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The channel is long and wide.  The top and bottom walls are permeable.  The head-end is
closed and the aft end is wide open.  Large suction is imposed uniformly along the permeable
walls.  The inception of small amplitude harmonic pressure waves gives rise to an oscillatory
field that we wish to investigate.  The harmonic waves can be either introduced externally or
produced internally by random fluctuations in the suction rate.  For an isobaric exit, self-
triggered acoustic oscillations are of the closed-open type.  Based on the normalized
pressure-wave amplitude, the conservation equations are linearized and split into leading-
order (steady) and first-order (time-dependent) equations.  The first-order set is subdivided
into an acoustic, pressure-driven, wave equation, and a vortical, boundary-driven, viscous
equation.  For longitudinal acoustic oscillations, both equations are written at the order of
the wall suction Mach number.  The resulting equations are then solved in an exact fashion.
The novelty lies in the vortical response which can be reduced into a Weber equation
following a Liouville-Green transformation.  The rotational solution is expressible in terms
of confluent hypergeometric functions of the suction flow Reynolds number, Strouhal
number, and spatial coordinates.  The total solution is thus constructed and found to
coincide with the numerical solution of the linearized momentum equation.  The oscillatory
velocity exhibits similar characteristics to the exact Stokes profile for oscillations in a long
channel with hard walls.  In particular, a thin rotational layer is observed along with a small
velocity overshoot near the wall.  Both depth and overshoot are nowhere near their values
obtained by switching from suction to injection.  In exact contrast to former studies
involving injection, the so-called acoustic boundary-layer is found to depreciate when
suction is increased or when viscosity is reduced.  This response is similar to that of the
Stokes layer over hard walls.  In all cases, the effect of increasing frequency is consistently
found to decrease the rotational layer near the wall.

 I. Introduction!

HE focus of this paper is to obtain an analytical

solution to the oscillatory velocity field in a porous

channel with uniform wall suction.  The scope is

limited to the large suction case for which an exact

solution can be obtained for both pressure-driven and

boundary-driven temporal velocities.  The work is
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hoped to increase our understanding of oscillatory and

pulsatory flows in porous tubes and channels.  Such

flows arise in the modeling of the respiratory function

in lungs and airways, in the design of hydraulic line

transmissions, in sweat cooling, and in flow separation

processes.  Since oscillatory flows with wall injection

have already been analyzed in former studies,1 the

current article will focus on the wall suction case.

Another purpose for this study is to serve as a prelude

for a generalized formulation that could be applied to

oscillatory flow problems with arbitrary levels of

suction.

Much work has been invested in the past for the

treatment of non-oscillatory flows in rectangular

T
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channels with the same planar geometry considered

here.  Throughout these studies, numerical, exact or

asymptotic mean flow solutions were obtained for

different levels of suction or injection along the walls.

These formulations were extracted from a single,

nonlinear, fourth-order, ordinary differential equation

(ODE) that was an exact solution to the Navier-Stokes

equations.  The fundamental similarity equation was

derived by Berman2 in his analysis of flows that are

bounded by porous surfaces. It depended on the cross-

flow Reynolds number ( /wR v h !! ) that was based

on the wall suction velocity and the channel’s half-

height.  Berman’s landmark paper2 set the stage to

extensive studies.  While some were concerned with

developing analytical or numerical mean flow solutions

over different ranges of suction (or injection), others

have addressed issues regarding solution multiplicity

and stability.

With regards to suction flows in rectangular

channels, Berman was first in using asymptotic tools to

solve the steady flow problem for the small suction

case.2  Soon after, Yuan,3 Sellars,4 and Terrill5

developed solutions that extended over increasingly

larger ranges of suction.  For example, Yuan3 extended

Berman’s range to 20R ! , and Sellars4 produced one

exact solution for R "# .  For large suction, Terrill5

presented an asymptotic solution that contained viscous

corrections of order 1R$ .  As R "# , Terrill’s

leading-order term reproduced Sellars’ exact solution

for infinite suction.  Note that later studies have

indicated that three total solutions could exist for large

R .6-8  Two of these solutions, one being stable to

temporal perturbations, share the same inviscid leading-

order term.  In this article, we shall refrain from

addressing unstable solutions.  In fact, an assumed

stable solution will be utilized to represent the mean

flowfield.

