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 All current solid propellant rocket instability calculations (e.g. Standard Stability 
Prediction Program, SSPP) account only for the evolution of acoustic energy with time. 
However, the acoustic component represents only part of the total unsteady system energy; 
additional kinetic energy resides in the shear waves that naturally accompany the acoustic 
oscillations. Since most solid rocket motor combustion chamber configurations support gas 
oscillations parallel to the propellant grain, an acoustic representation of the flow does not 
satisfy physically correct boundary conditions. It is necessary to incorporate corrections to 
the acoustic wave structure arising from generation of vorticity at the chamber boundaries. 
Modifications of the classical acoustic stability analysis have been proposed that partially 
correct this defect by incorporating energy source/sink terms arising from rotational flow 
effects. One of these is Culick’s flow-turning stability integral; related terms appear that are 
not found in the acoustic stability algorithm.  In this paper, a more complete representation 
of the linearized motor aeroacoustics is utilized to determine the growth or decay of the 
system energy with all rotational flow effects accounted for. Significant changes in the motor 
energy gain/loss balance result; these help to explain experimental findings that are not 
accounted for in the present acoustic stability assessment methodology. In particular, the 
origins of several types of vortex-driven instabilities observed in large solid propellant 
motors are illuminated.  

 

Nomenclature  
0a    Mean speed of sound 

e    Oscillatory energy density 
re , θe , ze  Unit vectors in r , θ  and z directions 

E    Time-averaged oscillatory system energy 
2
mE    Normalization constant for mode m  

mk    Wave number for axial mode m 
L    Chamber length 
m    Mode number 

bM    Reference Mach number at burning surface 
n    Outward pointing unit normal vector 
p    Oscillatory Pressure 

0P    Mean chamber pressure 
r    Radial position 
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R    Chamber radius 
S    Strouhal Number, /m bk M  
t    Time 
u    Oscillatory velocity vector  

,r zU U   Mean flow velocity component 
y    Radial distance from the wall, 1 r−  
z    Axial position  

 
α    Growth rate (dimensional, 1sec− ) 
γ    Ratio of specific heats 
δ    Inverse square root of the acoustic Reynolds 

number, 0/ a Rν   
ε    Wave amplitude 
ν    Kinematic viscosity, /µ ρ  
ρ    Density 
( )rφ   Function defined in Eq. (13) 
( )rψ    Exponential argument, Eq. (11) 

ω     Unsteady vorticity amplitude 
Ω     Mean vorticity amplitude 
 
Subscripts  
b     Combustion zone 
m     Mode number 
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Superscripts 
*    Dimensional quantity 
~    Vortical (rotational) part 
^    Acoustic (irrotational) part 
( r ), ( i )   Real and imaginary parts 

I. Introduction 
ULICK’S papers on combustion instability1-5 
published in the early 1970’s are the foundation for 

all stability prediction methods now in use.6,7 His 
method is based on three crucial assumptions: 
• small amplitude pressure fluctuations superimposed 

on a low-speed mean flow, 
• thin, chemically reacting surface layer with mass 

addition, and 
• oscillatory flowfield represented by chamber acoustic 

modes. 
 The first assumption allows linearization of the 
governing equations both in the wave amplitude and the 
surface Mach number of the mean injected flow. The 
second causes all surface reaction effects, including 
combustion, to collapse to simple acoustic admittance 
boundary conditions imposed at the chamber surfaces. 
The last assumption oversimplifies the oscillatory gas 
dynamics by suppressing all unsteady rotational flow 
effects; the acoustic representation is strictly 
irrotational. Concern for this omission was addressed 
partially by Culick in a paper in which he introduced 
his well-known rotational mean flow model.2 Stability 
calculations based on this improved mean flow 
representation produced no significant changes in the 
system stability characteristics. On this basis, it has 
since been generally assumed that all vorticity 
(rotational flow effects), including the unsteady part, 
have negligible influence on combustion instability 
growth rate calculations. 
 Considerable progress has been made in the last 
decade in understanding both the precise source of the 
vorticity and the resulting changes in the oscillatory 
flowfield. Approximate analytical,8-16 numerical,17-22 
and experimental investigations23-26 have demonstrated 
that rotational flow effects play an important role in the 
unsteady gas motions in solid rocket motors. Much 
effort has been directed to constructing the required 
corrections to the acoustic model. This has culminated 
in a comprehensive picture of the unsteady motions that 
agrees with experimental measurements,8-10 as well as 
numerical simulations.11  
 These models were used in carrying out three-
dimensional system stability calculations,8,9 in a first 
attempt to account for rotational flow effects by 
correcting the acoustic instability algorithm. In this 

