

or

FIG. 6. Locus of the rotational boundary-layer thickness at two axial s
tions andm51. Sinced grows from the head end, the upper family o
curves~solid lines! corresponds to the downstream location.

FIG. 7. The boundary-layer thickness determined numerically and ana
cally at five discrete locations. To the resolution of this graph, no change
d seem to occur in the cavity’s forward half portion (0.05<z* /L<0.5).
Except for largej, differences between numerical and analytical predictio
are hardly noticeable.
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stations, collapse splendidly into single curves per axial
cation. This significant result reveals thatd does not depend
on Rek ands separately, but rather onj5v0

2v0HVb
23, a key

similarity parameter that resembles, in importance,
Stokes number in oscillating flows over nontranspiring wa
However, unlike many similarity parameters,j cannot be
disclosed by standard dimensional analysis.

Figures 7 and 8 bring into focus the character of
boundary-layer thickness over permeable walls that is
fined in Fig. 3. For instance, it is clear from Eq.~83! that d
5 f (j,m,z) must depend onj, the pressure mode numbe
and, to a lesser degree, on the axial station within the ch
ber. For the fundamental pressure oscillation mode,m51,
Fig. 7 shows that, for largej, d varies linearly withj, inde-
pendently ofz. Smallerj imply larger penetration depths du
to a smaller argument in the exponentially decaying te
Furthermore, increasing the blowing speed, or decrea
viscosity, frequency, or chamber height seems to enhance
depth of penetration. Eventually, for sufficiently smallj, d
tends asymptotically to a maximum fixed value per ax
position. This maximum fixed value becomes independen
j and the corresponding depth becomesd5 f (m,z) as j
→0.

In order to pinpoint this maximum possible penetrati
depth,dm , occurring per axial station and mode number,
realize that, for the same geometry and blowing speed, la
penetration occurs in fluids with smaller viscosity. In t
ideal case of zero viscosity, rotational waves face minim

FIG. 8. Trace of the maximum boundary-layer thickness correspondin
ideal fluids and the first four acoustic modes:~a! m51,2 and~b! m53,4.
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friction and, thereby, travel the furthest distance from t
wall. The asymptotic limit on the thickness of the bounda
layer can thus be determined from the inviscid formulati
of the penetration depth—which only depends on the a
stationz and pressure modem. Settingv050 or j50 in Eq.
~83!, we get

~12dm!sin@km~12dm!z#2ausin~kmz!u50. ~84!

The resulting expansion formula is

dm512Aausin~kmz!u/~kmz!1O~12dm!4, ~85!

which allows predicting the inviscid depth of penetratio
quite accurately. A maximum truncation error ofO(1024)
corresponds to the smallest value ofdm , which is 0.9 forz
50. Having a smaller truncation error thanO(Mb), Eq. ~85!
can be exchanged for the numerical solution to Eq.~84!. This
is illustrated in Fig. 8 below for the first four acoustic mod
wheredm is shown to vary between 90% and 100% of t
solution domain.

C. Global error analysis

In order to ensure that no mistakes were committed
the derivation process, and to verify the order of the er
associated with the final expression for the time-depend
velocity field, viz., Eq.~79!, we calculate the maximum ab
solute errorEm between the analytical prediction and th
numerical outcome of Eq.~11! following Bosley’s construc-
tive recommendation.13 Since the absolute error defined he
represents the deviation from the numerical solution, the
ter is determined very accurately by using a seventh or
Runge–Kutta scheme and a subinterval of 1026. Assuming
that the maximum absolute error exhibits the classical fo

Em5uunumerical
~1! 2uanalytical

~1! umax5Kek, ~86!

FIG. 9. Maximum absolute error.

to
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then the order of the error,k, can be determined from th
slope of the linear least-squares~LS! fit to the data set gen
erated by plotting lgEm vs lge for different values ofs. As
it can be inferred from Fig. 9, the order of the errork is about
unity. Linear slopes obtained from LS lines with high corr
lation coefficients confirm that, indeed,k varies from 0.99 to
0.999 999 in decreasing ranges ofe. In fact, regardless ofs,
we can write with confidence that

k ——→
e→0

1. ~87!

This reassuring observation leads us to conclude that
error associated with Eq.~79! is of O(e).

VII. CONCLUSIONS

In this article, the oscillatory field that results from ha
monic pressure disturbances superimposed on the mean
inside a rectangular cavity is resolved using asymptot
With regard to the time-dependent field, accurate express
for the axial and normal velocity components are extract
The normal velocity is found to be small, namely, of t
order of the surface Mach number, by comparison to
axial counterpart. The latter dictates its character in the t
solution which represents a traveling wave that decays w
distance from the wall. The rate of decay is found to be
strong function of a nondimensional parameter,j
5v0

2v0HVb
23, that has a profound impact on the solutio

This so-called viscosity parameter combines both Strou
and kinetic Reynolds numbers viaj5Sr3/Rek . This dimen-
sionless grouping appears in the analytical formulation to
the primary similarity parameter in control of the solutio
At the outset, large viscosity leads to faster attenuation of
traveling wave envelope, and thereby, to smaller penetra
depths of rotational waves. In addition to its strong dep
56 J. Acoust. Soc. Am., Vol. 106, No. 1, July 1999
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dence onj, the penetration depth of rotational waves
found to depend on the acoustic mode numberm, and on the
distance from the head end,z. An accurate expansion for
mula is extracted for the maximum penetration depth ass
ated with ideal fluids with small viscosity. Finally, a standa
analysis of the maximum error associated with the analyt
derivation validates the rigor of the perturbation approa
and confirms the order of the reported truncation error. E
perimental verification remains to be addressed in a fo
coming article.
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