It should be noted that former mean flow studies

have not considered possible fluctuations in the wall

suction rate.  Such fluctuations can be inevitable and

take place at random frequencies.  Those matching the

channel’s natural frequencies are amplified to the point

of promoting a self-sustaining acoustic field.  The

oscillatory pressure disturbances that are produced give

rise to acoustic velocity oscillations that alter the mean

flow character.  The velocity oscillations stem from

both acoustic (pressure-driven) and vorticity (boundary-

driven) disturbance modes.9 Since no other study seems

to have explored the resulting temporal field, it is the

purpose of this article to find an analytical solution that

can be used to characterize the self-induced oscillatory

field in a channel with large wall suction.  For cases

that involve externally induced oscillations (as opposed

to self-triggered oscillations), the same analysis

presented here can be employed.

The mathematical modeling starts in Sec. II with a

definition of the system geometry.  This is followed by

a listing of pertinent assumptions, including a

description of the mean flow solution that is to be used.

In Sec. III, the governing equations are presented and

decomposed into mean and time-dependent sets.

Section IV deals with the temporal set, which is further

broken down into an acoustic and a vortical component.

The pressure-driven response is dealt with immediately,

while the rotational component is left to be evaluated in

Sec. V.  There, an exact solution to the vortical

momentum equation is derived, following a Liouville-

Green transformation that is applied to the normal

boundary-layer equation.  The attainment of the vortical

set completes the solution for the oscillatory velocity

which is described in Sec. VI.

 II. Defining the Basic Flow Model

A. The Porous Channel

We consider a long slender channel with porous

walls that are separated by a distance 2h .  Fluid is

withdrawn from the porous surfaces at a uniform wall

velocity wv .  Having defined the length and width of

the channel as L  and w , we make the assumption of a
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two-dimensional planar flow by imposing the condition

w h%% .  In fact, Terrill5 has shown that when the

ratio of the width to the height of the channel is

/ 8w h & , the presence of lateral walls can be ignored.

The system can be further simplified by imposing the

condition of symmetry about the channel’s midsection

plane.  This enables us to reduce the solution domain to

one half its original size.  By way of illustration, a cross

section of the channel is shown in Fig. 1.  For a

symmetric low aspect ratio channel, one can ignore

variations in the z -direction and reduce the solution

domain to 0 x l' ' , and 0 1y' ' , where /l L h!

is the dimensionless channel length.

Under the influence of small variations in the suction

rate, a channel that is rigid at the head end and

isobarically open at the aft end can develop longitudinal

pressure oscillations of amplitude A .  The system’s

acoustic frequency can be specified by

( )½ /s sm a L" #! $ , (1)

where sa  refers to the stagnation speed of sound, and

m  is the oscillation mode number.

B. Limiting Conditions

In order to simplify the analysis to the point where an

analytical solution can be attempted, several restrictions

must be observed.  First, the mean flow is assumed to

be laminar.  The mechanisms of mixing, swirling, or

turbulence are also discounted.  Constant thermostatic

properties are used, and the oscillatory pressure

amplitude is taken to be small in comparison to the

stagnation pressure.  Finally, owing to the fact that the

mean flow is obtained for an infinitely large Reynolds

number, our solutions are limited to 10 R* *# .

