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When small amplitude harmonic pressure waves are introduced inside an
enclosure where the classic cavity ¯ow is already established, a strong coupling
ensues between the mean and time-dependent ®elds. In addition to the mean
¯ow in¯uence, the presence of solid boundaries gives rise to a strong coupling
between acoustic and vortical waves that prescribes the propagation of
disturbances. Based on a well-de®ned mean ¯ow structure, the purpose of this
report is to arrive at closed-form expressions for the two-dimensional, time-
dependent velocity and vorticity ®elds, in order to elucidate the nature and
extent of intrinsic ¯ow coupling. On that account, regular perturbation tools
are used on the vorticity transport equation derived from the linearised Navier±
Stokes equations. After an inviscid expansion is achieved, successive
approximations that use viscous correction multipliers are employed to derive
the vorticity in a manner to satisfy the existing boundary conditions. At the
outset, unsteady vorticity is found to originate at the walls due to the acoustic
pressure gradient normal to the in¯ow direction. In consequence, most intense
vortices are initiated in regions that coincide with acoustic pressure nodes.
Conversely, zero vorticity streaks emanate from acoustic velocity nodes and are
carried downstream by the bulk ¯uid motion. From the vorticity formulation,
both components of the time-dependent velocity vector are derived in a manner
to satisfy continuity and momentum conservation. The axial velocity
component is found to be the most signi®cant, exhibiting characteristics
associated with oscillatory ¯ows. In addition to comparisons with numerical
simulations, a limiting process validation against the existing exact solution in
the event of no mean ¯ow transmission is carried out. In closing, an error
assessment is included to quantify both magnitude and order of the global
error accumulated in the ®nal asymptotic expressions.
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1. INTRODUCTION

When a well-prescribed steady ¯ow ®eld inside an enclosure is subjected to time-
harmonic pressure oscillations, a complex time-dependent environment is
established. The purpose of this paper is to analyse the resulting ®eld which is
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the outcome of a strong interaction between the convective mean ¯ow motion
and the ensuing acoustic and vortical waves. The latter are formed, evidently, by
virtue of the oscillatory pressure gradients normal to mean ¯ow streamlines. The
time-dependent environment produced by such interactions exhibit conventional
aspects predicted by classic theories in addition to new and compelling features
that will be elucidated in the current report.
In order to manage a closed-form solution for the closely intertwined velocity

and vorticity ®elds, several reasonable idealisations will be effectuated. For
example, the low geometric aspect ratio of the cavity's cross-sectional area will
be exploited to justify ignoring variations in one spatial direction. Symmetry of a
well-behaved ¯ow about the cavity's core will also be invoked to reduce the
solution domain by half. In order to break down the remaining task into
digestible pieces, the resulting two-dimensional, time-dependent ®eld will be
decomposed into steady and time-dependent components. Based on small
amplitude pressure oscillations, the Navier±Stokes equations are then linearised
in a manner to provide the conservation of mass and momentum equations for
the coupled ®eld written to the ®rst order in the normalised pressure wave
amplitude.
While the steady ®eld equations can be easily satis®ed by a well-de®ned mean

¯ow solution inside a cavity, the search for a time-dependent ®eld that satis®es
the linearised equationsÐburdened by the mean ¯ow in¯uenceÐconstitutes the
main goal of this theoretical investigation. The strategy will be to proceed
carefully, using known mathematical theorems and regular perturbation tools, in
order to extract meaningful, uniformly valid expressions for the dependent
variables. For instance, the time-dependent velocity vector will be decomposed
into an irrotational, acoustic component, and a rotational, solenoidal
counterpart. The interaction equations will be derived for each set and their
solutions will be superimposed in a way to satisfy existing boundary conditions.
While the solution to the acoustic set can be concocted without much dif®culty,
the vortical set requires much effort and will be presented in detail in a separate
section devoted to the mathematical treatment. At the heart of the analysis will
be the manipulation of the linearised vorticity transport equation which will be
solved using separation of variables. Successive approximation concepts will be
necessitated in reaching a zeroth-order inviscid formulation based on which a
viscous correction will be constructed. The ®nal formulations that reveal the key
controlling parameters will be described and compared to numerical solutions of
the governing differential equations of motion. The acoustico-vortical structure
will also be characterised. Since an exact solution exists for the same geometry
and time-harmonic pressure oscillations in the absence of a mean ¯ow, the
asymptotic results will be compared to the exact predictions in the limiting
process when the normal convection speed is reduced below the Stokes diffusion
speed. A standard error analysis will also be furnished to quantify both
magnitude and order of the maximum truncation error incurred in the derivation
process.
The scienti®c merit of this work rests in the somewhat original small

parameter perturbation treatment of the linearised Navier±Stokes equations, in
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addition to the disclosure of novel aspects of pertinent acoustico-vortical
structures revealed by the ®nite asymptotic expressions. Practical applications
include cold ¯ow experiments that incorporate an acoustic motion over
transpiring surfaces in rectangular cavities. At the time of this writing, the
author is familiar with two experimental investigations that simulate the
oscillatory ¯ow over transpiring surfaces including a sinusoidal wave motion
parallel to the transpiring surface. The reader is referred to, in that regard, to the
works of Ma et al. [1±3] and Barron et al. [4, 5] who used sublimating carbon
dioxide that originates from ¯at blocks of dry ice to simulate the transpiring gas
inside a long, segmented, rectangular chamber. The main difference between
both experimental apparatuses lies in the choice of a wave generator. While
Ma's source of acoustic waves consisted of a reciprocating piston controlled by
a variable speed, slider-crank mechanism, Barron's apparatus used a Scotch-
yoke mechanism that produced purer sinusoidal piston motions. Since both
experimental investigations were conducted in the absence of applicable
theoretical models, the results of this study are hoped to provide an alternative
for drawing experimental comparisons.