process one discovers the origin, and the three-
dimensional form, of the classical flow-turning 
correction; related terms appear that are not accounted 
for in the SSPP algorithm. In particular, a rotational 
correction term was identified that cancels the flow-
turning energy loss in a full-length cylindrical grain. 
However, all of these results must now be questioned 
because they are mistakenly founded on an incomplete 
representation of the system energy balance. 
 Culick’s stability estimation procedure is based on 
calculating the exponential growth (or decay) of an 
irrotational acoustic wave; the results are equivalent to 
energy balance models used earlier by Cantrell and 
Hart.27 In all of these calculations the system energy is 
represented by the classical Kirchoff (acoustic) energy 
density. Consequently, it does not represent the full 
unsteady field, including both acoustic and rotational 
flow effects. Kinetic energy carried by the vorticity 
waves is ignored. It will be demonstrated in this paper 
that the actual average unsteady energy contained in the 
system at a given time is about 25% larger than the 
acoustic energy alone. Furthermore, representation of 
the energy sources and sinks that determine the stability 
characteristics of the motor chamber must also be 
modified. Attempts to correct the acoustic growth rate 
model by retention of rotational flow source terms 
only,8,9 preclude a full representation of the effects of 
vorticity generation and coupling. 
 In fact, there is a convincing body of evidence 
pointing to the existence of other aeroacoustic coupling 
mechanisms that are not incorporated in the current 
acoustic-stability theory. For example, the so-called 
parietal or surface vortex shedding (PVS) has been 
identified some years ago as a source of instability that 
eludes classic theory.28 The corresponding phenomenon 
was first detected by numerical simulations of 1:5 
subscale models of the French Ariane V P230 MPS 
booster29-32 that was known to exhibit large amplitude 
oscillations.33 This new type of instability was 
especially important in long, segmented rocket motors 
such as the Japanese H-II vehicle,34 the Titan 34D 
SRM,35 the Titan IV SRM/SRMU (upgrade),36-39 the 
Shuttle Rocket Booster SRB,40 and other elongated 
motors whose dimensionless lengths ranged from 15 to 
25.  
 In order to compensate for the inability of classic 
theory3,5,41-48 to explain the large pressure oscillations 
driven by so-called “crawling” vortices,29 a number of 
dedicated studies have been carried out hoping to 
improve our basic understanding of the suspected 
mechanism.28 Credit should be given, in that regard, to 
Vuillot, Avalon, Casalis, Griffond, Lupoglazoff, 
Traineau, Dupays, Pineau, Tissier, Ugurtas and co-
workers who have tried all three experimental,28,49-52 
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numerical,53-59 and theoretical avenues60-63 to elucidate 
the origin of PVS coupling. It should also be noted that 
Casalis, Avalon, Pineau, and Griffond have based their 
recent theoretical study on linear instability theory 
introduced in 1969 by Varapaev and Yagodkin.64 Their 
efforts have provided an alternate source of instability 
whose omission in classic analyses has led them to 
associate some of the unforeseen experimental and 
numerical instabilities to the hydrodynamic evolution 
and inception of turbulence.60,61 At the outset, their 
results have been limited in fully explaining the 
observed PVS-related mechanisms.  
  At the conclusion of these studies,30-32,50-52 
speculations that resonance-like pressure amplifications 
were caused only by vortex shedding at annular 
restrictors or inhibitor rings were laid to rest when 
similarly intense vorticity-generated oscillations were 
observed in unsegmented rocket motors. As noted by 
Ugurtas et al.,65 two-dimensional compressible flow 
simulations of the Navier-Stokes equations by 
Lupoglazoff and Vuillot29-31 have confirmed the 
measurements acquired from subscale firings; as such, 
the collection of all available data has pointed out to the 
existence of a “powerful” vorticity-driven coupling 
irrespective of whether inhibitor rings or other surface 
anomalies are present.29-31 
 The main objective of this paper is construction of a 
more complete stability model that accounts for all of 
the system energy and correctly portrays all energy 
sources and sinks. This task is most readily 
accomplished by application of the energy balance 
approach. As is usually the case with energy analyses, 
our method will promote an improved physical 
understanding of the results. 
 Considerable work is needed to implement these 
changes. The outcome is a stability algorithm that 
accounts fully for both the acoustic and vortical flow 
interactions. Significant differences between these new 
results and those presently utilized for rocket motor 
stability computations are demonstrated. The new 
model is tested by applying it to several solid propellant 
rocket motor designs. Despite significant changes in the 
mathematical formulation, it is not necessary to discard 
the current solid rocket motor stability estimation 
methodology; required modifications are readily 
accomplished by means of minor changes to the 
existing codes. A new energy source term is identified 
that suggests a possible origin of the unexplained 
instabilities in large solid booster motors. This energy 
source, arising from production of unsteady vorticity, is 
comparable in size to the key pressure coupling term 
itself. It may also be related to velocity coupling 