C. The Steady Sellars Flow

The mean flow solution can be obtained by

employing the similarity parameter suggested by

Berman.2  In the absence of small amplitude pressure

disturbances, the Navier-Stokes can be solved exactly

through the use of the steady stream function

( )xF y+ ! $ . (2)

Defining 
0 0 0

( , )u v!u  to be the mean velocity vector

normalized by wv , one can express the components of

0
u  as 0 0( , ) ( , )u v xF F,! $ .  The separable component

F  must satisfy Berman’s equation

( ) 0ivF R F F FF, ,, ,,,- $ ! , (3)

with

(0)F , (1)F! (1)F ,,! 0! , (0) 1F ! $ .  (4)

For a study concerned large suction, we consider the

case investigated by Sellars4, Terrill5, and Zaturska et

al.6 for which 1F y! $ .  This solution proves to be

0

1

0 2 4 6 8x

y

 

Fig. 1  System geometry showing select mean flow streamlines and velocity vector scales.
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exact for R "# .  With this choice of F , the velocity

and vorticity fields can be written as

0 ( , 1)x y! $ $u , 
0 0./ !u . (5)

The foregoing mean flow solution satisfies all the

boundary conditions, including the no-slip at the wall.

After normalizing the mean pressure by sp$ , (where $

is the ratio of specific heats, and sp  is the stagnation

pressure), the complete momentum equation becomes

2
0 0 0M p0. ! $.u u

1
0 04 ( ) ( )R$ 1 2- . .0 $./ ./3 4u u . (6)

Integration gives

1 2 2 2
0 ½ ( 1)p M x y$$ 1 2! $ - $3 4 . (7)

 III. Governing Equations

A. Normalized Navier-Stokes

In order to express the differential conservation

principles, we evoke dimensionless parameters and see

that spatial coordinates are normalized by h , the total
instantaneous velocity is normalized by sa , and time is

referenced to the system’s oscillation frequency s" .

Employing asterisks to represent dimensional variables,

spatial and temporal coordinates, velocity, pressure and

density can be set as

* /x x h! , * /y y h! , *st t"! , * / sa!u u ,

* / sp p p$!  and * / s% % %! , (8)

where s%  is the stagnation density.  Following this

choice, the equations of continuity and motion can be

expressed in the non-dimensional form

( )/ 0t" % %5 5 -. !. u , (9)

[ / ( . ) ]t% "5 5 - .u u u

( ) ( )6 74 /3p M&! $. - . . $./ ./.u u . (10)

Equations (9)–(10) follow the definitions of the non-

dimensional frequency /s sh a" "8 , the suction Mach

number /w sM v a8 , and the small parameter

1/R& 8 .

B. Perturbed Variables

With the introduction of small amplitude oscillations

at a frequency s" , the instantaneous pressure can be

expressed as the linear sum of the time-dependent and

steady components:

2 2
1

( , , ) 1/ ( , )exp( ) ( )p x y t p x y it M x$ &! - $ -! , (11)

where 1i ! $  and /( )sA p& $!  is the pressure

wave amplitude.  Expressing the density in the same

manner, one gets

1
( , , ) 1 ( , )exp( )x y t x y it% &%! - $ . (12)

Following Lighthill10 in the assumption of small

oscillations, the total velocity can be expanded as

0 1
( , , ) ( , ) ( , )exp( )x y t M x y x y it&! - $u u u . (13)

C. Total Field Decomposition

Equations (11)–(13) must be inserted back into Eqs.

(9)–(10).  The zero-order terms yield the mean flow

equations.  Likewise, ( )&!  terms result in

( )01 1 1
i M"% %$ -.0 ! $ .0u u , (14)

1
i"$ u

( ) ( ) ( )0 0 01 1 1
M 1 2! $ . 0 $ / ./ $ / ./9 :3 4u u u u u u

( ) ( )1 1 1
4 /3p M & 1 2$. - . .0 $./ ./9 :3 4u u . (15)

Equations (14) and (15) describe the intimate coupling

between mean and steady motions.  They clearly

indicate that the mean velocity 
0
u  has a strong

influence on the oscillatory flow component.

 IV. Temporal Field Decomposition

A. Irrotational and Solenoidal Vectors

In order to proceed, the temporal disturbances are

split into solenoidal and irrotational components.  Using

a circumflex to denote the curl-free pressure-driven

part, and a tilde for the divergence-free boundary-

driven part, the time-dependent velocity component can

be expressed as

1
ˆ! -u u u! (16)
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with
1 1
! ./ ! ./u u!!  , 

1
ˆp p! , 

1
ˆ% %! . (17)

The decomposition charges all vortices to the

solenoidal field, and compressibility sources and sinks

to the irrotational field.  Such decomposition is based

on a fundamental theorem of vector analysis that was

first addressed by Stokes11 in 1849 and proven

rigorously by Blumenthal in 1905.  Furthermore, the

theorem is at the root of Helmholtz’s work on vortex

motion in 1858 and is of great importance in both fluid

dynamic and electromagnetic theories.