2. SYSTEM

The analysis starts by de®ning the solution domain and accompanying solid
boundaries. In the process, the main criteria that must hold true for the model to
be valid are stated as well.

2.1. SOLUTION DOMAIN

Prior to the onset of acoustic oscillations, the classic two-dimensional cavity
mean ¯ow ®eld is considered inside a rectangular enclosure of length L, width
W, and height 2H (W4H, L4H). Due to symmetry, only half of the enclosure
is shown in Figure 1 where y and z are used to denote the vertical and axial co-
ordinates normalised by H. In order to admit the in¯ow of gas, the top wall
(y=1) is made permeable to simulate a transpiring surface. As a result, choked
streams of gas of kinematic viscosity v0 are allowed to enter the enclosure with a
normal blowing speed component Vb. As gas streams swerve and head
downstream, they prescribe the bulk ¯uid motion represented by the streamlines
depicted in Figure 1. Except for the top wall and the out¯ow section, all other
boundaries are impenetrable. In order to simulate practical ¯ows that
incorporate a nozzle section at the downstream end, the out¯ow section is
assumed to correspond to a choked area. In seeking two-dimensional solutions,
it is only appropriate to consider enclosures whose width exceeds their height in
order to justify ignoring variations in the x direction. Due to symmetry about
the core (y=0) the solution domain is limited on the interval 0E yE 1. In
addition, coupling with acoustic disturbances is to be considered when harmonic
pressure oscillations of small amplitude Ap are introduced at a circular frequency
o0. This acoustic environment can be either induced externally or triggered
naturally depending on the application.
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2.2. ORIGINAL PREMISES

As it will become apparent in the forthcoming analysis, in order to achieve an
asymptotic solution to the time-dependent ®eld, the presence of several relatively
small parameters is exploited. The ®rst is the normal in¯ow Mach number, Vb/c,
where c happens to be the intrinsic speed of sound inside the cavity. In the
current report, physical settings with a Mach number of O(10ÿ3) will be
considered. In practical non-reacting ¯ows characterised by c� 350 m/s, the low
Mach number criterion is not prohibitive.
Another basic premise that must remain valid limits the acoustic pressure

amplitude Ap to remain small by comparison to the mean pressure p0 at z=0.
This is necessitated by the requirement of a small pressure wave amplitude, Ap/
p0, which will be used as a primary perturbation parameter in linearising the
Navier±Stokes equation.
Finally, in order to maintain consistency in perturbation orders, the mean

pressure distribution will need to be as uniform as possible. This, of course, is
dictated by the mean ¯ow character. In the present work, this somewhat
``¯exible'' condition casts an approximate limit on the length of the cavity,
namely, L/H< 100. When these criteria are met, the following analysis can be
appropriate everywhere in the absence of fully developed turbulence and ¯ow
separation.

3. GOVERNING EQUATIONS

3.1. CONSERVATION LAWS

The Navier±Stokes equations can be cast in dimensionless form into

@r
@t
�r � �ru� � 0, �1�

r
Du

Dt
� ÿrp

g
� 1

Re

4

3
r�r � u� ÿ r6�r6u�

� �
, �2�

when body forces are ignored, viscosity is assumed to be uniform, and the bulk
viscosity is neglected. In writing the set, density and pressure are normalised by
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Figure 1. Solution domain including mean ¯ow streamlines.
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their mean values, r0 and p0, at z=0, velocities are normalised by c, spatial co-
ordinates are normalised by H, and time is made dimensionless by reference to
the average time it takes for a pressure disturbance to travel from the wall to the
core, (H/c). The Reynolds number Re in equation (2) is (cH/v0), g is the ratio of
speci®c heats, and u( y, z, t) is the total velocity vector. Extruding u( y, z, t)
constitutes the main purpose of this report.

3.2. STRATEGY

First, the internal ¯ow ®eld is decomposed into steady and time-dependent
parts. This is accomplished by writing the independent variables as sums of
their steady and time-dependent components. Small parameter perturbations are
ideally suited because of the fundamental premise requiring the acoustic
amplitude to remain small [6]. In splitting the ®eld, it is assumed that the
presence of time-dependent oscillations does not alter the bulk ¯uid motion. This
assumption can be later veri®ed by realising that terms that incorporate the
time-dependent effects on the mean ¯ow are indeed secondary. In contrast, mean
¯ow effects on the acoustic ®eld cannot be dismissed since their incorporation is
behind the distinguishing features of the resulting particle motion.

3.3. STEADY AND TIME-DEPENDENT VARIABLES

Using asterisks to denote dimensional variables, and superscripts for
perturbation orders, the dimensional pressure can be expressed as

p� � p��0��y�, z�� � p��1��y�, z�, t�� � p��0� � Ap f �y�, z�� cos�o0t
��, �3�

where p��0�, subject to later veri®cation, is taken here to be a constant: p��0� � p0.
In the time-dependent part of equation (3), f is a normalised spatial function of
the order of unity. When normalised by p0, equation (3) becomes

p � 1� ew f �y, z� cos�o0t
�� � 1� p�1��y, z, t�, �4�

where ew=Ap/p0 is the primary perturbation parameter to which other
quantities can be compared. Density can be expanded in a similar way:

r�y, z, t� � r0 � r��1�

r0
� 1� r�1��y, z, t�: �5�

Velocity decomposition is assessed slightly differently since its mean value is of
the order of VbU(y, z), where U( y, z) is a function of O(1) to be discussed in
section 4. After expanding the velocity into

u��y, z, t� � VbU�y, z� � u��1��y, z, t�, �6�
normalise by c and get

u�y, z, t� �MbU�y, z� � u�1��y, z, t�, �7�
where the wall Mach number appears as a secondary perturbation parameter by
virtue of ew<Mb5 1.
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3.4. STEADY AND TIME-DEPENDENT EQUATIONS