effects, which cannot be fully represented in the context 
of irrotational acoustic instability theory. 

II. Unsteady Flow Analysis 
 The goal of this section is the construction of a 
comprehensive model of the unsteady flow- field in a 
rocket chamber that realistically accounts for vortical 
(rotational) as well as acoustical (irrotational) effects. In 
particular, close attention is paid to properly satisfying 
the correct boundary conditions on all chamber 
boundaries including both inert and reactive burning 
surfaces. 
 The validity of the stability calculations depends 
critically on a sufficiently detailed and physically 
correct representation of the unsteady velocity field. 
The assumption of an irrotational unsteady flow as used 
in most stability calculations must be discarded. The 
analytical methods and notation employed here closely 
follow earlier papers.8-10 Dimensionless variables are 
the same as those used in the classical combustion 
instability analyses: velocities are normalized by 
dividing by the average sound speed; pressure is 
normalized by dividing by the product of the mean 
chamber pressure and the specific heat ratio, γ . Other 
thermodynamic properties are made dimensionless by 
dividing them by their mean chamber reference values. 
Lengths are referenced to the chamber radius, R . 
Figure 1 illustrates the geometry and coordinate 
systems to be employed in the analysis. 
 The analysis starts by assuming small amplitude 
unsteady perturbations on a mean flow described by the 
vector, bM U . In this paper, Culick’s mean flow model2 
for a cylindrical burning port,  

  ( ) ( )1= sin cosr r z z r zU U r x z xπ−+ = − +U e e e e  (1) 
will be used. Note that the combination 

   21
2x rπ≡  (2) 

appears frequently in the analysis. 
 Isentropic conditions are assumed but viscous forces, 
both shear and dilatational, are retained. The linearized 
continuity and momentum equations then become  

( )
( ) ( )

1
1 1

bM
t

ρ ρ∂
+ ∇ ⋅ = − ⋅∇

∂
u U  (3) 

( )
( )

( ) ( )

( )

1 11
1

1
bp M

t

  −∇ ⋅ + ×∇×∂   + ∇ =  ∂  + ×∇× 

U u u Uu

U u
 

   ( ) ( ) ( ){ }1 12 2 /δ λ µ  + + ∇ ∇ ⋅ − ∇×∇× u u  (4) 
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This dimensionless set of equations is the starting point 
for all previous combustion instability models. The 
superscript (1) denotes the first-order terms in a 
perturbation parameter, ε , proportional to the 
amplitude of the unsteady pressure fluctuation. A 
second small parameter, the mean flow Mach number at 
the burning surface, bM , is also employed in the 
linearization process; only terms to the first order in 

bM  are retained as in the classical combustion 
instability analyses. The relative size of the viscous 
forces is set by the parameter 2δ , which is the inverse 
of the acoustic Reynolds number based on the chamber 
radius R . Viscous terms are usually dropped, but are 
retained here for completeness by assuming that 

2 ( )bO Mδ = .  
 The main variables will be represented as 
combinations of irrotational and rotational components:  

   