B. The Linearized Navier-Stokes Equations

Insertion of Eqs. (16)-(17) into Eqs. (14)-(15) leads

to two independent sets that are only coupled through

existing boundary conditions.  One set that we call

acoustic is compressible and irrotational; the other, we

call vortical, is incompressible and rotational.  These

responses are byproducts of pressure-driven and

vorticity-driven oscillation modes at ( )&! .

1. The Acoustic Set

( )0ˆˆ ˆi M"% %$ -.0 ! $ .0u u , (18)

( )ˆ ˆˆ 4 /3i p M" &$ !$. - . .0u u

( ) ( )0 0
ˆ ˆM 1 2$ . 0 $ / ./9 :3 4u u u u . (19)

2. The Vortical Set

0.0 !u! , (20)

( )i M" &$ ! $ ./ ./u u! !

( ) ( ) ( )0 0 0
M 1 2$ . 0 $ / ./ $ / ./9 :3 4u u u u u u! ! ! . (21)

C. Coupling Conditions

Two boundary conditions must be satisfied by the

unsteady velocity component 
1
u .  These are the no-slip

condition at the wall 
1
( , 0) 0u x ! , and symmetry about

the midsection plane, 
1
( , 1)/ 0u x y5 5 ! .

D. Acoustic Solution

As we multiply Eq. (18) by i"$ , take the divergence

of Eq. (19), and add resulting terms, a wave equation is

produced:

( )2 2 2 ˆˆ ˆ 4 /3p p M" &. - !$ . .0u

( ) ( ); 2
0 0

ˆˆM i p"$ .0 $. 0u u u ( )<0
ˆ1 2-. 0 / ./3 4u u .

(22)

A solution, at ( )M! , can be achieved through the use

of separation of variables.  This solution, corresponding

to longitudinal oscillations, is obtainable through the

use of the rigid wall boundary conditions.  At the

oustet, the acoustic pressure and velocity are

( )ˆ cos ( )p x M"! -! , (23)

( )ˆˆ sin ( )i x M"! -u i ! . (24)

E. Vortical Equations

Assuming that the ratio of the normal to axial

velocity is of the same order as the Mach number (i.e.

/ ( )v u M!! ! ! ), v!  can be neglected.  This assumption

can be justified in view of the arguments presented by

Flandro12 and Majdalani and Van Moorhem.1  Applying

this condition, along with the definition of the mean

flow velocity, the axial momentum equation can be

expressed as

( )
2

20 0 ( )
u u

iSru uu v M
x y y

&
5 5 5

! - $ -
5 5 5

! !
! ! ! , (25)

where /Sr M"8  is the Strouhal number.  For large

suction, Eq. (25) becomes

( 1)
u u

iSru y x u
y x
5 5

! $ $ $
5 5
! !

! !
2

2 ( )
u

M
y

&
5

$ -
5
!

! .(26)

An exact solution to Eq. (26) is presented next.

 V. The Exact Solution

A. The Separable Boundary-Layer Equation

An exact solution to Eq. (26) can be achieved

through the use of separation of variables.  Assuming

the form
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( ), ( ) ( ),u x y X x Y y!! (27)

substitution into Eq. (26) leads to

2

2

( 1)d d d
1

d d d n

yx X Y Y
iSr

X x Y y Y y
&

'
$

! $ $ $ ! (28)

where 0n' %  is the separation eigenvalue.  Integration

of the x -equation can be performed easily and then

inserted into Eq. (27).  The solution becomes

( , ) ( )n
n n

n

u x y c x Y y'! =! , (29)

where nc is an integration constant associated with n' .