When equations (4), (5) and (7) are substituted back into equations (1) and
(2), a set is obtained to O�e0w � 1� that governs the steady ¯ow motion:

r �U � 0, U � rU � 1

MbRe

4

3
r�r �U� ÿ r6�r6U�

� �
: �8, 9�

When terms that are of O(ew) are collected, a linearised expansion of the
conservation of mass and momentum equations is attained (see Appendix A for
details):

@r�1�=@t�r � u�1� � ÿMbr � �r�1�U�; �10�

@u�1�

@t
�Mb�u�1�6�r6U� �U6�r6u�1�� ÿ r�u�1� �U��

ÿ rp
�1�

g
� 1

Re

4

3
r�r � u�1�� ÿ r6�r6u�1��

� �
: �11�

These linearised equations reveal the intricate coupling between mean and time-
dependent ®elds which strongly in¯uence the total time-dependent solution
character.

4. MEAN FLOW CHARACTER

4.1. VELOCITY FIELD

The steady velocity vector U can be determined from the stream function
Sf=Cex de®ned for a ¯ow inside a rectangular cavity [7] where U=r6Sf. In
actuality, the classical stream function C(y, z)=ÿyz, whose streamlines are
shown in Figure 1, begets

U � Uyey �Uzez � @C
@z

ey ÿ @C
@y

ez � ÿyey � zez, �12�

which satis®es equations (8) and (9).

4.2. PRESSURE CORRECTION

Having already de®ned the velocity ®eld, the steady momentum equation
can be used to deduce the pressure associated with the resulting mean ¯ow.
Without suffering any loss in generality, pressure can be expanded as
p(y, z, t)=1+ pc(y, z)+ p(1)(y, z, t), where pc(y, z) is a spatial pressure
correction term that we propose to determine. A boundary condition that must
be met demands that pressure at z=0 be identical to the mean stagnation
pressure p0; this signi®es that p(0)(0, 0)=1+ pc(0, 0)=1, or pc(0, 0)=0. The
pertinent spatial correction pc(y, z) can be obtained from equation (2) by direct
substitution:
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MbU � r�NbU� � ÿrpcg �
1

Re

4

3
r�r � �MbU�� ÿ r6�r6�MbU��

� �
, �13�

or

rpc=�gM2
b� � ÿU � rU, �14�

which can be integrated to obtain, for pc(0, 0)=0, p�0��y, z� � 1ÿ g
2 M

2
b�y2 � z2�;

®nally,

p�0��y, z� � 1ÿ g
2
M2

b�y2 � z2�: �15�

Equation (15) clearly indicates that spatial variations in pressure are secondary,
being of order M2

bz
2. As long as z< 100, the error incurred by disregarding

spatial variations remains less than 1% since Mb is of O(10ÿ3). The corrected
pressure distribution con®rms that axial pressure variations are indeed negligible
except in very long chambers with large Mach numbers.

5. TIME-DEPENDENT FIELD SYNTHESIS

5.1. PRESSURE AND VORTICITY FIELDS

The time-dependent velocity vector representing small amplitude disturbances
can be decomposed into two vectors of distinct characters [8]: one that is
acoustic or irrotational, and one that is vortical or solenoidal. Designating the
irrotational mode variables by the circum¯ex (̂ ), and the solenoidal variables by
the tilde (0), one can synthesise the velocity vector from

u�1� � uirrotational � usolenoidal � û� ~u, �16�
contingent upon r6û � 0, and r � ~u � 0 . Similar decomposition of small
amplitude disturbances into two modes of ¯uctuations, an acoustic or pressure
mode and a solenoidal or vorticity mode, has been accomplished routinely in the
literature. The reader is referred to, for instance, the works of Chu and
KovaÂ sznay [9] or Flandro [10].
When equation (16) is plugged back into equations (10) and (11), interaction

equations for small amplitude ¯uctuations can be expressed for each of the
modes. In the process, time-dependent expressions for vorticity, pressure, and
density appear. These quantities are

ooo�1� � r6u�1� � ~ooo � r6~u, �17�

p�1� � p̂, r�1� � r̂, �18, 19�
where vorticity is seen to be produced exclusively by the rotational mode and
time-dependent pressure is caused by the acoustic mode. The pseudo-pressure
associated with the vorticity mode is ignored, being of second order in the wave
amplitude [9].
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5.2. TIME-DEPENDENT EQUATIONS OF MOTION

Substitution of equations (16)±(19) into the linearised Navier±Stokes set, given
by equations (10) and (11), begets two independent sets of partial differential
equations that govern the acoustic and vortical wave motions.

5.2.1. Acoustical model

@r̂=@t�r � û � ÿMbr � �r̂U�, �20�

@û

@t
� ÿrp̂

g
ÿMbr�û �U� � 4r�r � û�

3Re
: �21�

5.2.2. Vortical model

r � ~u � 0, �22�

@~u

@t
�Mb�U6~oooÿr�~u �U�� ÿ r6~ooo

Re
: �23�

5.3. BOUNDARY CONDITIONS

In order to evaluate u�1� � û� ~u, irrotational and vortical components must
®rst be determined separately by solving equations (20) and (21), and equations
(22) and (23), respectively. Resulting solutions must be juxtaposed in a manner
to correctly satisfy the existing boundary conditions. These include (1) the no-
slip condition at the wall requiring the axial time-dependent component of the
velocity to vanish at y=1, thus yielding ~uz�1, z� � ÿûz�1, z�; and (2) symmetry
at y=0, translating into @u(1)(0, z)/@y=0.