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 1 1

1 1

1 1 1

ˆ

ˆ

ˆ

p p p

pρ

 = +
 =


= +u u u

�

�

 (5) 

where the caret (^) denotes the irrotational part of the 
solution and the tilde (~) indicates the rotational part. 
The acoustic field is irrotational ( (1)ˆ 0∇× =u ) and the 

superimposed vortical component is incompressible 
( ( )1 0∇ ⋅ =u� ). Because of the assumption of constant 
entropy, the density and the thermodynamic (acoustic) 
pressure are interchangeable as indicated in Eq. (5). The 
density in the continuity equation is routinely replaced 
in the classical analysis by the pressure variable. The 
reader is cautioned that care must be taken in 
interpreting the unsteady pressure, ( )1p . If it appears in 
the continuity equation, this parameter will then 
represent a density fluctuation. This distinction is not 
important if the flow is irrotational, but it is vitally 
important when rotational effects are to be 
incorporated.  
 If irrotational flow is assumed, Eqs. (3) and (4) yield 
the usual acoustic wave solutions. For axial motions in 
a rocket chamber, the solution is the standing plane 
wave, 

  ( ) ( ) ( )1ˆ cosikt
m bp e k z O M−= +  (6) 

  ( ) ( ) ( )1ˆ sinikt
m z bie k z O M−= +u e  (7) 

where mk  is the dimensionless wave number. For axial 
modes, satisfaction of closed-end boundary conditions 
requires that 

   /mk m R Lπ=  (8) 
where m  is the mode integer and /R L  is the chamber 
radius-to-length ratio. As Eqs. (6) and (7) indicate, 
there exist corrections to the acoustic field of the order 
of the mean Mach number. These were described in 
Ref. 8, but are not required in the stability calculations. 
Only the first-order velocity and pressure (in bM ) are 
needed in evaluating the stability integrals as in the 
classical analyses.  
 It is immediately apparent that Eq. (7) cannot satisfy 
physically correct boundary conditions either at the 
edge of the combustion zone or on inert sidewalls. The 
axial velocity component must approach zero at the 
wall to satisfy the no-slip condition. Thus the 
production of axial acoustic oscillations gives rise to 
corrections which must come from the rotational flow 
effects. Flandro solved Eqs. (3) and (4) for the vortical 
(rotational, incompressible) field by two different 
methods. The inviscid case was treated in Ref. 8; a 
more complete analysis was presented in Ref. 9, in 
which viscous shear wave damping was included. 
Another improvement in the latter paper was the 
introduction of an equivalent closed form solution in 
place of the infinite series used in Ref. 8. Additional 
improvements were made in Ref. 10, in which turbulent 
mean flow corrections were introduced. For clarity, we 
will display here only the laminar results for the 
simplest motor geometry and acoustic mode structure, 
namely, a cylindrical port with axial oscillations; other 
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Fig. 1 Motor geometry and coordinate system used.
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geometries and transverse modes of oscillation can be 
handled similarly. Other investigators such as 
Majdalani and Roh16 have verified the basic results to 
be used here by quite different analytical approaches 
and by direct CFD computations.11-19  
 One finds for rotational pressure and velocity 
corrections that must accompany the assumed acoustic 
solution of Eqs. (6) and (7), 

( ) ( ) ( ) ( ) ( )1 1
2sin 2 sin siniikt

b mp iM e x e z x k zφ ψ π+−=   �  

  ( )2
bO M+   (9) 

( ) ( ) ( ) ( )1 sin siniikt
r m z biCe rU e x k z O Mφ ψ+−= +  u e�  (10) 

 Flandro9 derived these expressions directly from Eqs. 
(3) and (4) without recourse to the splitting theorem 
applied in earlier papers. Critics have not understood 
that splitting Eqs. (3) and (4) into acoustical and 
vortical parts (following the method of Chu and 
Kovásznay66,67) is a simplifying, but not a necessary 
step in arriving at the solutions displayed.68 Another 
misunderstanding centers on the pressure correction, 