Satisfaction of the no-slip boundary condition at the

wall requires setting the acoustic and vortical velocity

components equal and opposite at 0y ! .  One finds

( , 0) sin( )u x i x"! $! . (30)

Using a series expansion of the sine function, and

setting the result equal to Eq. (29), one gets

2 1

0

( 1) ( )
(0)

(2 1)!
n

n n

n n
n n

x
c x Y i

n
' " -#

!

$
! $

-= = . (31)

Equating terms yields

2 1( 1)
2 1, , (0) 1

(2 1)!

n n

n n nn c i Y
n
"

'
-$

! - ! $ !
-

, (32)

where 0,1,2,...,n ! # . The expression for the

rotational component becomes

2 1

0

( 1) ( )
( , )

(2 1)!

n n

n
n

x
u x y i Y

n
" -#

!

$
! $

-=! . (33)

In order to complete Eq. (33), nY  needs to be

determined from Eq. (28).  The search for nY  leads to a

boundary-value problem of the form

2

2

d d
( 1) +[ 2 2] 0

d d
n n

n

Y Y
y iSr n Y

y y
& $ $ - - ! (34)

that is subject to

(0) 0nY ! ,   (1) 0nY !, . (35)

The two boundary conditions stem from the no slip and

core symmetry requirements.

B. The Liouville-Green Transformation

Careful examination of Eq. (34) leads us to believe that

an exact solution is tractable if the equation is first

transformed from a variable coefficient ODE, to an

equation with constant coefficients.  Working toward

that end, the Liouville-Green transformation is applied

by first setting 1r y! $ .  This transforms Eq.(34) into

2

2

d d
+[ 2 2] 0

d d
n n

n

Y Y
r iSr n Y

r r
& $ - - ! , (36)

with boundary conditions (1) 0nY !  and (0) 0nY !, .

Next, we define

( )X r(! ,   ( ) ( ) ( )nB X r Y r)! . (37)

These change the derivatives of nY  into

2 2

d 1 d d
d d d
nY B dX B

B B
r X dr X

) ) (
) ) ) )

, , ,
! $ - ! $ - (38)

2 2 2

2 2 2

d d 2 d
d d d

nY B B
r X X

( ( ( )
) ) )

> ?, ,, , ,@A! - $ @A @A @AB C

2

2 3

2
B

) )
) )

> ?,, , @A @$ $A @A @AB C
, (39)

where primes stand for differentiation with respect to

r .  Substitution of these derivatives into Eq. (36) gives

2

2 2

d 1 2 d
d d
B B

rR
X X

( )
( (

( )

> ?, , @A ,, ,- $ $ @A @A @A, B C

2

2 2

1 2 rR
B

) ) )
( ) ) )

> ?,, , , @A @- $ - -A @A @A, B C

( )2

1
[ (2 2)] 0R iSr n B

(
- - - !

,
. (40)

The functions )  and (  are now chosen to force the

variable coefficients in the transformed equation to be

constant values.  To do this, the coefficient of the first

derivative term is set equal to zero

2
0rR

( )
( (

)

, ,
,, ,$ $ ! , ( )/2rR

) (
) (

, ,,
! $

,
. (41)

Integrating gives 2
0

exp( / 4)H Rr) (,! $ , where

0H  is a constant.  Equation (40) simplifies into

2

2 2

d
[ (2 2)] 0

d
B R

iSr n B
X

*
(

D EF FF F- $ - - !G HF F,F FI J
; (42)

where
2

2 2

1 2 rR) ) )
*

( ) ) )

> ?,, , ,@A @! $ - -A @A @A, B C
 (43)

By imposing

2 [ (2 2)]
R
iSr n

(
- - !