5.4. ACOUSTIC SOLUTION

Equations (20) and (21) can be rearranged into a set that possesses a classic
solution presented in most texts on acoustics. This is accomplished by
manipulating equations (20) and (21) to eliminate one of the two dependent
variables. When û is eliminated out, the ensuing PDE is

@2p̂

@t2
ÿr2p̂ � ÿMb r � @p̂

@t
U

� �
� gr2�û �U�

� �
: �24�

Clearly, equation (24) can be solved to O(Mb) by separation of variables. Since
our enclosure is characterised by H/L5 1, transverse oscillation modes can be
ignored, and one is left with the classic one-dimensional solution to equation
(24). Expressed in complex variable notation,

p̂�z, t� � ew cos�kmz� exp�ÿikmt�, �25�
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where the wave number is given by km=mpH/L, m=1, 2, 3, . . . , and m is the
acoustic oscillation mode number. The acoustic velocity companion can be
determined directly from equation (21). The result, to O(Mb), is

û�z, t� � i
ew
g
sin�kmz� exp�ÿikmt�ez: �26�

5.5. VORTICAL EQUATIONS

Maintaining Euler's notation for algebraic convenience, the rotational velocity
and vorticity components can be expressed as

~u�y, z, t� � V�y, z� exp�ÿikmt�, ~ooo�y, z, t� � $$$�y, z� exp�ÿikmt�, �27, 28�
where

V�y, z� � Vyey � Vzez, $$$ � r6V � $ex: �29, 30�
When these benign variable transformations are implemented, the vortical mass
and momentum conservation equations, given by equations (22) and (23),
become

r �V � 0, iV � s�r�V �U� ÿU6$$$� � er6$$$, �31, 32�
where

s �Mb

km
� 1

Sr
� Vb

o0H
< O�10ÿ1�, �33�

e � 1

kmRe
� 1

Rek
�

������������
�0=o0

H

r !2

< O�10ÿ4�, �34�

are the reciprocals of the Strouhal and kinetic Reynolds numbers. Notably,
e5 s5 1, since

e=s � �0=�VbH�51: �35�
Having de®ned the dynamic similarity parameters in control of the linearised
vortical equations, equations (31) and (32) can be expanded in scalar form into

@Vy

@y
� @Vz

@z
� 0, �36�

iVy � s
@

@y
�VyUy� �Uz

@Vy

@z
� Vz

@Uy

@z

� �
ÿ e

@2Vy

@z2
ÿ @

2Vz

@y@z

� �
, �37�

iVz � s
@

@z
�VzUz� �Uy

@Vz

@y
� Vy

@Uz

@y

� �
ÿ e

@2Vz

@y2
ÿ @

2Vy

@y@z

� �
: �38�

These reveal that direct analytical solutions to the coupled set are nearly
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impossible unless one exploits a key result that can be veri®ed numerically, and
proven theoretically, only a posteriori. This result, which will be later veri®ed,
asserts that the normal vortical velocity amplitude is of O(Mb) by comparison to
the axial component. Being a smaller quantity, ignoring Vy will not affect the
solution which, let us recall, is only accurate to O(Mb). At the outset, equation
(38) becomes

iVz � s
@

@z
�VzUz� �Uy$

� �
ÿ e

@$

@y
�O�Mb�: �39�

6. VORTICAL SOLUTION

Using regular perturbations, the conservation principles presented above can
be coupled with the vorticity transport equation to extrude an explicit solution
to the solenoidal velocity and vorticity vectors.

6.1. FORMULATION

To produce the vorticity transport equation associated with the solenoidal
®eld, take the curl of equation (32), and use equation (30); the outcome is

i$$$ � ÿsr6�U6$$$� ÿ er2$$$: �40�
Equation (40) can be expressed in scalar terms and rearranged to group leading
order terms on the left-hand side; when this is done, one gets

@$

@y
ÿ i$

sUy
� Uz

Uy

@$

@z
� e

sUy

@2$

@y2
� @

2$

@z2

� �
: �41�

In order to justify ignoring the viscous diffusion of unsteady vorticityÐ
represented by the right-hand side of equation (41)Ðat the ®rst perturbation
level, a variable transformation Y= y/Mb is introduced, whose action is to
stretch the normal scale over the Mach number range. When this is executed,
equation (41) becomes

@$

@Y
ÿ ikm$

Uy
�Mb

Uz

Uy

@$

@z
� 1

ReUy

1

M2
b

@2$

@Y2
� @

2$

@z2

� �
, �42�

which indicates that the right-hand side of equation (42) contains smaller order
terms; at the outset, it can be argued that subsequent zeroth-order perturbation
expansions in the Mach number will not be affected by their presence. The third
term on the left-hand side is retained, despite its misleading appearance of
O(Mb), because it represents the downstream convection of vorticity, which is
vital to preserve two-dimensionality. Being a function of the axial co-ordinate z,
it is essential to satisfy the laws of physics and, mathematically, provide a
nontrivial separable solution. The zeroth-order solution can now be achieved in
a straightforward fashion by expanding the vorticity in powers of the Mach
number, $ � $0 �Mb$1 �M2

b$2 �O�M3
b�, and by substituting the expansion
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back into equation (42). It follows that the leading-order term $0 is obtainable,
by separation of variables, from

@$0

@y
ÿ i$0

sUy
� Uz

Uy

@$0

@z
� 0: �43�

Letting $0�y, z� � Y�y�Z�z�, and recalling equation (12), equation (43) becomes

y

Y

dY

dy
� i

s
� z

Z

dZ

dz
� ln, �44�

where ln must be a strictly positive real number for a non-trivial solution.
Integrating and summing linearly over all possible solutions yields

$0�y, z� � exp�ÿi ln y=s�
X
ln

cn�yz�ln , �45�

where cn is an integration constant associated with ln, which must be determined
in a manner to satisfy the no-slip boundary condition at the wall, written
for vorticity. The latter requires a delicate treatment and will be addressed
separately.