( )1p� , sometimes called the pseudopressure.68 It is 
important to understand that this was not simply set to 
zero by assumption in the earlier works. Careful 
solution of the momentum equation, Eq. (4), shows that 
it is an additional correction of the order of the mean 
Mach number; the result is shown in Eq. (9). 
Corrections of similar size appear in the irrotational 
(acoustic) pressure solution, Eq. (6). These are not 
required in the stability calculations for reasons already 
given. It is also necessary to point out that the 
pseudopressure must not be inserted in the continuity 
equation, Eq. (3), as part of the density variable as 
suggested by Brown.68 
 The complex exponential factor ( )exp iφ ψ+  in the 
solution exhibited in Eq. (10) suggests that the vortical 
motion can be interpreted as a damped traveling shear 
wave. Both φ  and ψ  are functions only of radial 
position. The imaginary part of the exponential 
argument, namely, 

   ( ) ( )1
2ln tanm

b

k
r x

M
ψ

π
= −  (11) 

sets the wavelength and spatial frequency of the shear 
wave. For later use note that the derivative of ψ  with 
respect to the radius is simply 

   d
d

m

b r

k
r M U
ψ

=  (12) 

This is proportional to the reciprocal of the radial mean 
flow velocity. The real part of the argument, ( )rφ , is 
given to good approximation by 

   ( ) ( )
( )
( )2 2

cos11
sin sin

x
r x

x x
ξφ

π

 
= − − 

  
 (13) 

where S  and ξ  are dimensionless scaling factors 

   
2 2 2 2

3,m m

b bb

k k SS
M MM

δ δξ≡ ≡ =  (14) 

where S  is the Strouhal number and ξ  is a parameter 
of (1)O  that reflects the relative importance of the 
viscous damping; its physical description and 
verification is detailed by Majdalani and Roh.16 Note 
that the damping of the shear wave in the radial 
direction increases quadratically as the frequency of the 
acoustic oscillation increases. Similarly, the wavelength 
of the shear wave decreases as frequency increases. For 
the fundamental acoustic mode and the lowest order 
harmonics, the shear wave may fill the entire chamber; 
for high-order acoustic modes, the shear oscillations 
become confined to a thin acoustic boundary layer, 
which may lie entirely within the combustion zone.13 
 An undetermined complex constant C  is shown in 
Eq. (10). In the earlier work, this constant was 
evaluated by assuming that, for a thin combustion layer, 
the physical boundary at the solid surface and the edge 
of the combustion zone are nearly coincident.8-10 Then 
if one applies the no-slip condition to the composite 
unsteady axial velocity ( ( ) ( ) ( )1 1 1ˆ= +u u u� ) at the edge of 
the combustion zone, one finds that 1C = . This result 
has been questioned, since the actual solid surface lies 
within a region of nonuniformity, the combustion 
zone.68 It is a straightforward process to show that the 
original value is correct; the calculation is too lengthy 
to display here. This is done by constructing a two-
dimensional model for the combustion zone including 
all gas phase effects. The axial momentum equation in 
the flame zone is solved numerically to account for the 
gradients in temperature and density due to combustion. 
The resulting inner solution is then matched 
asymptotically to the outer solution expressed by Eq. 
(10). Standard methods of singular perturbation theory 
apply. The simplest approach is to determine solutions 
in an intermediate region in which both the outer and 
inner representations are valid. Then the matching is 
readily accomplished. The outcome confirms that the 
original result, 1C = , is correct unless the oscillation 
frequency is very high. In that case, the rotational flow 
effects become entirely buried within the combustion 
zone, and the outer solution collapses to the simple 
plane wave acoustic model. 
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 The composite axial velocity solution found by 
superimposing Eqs. (7) and (10) has been shown8-10,12 to 
agree quite closely with the experimental findings of 
Brown and co-workers,12,25,26 and Barron, Van 
Moorhem, and Majdalani.69 Figures 2 and 3 show 
comparisons of the oscillation amplitude and phase 
angle from the theory just discussed superimposed on 
some of Brown’s earlier cold flow work.24,70 It is 
important to understand that no “curve fitting” has been 
used here; the differences between the experimental and 
theoretical results arise both from unavoidable 
experimental errors (orientation and positioning of the 
hot film sensor, data reduction, etc.) and from the 
assumption set used in the analysis. Nevertheless, very 
good agreement is shown. Since nitrogen was the 
working fluid at measured temperature and pressure, all 
parameters characterizing the flowfield are well known.  