,
constant, (44)
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one obtains

R(, !  and X r R(! ! . (45)

Furthermore, setting 4
0 1/H R!  gives

 2( ) exp( / 4)r Rr) ! $ .  (46)

Finally, the transformed equation, and corresponding

boundary conditions become

( )
2

2
2

d
½ ¼ 0

d

B
p X B

X
- - $ ! ; 2 2p n iSr! - - (47)

with ( ) exp( /4)B R R! $ ; 
d (0)

0
d

B

X
! . (48)

C. The Complete Solution

Equation (47) is a Weber differential equation.  This

type is known to have independent solutions that are

parabolic cylinder functions of the form

1 2
( ) ( ) ( )p pB X K D X K D X! - $ . (49)

Due to the complexity of the parabolic cylinder

functions, symbolic programming is employed to

evaluate the constants 
1

K  and 
2

K .  This is done in

fulfillment of the boundary conditions given by Eq.

(48).  The result is

( ) 1 1 1
2 2 21 2

1 /2 1
22 /[ ( , , )]p pK K p R#$ $ $! ! K L $ , (50)

where K  is Euler’s Gamma function and L  is the

confluent hypergeometric function.  The latter is

expandable in a series of the type

( , ; )a b xL !

2 3( 1) ( 1)( 2)
1

1! ( 1) 2! ( 1)( 2) 3!

a a a a aa x x x
b b b b b b

- - -
- - - -

- - -
" (51)

Substitution of Eqs. (49) and (50) into Eq. (37) leads to

21 1 1
2 2 2
1 1 1
2 2 2

( , , )
( )

( , , )n

p Rr
Y r

p R
L $

!
L $

. (52)

One may now revert back to original variables and

revisit Eq. (33).  One finds

u !!
2 1 21 1 1

2 2 2

1 1 1
0 2 2 2

( 1) ( ) , , ( 1)

(2 1)! ( , , )

n n

n

x p R y
i

n p R

" -#

!

1 2$ L $ $3 4$
- L $= . (53)

Using continuity, the normal component of the

rotational velocity can now be deduced.  From Eq. (20)

we have

d
u

v y
x
5

! $
5M
!

!

( )2 21 3 1
2 2 2

1 1 1
0 2 2 2

( 1) ( ) , ,

(2 )! ( , , )

n n

n

x p Rr
i r

n p R

"
"

#

!

$ L $
! $

L $= . (54)

In view of Eqs. (53)–(54), the total oscillatory velocity

can now be constructed by summing both acoustical

and vortical components.  At length, one obtains

61
sin( )u i x"!

2 1 21
2

1
0 2

( 1) ( ) ( , , )

(2 1)! ( , , )

n n

n

x a b RF

n a b R
" -#

!

2$ L :$ :- L :4
= , (55)

2 21
2

1 1
0 2

( 1) ( ) ( , , )

(2 )! ( , , )

n n

n

x a c RF
v i F

n a b R
"

"
#

!

$ L
!

L= , (56)

with 1
21a n iSr! $ $ $ , 1

2b ! , and 3
2c ! .

D. Numerical verification

The analytical solution that we constructed can be

easily verified via comparisons with the numerical

solution of Eq. (26).  This can be accomplished using

the same numerical code that was developed by

Majdalani and Van Moorhem1 for the injection case.

For large suction, we obtain a uniform agreement of at

least six significant digits using a step size of
65 10y $N ! / .  Note that, for injection, numerical

predictions acquired from the same code were shown,

in previous studies,1,13 to agree with both asymptotic

and experimental observations.

Comparing the numerical output to the exact solution

of the linearized momentum equation (Eq. (26)) serves

a dual purpose.  First, it increases our confidence in the

numerical algorithm that was currently used to integrate

the momentum equation.  Second it ensures the

correctness of the procedure that led to the exact

solution.

 VI. Discussion

Based on Eq. (55), the time evolution of the axial

oscillatory velocity component is analyzed in Figs. 2–4
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over a range of parameters.  At first glance, the profiles

seem to concur with classical theory of time-dependent

flows that is fairly well-presented in a survey by Rott.14

In fact, a strong resemblance is found between our

solution and the oscillatory flow solution over non-

permeable walls.  As such, the velocity appears to be a

traveling wave with two distinct components.  A

viscous, rotational component that is dominant near the

wall, and an inviscid, acoustic part that is retained near

the core.  While their sum satisfies the no slip at the

0
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Fig. 2  The oscillatory velocity u -it1exp( )  plotted at eight different times for m = 1 , x l/ = 1 , Sr = 20 , and

a) R = 10 , b) R = 20 , c) R = 50 , and d) R = 100 .  This can be due to a progressive decrease in viscosity.
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Fig. 3  The oscillatory velocity u -it1exp( )  plotted at eight different times for x l/ = 1 , R = 20 , and m = 1 .