6.2. ACOUSTICALLY GENERATED VORTICITY

Our current state of knowledge allows us to reduce equation (11) into

@u�1�=@t � ÿMb�r�u�1� �U� ÿU6ooo�1�� ÿ rp�1�=gÿr6ooo�1�=Re, �46�
which, when projected along z, gives

@u�1�z

@t
� ÿMb

@

@z
�u�1�y Uy � u�1�z Uz� �Uyo�1�

� �
ÿ 1

g
@p�1�

@z
� 1

Re

@o�1�

@y
: �47�

Remarking that ooo�1� � ~ooo, u�1�y � ~uy, p
�1� � p̂, and that u�1�z �1, z, t� must vanish to

prevent slippage, equation (47) becomes, at the wall,

0 � ÿMb
@

@z
�~uyUy� �Uy ~o

� �
ÿ 1

g
@p̂

@z
� 1

Re

@ ~o
@y

: �48�

Rearranging, and using the premise that ~uy=~uz � O�Mb�, equation (48) becomes

ÿUy ~o � 1

gMb

@p̂

@z
ÿ e
s
@ ~o
@y

, �49�

where the acoustic pressure gradient may be derived from p̂ � ew cos�kmz�
exp�ÿikmt� to give

ÿUy ~o � ÿ ew
g
Sr sin�kmz� exp�ÿikmt� ÿ e

s
@ ~o
@y

: �50�

Finally, using Uy(1, z)=ÿ1 at the wall, and recalling equations (28) and (30), an
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expression for the vorticity boundary condition can be obtained,

$�1, z� � ÿ ew
g
Sr sin�kmz� ÿ e

s
@$

@y
, �51�

indicating that ``fresh'' vorticity is continually generated at the wall by virtue of
the local, oscillatory pressure gradient. By comparison to the pressure amplitude,
the vorticity amplitude is larger by a factor of O(Sr). This observation, to be
veri®ed in the ®nal results, stresses the importance of vortical presence in the
acoustically driven coupling.

6.3. INVISCID VORTICITY

Since equation (45) must satisfy equation (51) at y=1, the vorticity boundary
condition is utilised to evaluate the separation eigenvalues and corresponding
integration constants. This is accomplished by setting

$0�1, z� � ÿ ew
g
Sr sin�kmz� � ÿ ew

g
Sr
X1
n�0

�ÿ1�n�kmz�2n�1
�2n� 1�! �

X
ln

cnz
ln �52�

) ln � 2n� 1, n � 0, 1, 2, . . . , and cn � ÿ ew
g
Sr
�ÿ1�n�km�2n�1
�2n� 1�! , �53�

wherefrom

$0�y, z� � ÿ ew
g
Sr sin�kmyz� exp�ÿiSr ln y�: �54�

6.4. INVISCID STREAM FUNCTION

In order to solve for the velocity, the stream function vector, sf=cex, is
®rst introduced which can be employed to eliminate the velocity, V�r6sf,
everywhere, by using the stream function equivalent, Vy= @c/@z, and Vz=
ÿ@c/@y. Starting with the vorticity equation,

$ � @Vz

@y
ÿ @Vy

@z
� ÿ @

2c
@y2
ÿ @

2c
@z2

, �55�

and realising that c must possess the same axial dependence as $, one sets
c0(y, z)=cc(y)$0(y, z), and attempts to solve for the corrective multiplier cc(y)
that satis®es equation (55). After some algebra, balancing the leading-order
terms results in

cc � s2y2, c0�y, z� � ÿ
ew
g
sy2 sin�kmyz� exp�ÿi ln y=s�: �56, 57�

Having determined the inviscid ¯ow stream function, it follows that the
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companion velocity is

V0�y, z� � ÿ ew
g
�Mby

3 cos�kmyz�ey � iy sin�kmyz�ez� exp�ÿiF0�, �58�

where F0= ln y/s. Note that the ratio of the normal and axial velocity terms in
equation (58) is of O(Mb), as assumed in section 6.2 above.

6.5. VISCOUS CORRECTIONS

Subject to later justi®cation, it is stated without proof that the velocity and
vorticity solutions that incorporate viscous effects must possess the same z-
dependence as their inviscid counterparts. After examining equations (57) and
(58), this proposition is implemented by setting

Vz�y, z� � Vc�y� sin�kmyz� exp�ÿiF0�, $�y, z� � $c�y� sin�kmyz� exp�ÿiF0�,
�59, 60�

where viscous correction multipliers, Vc and $c, must be determined. After
substitution into the full vorticity transport equation, given by equation (41),
several terms cancel out. Balancing terms of O(Sr2), one gets, after much
algebra,

d$c

dy
ÿ esÿ3yÿ3�1ÿ is�$c � 0 or $c � C exp�ÿxyÿ2�1ÿ is�=2�, �61�

where the viscous parameter x � e=s3 � k2m=�M3
bRe� appears as a dynamic

similarity parameter in control of the viscous correction multiplier. The vorticity
boundary condition at the wall, given by equation (51), allows evaluating the
integration constant C. The outcome is readily found to be

C � ÿ ew
g
Sr exp�x�1ÿ is�=2�: �62�

The corrected vorticity incorporating viscous effects can be ®nally formulated
from equation (60), namely,

$�y, z� � ÿ ew
g
Sr sin�kmyz� expfÿx�yÿ2 ÿ 1�=2ÿ iSr�ln yÿ xs2�yÿ2 ÿ 1�=2�g:

�63�
Having completely resolved $, the corrected velocity, Vc, can be extracted now
from the momentum equation relating velocity and vorticity, as expressed by
equation (39). After some algebra, one ®nds

Vc � ÿ ew
g

sy� e
s2y
� i yÿ e

sy

� �� �
�1� s2�ÿ1

6 exp�ÿx�yÿ2 ÿ 1�=2� ixs�yÿ2 ÿ 1�=2�: �64�

The corrected axial component of the solenoidal velocity vector can be obtained
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thereafter from equation (59):