 Numerical solutions based on the full Navier-Stokes 
representation of the unsteady field also indicate 
excellent agreement with the theory reviewed here. 
Furthermore, other analytical methods based on WKB 
and multiple-scale theories have been applied by 
Majdalani and co-workers.71 Theirs have demonstrated, 
based on the principle of least singularity, the existence 
of nonlinear scales underlying the physics of the 
problem.72 In addition to providing a rigorous 
mathematical treatment that obviates the need for 
guesswork, their approach has led to the exact form of 
the characteristic length scales as function of Culick’s 
mean flow solution. More importantly, their solutions 
have yielded results indistinguishable from those 
displayed here.11-16 
 In previous analyses of the rocket motor rotational 
flowfield, special attention was given to the radial 
component of velocity.8,9,11 This was done since, in 
classical instability theory, the main source of acoustic 
energy is the radial velocity fluctuation produced by 
interaction of the pressure wave with the combustion 
processes and heat transfer in the burning zone. It was 
shown in Refs. 8 and 9 that, in addition to the radial 
acoustic velocity, there appears a rotational correction 
that does not vanish at the edge of the combustion zone. 
The presence of this additional unsteady radial velocity 
component implies that, by analogy to pressure 
coupling, there is an additional source of unsteady mass 
flux at the combustion zone interface. For want of 
better terminology, this was called the rotational flow 
correction as first displayed in Eq. (89) of Ref. 8. The 
new term, which does not appear in any previous 
analysis, has given rise to considerable controversy.  
 By way of providing a precise description of the 
source of the rotational flow correction, a complete 
physical interpretation, and a full resolution of the 
controversy appear in the next section of this paper. The 
answers are found by means of a careful derivation of 
the system stability energy balance. It is not necessary 
to calculate the vortical radial velocity correction in 
determining the system stability. The surface acoustic 
admittance function will be utilized in the standard 
fashion to represent the pressure coupling of the 
oscillatory flow with the combustion processes. Then 
experimental measurements (usually secured with a T-
burner or similar device) of the surface response can be 
utilized as in the accepted methodology for accounting 
for this important source of oscillatory energy.  
 Earlier attempts to incorporate vortical flow 
corrections in the stability calculations were based on 
the idea that one must restore rotational source terms 
that were dropped in the classical analyses. For 
example, Brown, et al. had suggested that retention of 
the rotational convective acceleration term ( )1×∇×U u  
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on the right side of Eq. (4) might have important 
stability implications.24 This term was first evaluated by 
Flandro,8,9 who proved that this term yields a damping 
effect that is indistinguishable from the classical flow-
turning loss. Additional terms appear in this analysis 
that cannot be found in the standard stability 
computations. One of these, the rotational flow 
correction, has led to much debate, since it exactly 
cancels the flow turning effect in some chamber 
configurations. Brown’s assertion68 that the rotational 
flow correction is just another way to represent flow-
turning can be quite readily refuted. In fact, all 
misunderstandings are resolved when a consistent 
energy method is used to deduce motor stability 
characteristics. The flaw in the earlier approach is that it 
represented the system by a model that accounts for 
growth or decay of the acoustic energy alone. Simply 
retaining the rotational convective source terms24 in the 
perturbed wave equation, following Culick’s method, 
does not address this important defect. 
 To correctly describe the evolution of the oscillatory 
flow in a rocket motor, all unsteady energy must be 
accounted for. The method used here follows the 
known energy balance approach described by 
Kirchoff73 and used extensively in rocket stability 
calculations by Cantrell and Hart.27,41-43 It is now 
necessary to account for the entire kinetic energy 
fluctuation. To accomplish this, multiply the continuity 
equation, Eq. (3), by the acoustic pressure (or density) 
and add this to the momentum equation, Eq. (4), 
multiplied by the composite unsteady velocity vector, 
   ( ) ( ) ( )1 1 1ˆ= +u u u�  (15) 
This operation constitutes the main departure from the 
previous approach. Isolating the terms differentiated 
with respect to time and retaining only those terms that 
are linear in the Mach number, bM , one finds 