Properties correspond to a) Sr = 10 , and b) Sr = 100 .  This variation is due to an order of magnitude
increase in oscillation frequency.  Higher Sr  increase the overshoot while reducing the penetration depth.
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wall, the rotational part decays as the distance from the

wall is increased. The rotational layer and

corresponding thickness appear to be largest when

viscosity is large and suction is small.  The profile also

exhibits a small velocity overshoot near the wall.  This

phenomenon is known as Richardson’s annular effect

and is a characteristic of oscillatory flows.  It can take

place near the wall when rotational and acoustic waves

have favorable phases and, hence, additive amplitudes.

In order to illustrate the effect of R  on the solution,

the suction Reynolds number is increased in Fig. 2 by

one order of magnitude while keeping other variables

constant.  As the Reynolds number is increased, viscous

effects become less pronounced:  The penetration depth

(i.e., rotational boundary-layer) becomes smaller.  The

Richardson overshoot also diminishes.  This effect is to

be expected as the convective withdrawal at the wall

becomes more appreciable with successive increases in

R .  Suction seems to inhibit the boundary-layer growth

near the wall.  This effect is the exact opposite of what

has been reported in the presence of injection.  As

shown by Majdalani15,16 increasing injection increases

the penetration depth.  It also leads to a substantially

larger velocity overshoot that averages 50%.

In Fig. 3, the effect of varying the oscillation

frequency is captured.  Thus, as the Strouhal number is

increased from 10 to 100, a slight increase in the

Richardson effect is noted.  This is accompanied by a

reduction in penetration depth.  This observation is

consistent with the effect of frequency in the presence

of injection.  In both cases, it can be shown that

increasing frequency increases the temporal velocity

near the wall and decreases the penetration depth.  The

increased overshoot can be attributed to the fact that the

normal rotational wavelength is inversely proportional

to Sr .  A shorter wavelength leads to a vortico-acoustic

coupling that is closer to the wall.  Since the vortical

amplitude increases as we draw nearer to the wall, a

larger vortical contribution can be added to the acoustic

component at shorter wavelengths.

In Fig. 4, all parameters are fixed except for the

suction speed.  Hence, as wv  is increased by one order

of magnitude, a reduction in penetration depth and

breadth (overshoot) are noted.  The influence of suction

speed on altering the flow character is certainly the

greatest.  Surveying these figures as a whole suggests

that, over a wide range of Reynolds and Strouhal

numbers, the boundary-layer at the wall shares several

similarities with the classic Stokes layer over hard

walls.  As opposed to the penetration depth with

injection, the rotational boundary-layer here is very

thin.  The velocity overshoot is also minimal.  These

characteristics are markedly different from the basic

features of an oscillatory flow with wall injection.15,16
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Fig. 4  The oscillatory velocity u -it1exp( )  plotted at eight different times for x l/ = 1 , and m = 1 .

Properties correspond to a) R = 20 , Sr = 50 , and b) R = 200 , Sr = 5 .  This variation is due to an order
of magnitude increase in suction speed.  Clearly, large suction reduces the penetration depth and overshoot.
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In order to compare our solution directly to Stokes’

exact solution, the suction speed is reduced to a value

below the Stokes diffusion speed, 2 s" ! .  Letting

1/ 62w sv " !! , (57)

the Stokes number becomes

2/2 /sh Sr R" ! ! . (58)

For this condition, the exact Stokes solution can be

compared to ours in Fig. 5.  As shown for two Reynolds

numbers, the presence of suction attracts the shear

layers closer to the wall.  As a result, both rotational

depth and overshoot are reduced when suction is

present.  The boundary-layer thickness with suction is

thus thinner than the traditional Stokes layer.
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