Vz � ÿ ew
g
i
�yÿ xs2yÿ1 ÿ i�sy� xsyÿ1��

1� s2
sin�kmyz� exp�ÿz�y� � isz�y� ÿ iF0�y��,

�65�

where

z�y� � x
�y
1

Uÿ3y dy � x�yÿ2 ÿ 1�=2: �66�

Backward substitution into equation (27) yields

~uz�y, z, t� � ew
g
iB sin�kmyz� exp�ÿz�y� ÿ ij�y, t��, �67�

where

B � Br � iBi, Br � �ÿy� xs2yÿ1�=�1� s2�, Bi � s�y� xyÿ1�=�1� s2�, �68�
and

j�y, t� � kmt� F0�y� ÿ sz�y�: �69�
In the real domain, equation (67) can be recast into

~uz�y, z, t� � ÿ ew
g
�Bi cosjÿ Br sinj� sin�kmyz� exp�ÿz�: �70�

Thus, the total time-dependent axial velocity component can be constructed via
equation (16), rendering

u�1�z �y, z, t� �
ew
g
�sin�kmz� sin�kmt� ÿ �Bi cosjÿ Br sinj� sin�kmyz� exp�ÿz��

�O�Srÿ1�, �71�
in which the reported order of the truncation error will be veri®ed in section 7.5
below.

6.6. NORMAL VELOCITY

The normal component ~uy can be determined in a manner to satisfy the
conservation of mass principle. To that end, ~uz is used in the continuity
equation, expressed by equation (22), while an ansatz is proposed for ~uy.
Beginning with

~uy�y, z, t� � ew
g
G�y� cos�kmyz� exp�ÿz�y� ÿ ij�y, t��, �72�

the unknown function G(y) must be determined to satisfy continuity.
Substituting equations (67) and (72) into equation (22), the spatial function G(y)
is extracted in a manner to ensure that @~uy=@y � ÿ@~uz=@z is satis®ed in the
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leading order terms. This occurs when

G�y� �MbBy
2, �73�

rendering

~uy�y, z, t� � ew
g
Mby

2B cos�kmyz� exp�ÿz�y� ÿ ij�y, t��: �74�

Clearly, the original assumption of ~uy=~uz � O�Mb�Ðleading to equation (39)Ðis
justi®able. Furthermore, numerical computations of ~uy indicate that equation
(74) is indeed accurate. Since comparisons with numerical predictions of ~uy can
be easily drawn, they are omitted here for brevity.

7. DISCUSSION

Having successfully attained asymptotic formulations for both velocity and
vorticity ®elds, the purpose of this section is to discuss the analytical results. The
forthcoming discussion addresses two main topics: (1) the elucidation of essential
features associated with the asymptotic derivation, and (2) the assessment of the
global error associated with the ®nal expressions. This includes an explanation of
the solution type and character, an error analysis, a limit process veri®cation in
the event of no mean ¯ow transmission, and a description of the intricate
acoustico-vortical coupling established inside the cavity.

7.1. TOTAL TIME-DEPENDENT VELOCITY

Due to the small relative amplitude of u
�1�
y , the total time-dependent velocity

component u(1) is prescribed by the axial component u�1�z to O(Mb). From
equation (71), one can infer that

u�1��y, z, t� � ew
g

�
sin�kmz� sin�kmt�
z�������������}|�������������{acoustic part

ÿ�Bi cosjÿ Br sinj� sin�kmyz� exp�ÿz�
z�����������������������������������}|�����������������������������������{solenoidal part �

�O�Mb�: �75�
The total time-dependent velocity comprises a juxtaposition of both acoustic and
rotational velocity components. The rotational part is controlled by the viscous
damping function z which causes it to depreciate more rapidly with larger
damping parameters. This indicates that the rotational region and corresponding
boundary layer thickness are reduced when x � �0o2

0H=V
3
b is augmented. This,

of course, can be accomplished in one of four different ways: by decreasing the
normal velocity at the transpiring surface, or by increasing viscosity, frequency,
or chamber width. When suf®ciently removed from the transpiring wall, the
rotational part vanishes, and the acoustic part dominates. Hence, near the core,
the ®eld is prescribed solely by the acoustic wave.
The normalised velocity (gu(1)/ew) is depicted in Figure 2 for the ®rst four

oscillation modes corresponding to a fundamental Strouhal number of 20 and a
kinetic Reynolds number of 106. The axial station is chosen to coincide with the
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last acoustic pressure node, where acoustic velocity amplitudes are largest, in
order to bring into perspective some distinguished characteristics of the ¯ow
®eld. Evidently, the instantaneous velocity traces, separated by 45� in a period,
describe a family of harmonic waves travelling from the transpiring wall to the
core. They are characterised by a velocity overshoot near the wall and by a
spatial wavelength that diminishes at higher oscillation modes. As shown in
Figures 2 (b)±(d), the rotational velocity component is observed to vanish
prematurely and then recuperate (mÿ 1) times. This peculiar phenomenon,
which will be addressed subsequently, can be attributed to the downstream
convection of zero vorticity lines that leave their imprints on the rotational ®eld
while passing by.
In Figure 2, note the striking resemblance that exists between analytical points

generated from equation (75) and computational data obtained from numerical
simulations of the governing differential equations of motionÐachieved using a
step size of 10ÿ6 and a nine-stage Runge±Kutta scheme that exhibits a global
error of order seven [11]. This agreement, which causes numerical and analytical
results to become indistinguishable at all nine timelines, can be attributed to the
small error associated with the analytical derivation and will be examined more
closely in section 7.5.
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Figure 2. Numerical and analytical time-evolutions of the normalised velocity (gu(1)/ew) shown
at the last pressure nodes, where z*/L=(2mÿ 1)/(2m), and (a) m=1, (b) m=2, (c) m=3, and
(d) m=4. Here Sr=20m and Rek=106m. To the accuracy of the graph, numerical and analyti-
cal predictions are indistinguishable. Timelines correspond to eight evenly space values of kmt
expressed in degrees: ÐÐ, 0; - - - - - - , 45; � � � � � � , 90; ± � ± � ± � ± , 135; - � � - � � - � � , 180; - - - - - - , 225;
������ , 270; - � - � - � - � - � - , 315.
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7.2. ACOUSTICALLY±DRIVEN VORTICITY DISTRIBUTION

For the same test case parameters employed previously, Figure 3 shows the
velocity pro®les at pressure nodes when traced over iso-vorticity lines generated
throughout the enclosure. Iso-vorticity lines produced from equation (63)
indicate vortical intensi®cation that scales with the Strouhal number near
pressure nodes where local pressure gradients that are perpendicular to the
particle in¯ow direction are largest. Clearly, vorticity that originates at pressure
nodes is subsequently convected downstream by the bulk ¯uid motion. For
second and third oscillation modes, Figures 3(b) and (c) show zones of reversed
particle rotation separated by zero vorticity lines that emanate from acoustic
velocity nodes. As irrotational streaks transport idle particles downstream, they
cause zero vortical amplitudes to appear in the local velocity pro®les that they
happen to intersect. In a sense, the overall vorticity structure is dictated, ®rst, by
the acoustic wave character, and, second, by the convective mean ¯ow motion.

7.3. THE RICHARDSON VELOCITY OVERSHOOT

A distinguishing mark of the time-dependent velocity is the existence of a
velocity overshoot in the vicinity of the transpiring wall that can be attributed to
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Figure 3. Velocity time-evolutions located at acoustic pressure nodes and overlaying vorticity
contour lines shown for (a) m=1, (b) m=2, and (c) m=3. Here Sr=20m and Rek=106m.
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the phase difference between acoustic and vortical waves. This phase difference
can cause the acoustic and vortical amplitudes to add up in a manner to result in
a total amplitude that is almost twice the local acoustic wave amplitude. This, of
course, can only happen near the wall, where the vortical amplitude is still large
by virtue of its proximity to the wall where both vortical and acoustical wave
amplitudes are equal. This phenomenon, referred to at times as ``Richardson's
annular effect'', is a reassuring characteristic feature of oscillatory ¯ows. First
reported by Richardson [12] in experiments on sound waves in resonators, it was
later veri®ed theoretically by Sexl [13] and con®rmed by Richardson and Tyler
[14] in additional experiments conducted on reciprocating ¯ows driven by pure
periodic motions and in the absence of any mean ¯ow transmission. The
originality of the current analysis is that it involves an oscillatory ®eld over a
transpiring wall which induces much higher overshoot factors. As shown in
Figure 4, overshoot factors ranging from 100 to 200% of the acoustic wave
amplitude are possible for various physical parameters. In particular, decreasing
viscosity or increasing the kinetic Reynolds number leads to large overshoot
factors. For the same Rek, decreasing the blowing speed Vb brings the model
closer to the hardwall case exhibiting an in®nite Strouhal number. As one would
expect, this is conducive of attenuated overshoot factors.
For the same wide range of control parameters, the locus of this overshoot is

shown in Figure 4 on a different scale in fractions of the distance from the wall.
Clearly, the locus occurs in the upper 25% of the solution domain adjacent to
the wall and is independent of viscosity or the kinetic Reynolds number. This
can be attributed to the strong convective currents which, along with inertia,
constitute the dominant forces near the wall. In a sense, the role played by
viscosity becomes locally secondary, and is deferred to a ``blown-off'' viscous
layer that is described quite adequately by Cole and Aroesty [15] in the analysis
of steady ¯ows over permeable walls with sidewall injection. As the Strouhal
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Figure 4. Locus and magnitude of the Richardson velocity overshoot for a wide range of con-
trol parameters and z*/L=1/2.
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number is increased, with the effect of bringing the model closer to the hardwall
case, the overshoot loci approach the wall, in compliance with conventional
theory, since hardwall oscillations exhibit much thinner rotational layers.

7.4. THE HARDWALL CASE

In a limiting-process validation attempt, the normal convection speed Vb at the
wall is reduced below the Stokes diffusion speed, Vd �

������������
2o0�0
p

, which is usually
a very small quantity. With regards to the control parameters, this is found to
coincide with a threshold case corresponding to x= lS, where lS � H

���������������
o0=2�0

p
is the Stokes number. On that account, predictions from equation (75) are
compared with the classic, exact velocity pro®le derived for a harmonic pressure
wave between impermeable, parallel plates [7] in Figure 5. Since Vd is practically
very small, the test case presented here sets the lower limit for Vb in the current
model.

7.5. ERROR ANALYSIS

The concurrence of analytical and numerical predictions in Figure 2 is not
merely fortuitous since it can be attributed to the relatively small maximum error
incurred in the asymptotic expansion. In order to determine the order of this
error, and by way of insuring the accuracy reported in the aforementioned
formulations, a strategy described by Bosley [16] is invoked. To that end, ®rst
de®ne

Emax
0EyE1

�y, Rek, Sr� � ju�1�numerical ÿ u
�1�
analyticaljmax �76�

to be the maximum absolute discrepancy over the solution interval between the
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Figure 5. Comparison to the Stokes exact hardwall solution recuperated by suppressing the
transverse mean ¯ow velocity. Pro®les are shown at eight successive times (labeled 1±8) that are
separated by a phase difference of 45�: ÐÐ , exact (Vb=0); - - - - - - , asymptotic. Here Rek=105,
x= lS=224, z*/L=1/2, and m=1.
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numerical outcome of equation (11) achieved using a seventh order Runge±
Kutta scheme and a subinterval of 10ÿ6, and the asymptotic formulation given
via equation (71). Then show that the maximum absolute error exhibits the
classical logarithmic form,

Emax � KSrÿk, �77�
by determining the order of the error k from the slope of the linear least-squares
®t to the data sets corresponding to log Emax plotted versus log Sr for different
values of Rek. Recalling that Emax represents the total or global truncation error,
results are summarised in Figure 6(a) where the maximum error is calculated
at several discrete values of Rek. In most physical settings corresponding
to Rek> 56105, the maximum error is practically insigni®cant, being of the
order of a few percent. This explains the excellent agreement with numerical
simulations reported previously.
In addition to the slopes obtained from a least-squares linear curve ®tting

analysis, it can be graphically inferred from Figure 6 that the order of the error
approaches one asymptotically for large Rek. In other words,

k ÿ4
1=Sr!0
1=Rek!0

1, �78�

which con®rms that the truncation error reported for equation (71) is of O(Srÿ1).
This is further veri®ed in Figure 6(b) showing in a plot of Emax versus Rek that
Emax0 1/Sr for large Rek.

7.6. COMPARISON TO EXPERIMENTAL FINDINGS

A qualitative agreement may be said to exist between the current theoretical
formulation and experimental observations made by Ma et al. [1±3] and Barron
et al. [4, 5]. Insofar as the wave character is concerned, these experiments tend to
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con®rm the main vortical features described above. For example, the additional
vortical component near the wall, leading to a pronounced velocity overshoot,
has indeed been reported in references [4, 5] and alluded to in references [1±3].
The exponential rate of decay of the wave amplitude, borne out in equation (75),
is also in qualitative agreement with the hot-wire measurements recorded in the
cold-¯ow investigations by Ma and Barron. As predicted by the current
analytical solution, the vortical element seems to disappear away from the walls,
where the purely acoustic ®eld is seen to persist. Further experimental details are
furnished in reference [5].

8. CONCLUSIONS

In this report, regular perturbation expansions of the linearised Navier±Stokes
equations are shown to lead to closed-form formulations of the velocity and
vorticity ®elds inside a rectangular enclosure. The enclosure accommodates a
strong coupling between the classic cavity mean ¯ow and the internal acoustic
environment. Accurate, uniformly valid asymptotic expressions are obtained that
agree very well with numerical predictions. The time-dependent velocity
comprises both acoustic and vortical wave components and exhibits several
characteristics of oscillatory ¯ows. These include a classical wave depreciation
and a velocity overshoot in the vicinity of the wall. New characteristic features
include intense velocity overshoot factors reaching almost twice the acoustic
wave amplitude, and nodes of zero rotational velocity amplitudes occurring
downstream of velocity node stations. These rotational velocity nodes appear for
harmonic oscillation modes only, owing to the downstream convection of zero
vorticity lines that emanate from acoustic velocity node stations. The vortical
structure is closely intertwined with the mean and acoustic wave characters and
exhibits interesting features as well. Unsteady vorticity amplitudes are found to
scale with the Strouhal number and are largest when originating from acoustic
pressure nodes where pressure gradients parallel to the permeable wall are
largest. Subsequently, vorticity lines are transported downstream by the bulk
¯uid action. In the limiting process when the convection speed is suppressed
below the speed of diffusion, the approximate formulation reduces
asymptotically to the Stokes exact solution for an oscillatory ®eld over a rigid
wall. The few percent in global error incurred throughout the derivation process
are found to diminish with decreasing friction or viscosity.
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APPENDIX A: LINEARISED NAVIER±STOKES

Inserting the expanded variables into equation (1) yields

@�1� r�1��=@t�r � ��1� r�1���MbU� u�1��� � 0, �A1�

r �
�
Mb U|{z}

O�e0w�
� u�1�|{z}

O�e1w�
�Mb r�1�U|��{z��}

O�e1w�

� r�1�u�1�|���{z���}
O�e2w�

�
� @r�1�=@t � 0: �A2�

Collecting terms to the ®rst order in the wave amplitude, and ignoring smaller
terms, one gets

@r�1�=@t�r � �u�1� � r�1�MbU� � 0, �A3�
which is equation (10). Inserting the expanded variables into equation (2), and
recalling that r �U=0, one gets

r@u=@t � �1� r�1��@�MbU� u�1��=@t � @u�1�=@t� r�1�@u�1�=@t, �A4a�

u � ru � �MbU� u�1�� � r�MbU� u�1��

�M2
bU � rU�MbU � ru�1� �Mbu

�1� � rU� u�1� � ru�1�: �A4b�
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ru � ru � �1� r�1��u � ru �M2
bU � rU�MbU � ru�1� �Mbr�1�u�1� � rU

�M2
br
�1�U � rU� r�1�u�1� � ru�1� �Mbu

�1� � rU� u�1� � ru�1�

�Mbr�1�U � ru�1� �A4c�

ÿrp=g � ÿrp�1�=g, �A4d�

Reÿ1�4r�r � u�=3� � 4Reÿ1r�r � �MbU� u�1���=3 � 4Reÿ1r�r � u�1��=3, �A4e�

ÿReÿ1r6�r6u� � ÿReÿ1r6�r6�MbU� u�1���

� ÿReÿ1Mbr6�r6U� ÿ Reÿ1r6�r6u�1��: �A4f�
Adding up equations (A4a)±(A4f), one realises that the zero order terms yield
back equation (9) associated with the steady ®eld. Collecting terms to the ®rst
order in the wave amplitude, and disregarding smaller terms, one obtains

@u�1�=@t�MbU � ru�1� �Mbu
�1� � rU

� ÿrp�1�=g� 4Reÿ1r�r � u�1��=3ÿ Reÿ1r6�r6u�1��, �A5�
which by making use of the identity,

�U � r�u�1� � �u�1� � r�U � r�u�1� �U� ÿ u�1�6�r6U� ÿU6�r6u�1��,
leads to the leading order, time-dependent momentum equation, referred to in
section 2 as equation (11).
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