( ) ( )21 1
2 2 ˆˆ ˆ ˆp p p

t
∂

+ ⋅ = − ∇ ⋅ + ⋅∇
∂

u u u u  

( ) ( )21
2 ˆbM p − ⋅∇ + ⋅∇ ⋅ − ⋅ ×∇× + ×∇× U u U u u u U U u�  

   ( ) ( )2 ˆ2 /δ λ µ+ ⋅ + ∇ ∇ ⋅ − ∇×∇×  u u u�  (16) 

Note that the superscript (1) has now been discarded, 
since it is no longer necessary to emphasize that only 
first-order terms are being retained. If the full unsteady 
velocity vector, u , were to be replaced at this stage by 
the acoustic part, û , then the final result of the stability 
calculation would be exactly that described in earlier 
papers.8,9 If all rotational terms on the right of Eq. (16) 
were also to be removed by assuming that 0=u�  then 
the classical three-dimensional stability result would be 
reproduced. Assumptions such as those just described 
are motivated mainly by a desire to keep the analysis 

simple. However, as we shall now demonstrate, much 
physical substance is lost in such simplifications. We 
choose not to follow the traditional approach here –all 
rotational effects are retained as Eq. (16) shows; the 
kinetic energy per unit mass on the left side reflects all 
laminar unsteady motions in the chamber. Turbulent 
corrections will require attention in future refinement of 
the computations; discussions of turbulent flow effects 
are found in the numerical studies by Yang,10,18,19,74 
Beddini and Roberts,75,76 and Vuillot, et al.57,58 In order 
that the analysis is not overly complicated, effects of 
solid particles in the flow are not displayed; required 
modifications are readily incorporated later as needed.  
 Following the standard approach,73 one defines the 
oscillatory energy density 

   ( )21
2 ˆe p= + ⋅u u  (17) 

and the time-averaged oscillatory energy residing in the 
chamber at any instant as 

   21
2 ˆd d

V V

E e V p V= = + ⋅∫∫∫ ∫∫∫ u u  (18) 

where triangular brackets denote the time-average of 
the enclosed function. Then from Eq. (16), it is clear 
that the evolution of the system energy is controlled by 

( ) ( ) ( )21
2

irrotational
ˆ ˆ ˆˆ ˆb b

V

E p M p M
t

∂
= −∇ ⋅ − ⋅∇ − ⋅∇ ⋅  ∂ ∫∫∫ u U u U u


��������������������
 

( ) ( ) ( )2 ˆ ˆ ˆ ˆ ˆd bMδ+ ⋅∇ ∇ ⋅ + ⋅ × + ⋅ ×  u u u u u UΩ ω  

( ) ( ) ( )
( ) ( )

rotational
ˆ ˆ

ˆ bp M
⋅∇ ⋅ + ⋅∇ ⋅ + ⋅∇ ⋅ 

− ⋅∇ −  
− ⋅ × − ⋅ ×  

u U u u U u u U u
u

u U u u


������������������������
� � � �

�
� � �ω Ω

 

( ) ( ) ( )2 2ˆ ˆ dd Vδ δ+ ⋅∇ ∇ ⋅ − ⋅ ∇× + ⋅ ∇×  u u u u� �ω ω  (19) 

where the irrotational and rotational contributions to the 
energy rate-of-change have been partitioned for clarity. 
The last two “irrotational” terms are in reality due to 
rotational effects. They are placed with the irrotational 
terms to conform to Culick’s methodology.2,47 The 
mean and unsteady vorticity vectors are represented in 
Eq. (19) by = ∇×UΩ  and = ∇× u�ω , respectively.  
 The dilatational viscous term is simplified by 
defining 

   ( )2 2 2 /dδ δ λ µ≡ +  (20) 
where λ  is the second coefficient of viscosity. Several 
terms cancel. For example,  

   ( ) ( )ˆ ˆ 0− ⋅ × − ⋅ × =u u u u� �Ω Ω  (21) 
 Further simplifications can be made. For example, 
several terms can be expressed as integrals over the 
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surface bounding the control volume. It is first 
necessary to review the protocol needed in evaluating 
the stability integrals.  
 The terms on the right side of Eq. (19) control the 
rate at which the system energy changes. From this 
information, one can estimate the growth or decay rate 
for a given motor configuration.  
The complex wave number (or frequency) k  in the 
assumed exponential time dependence is written as 

   ( ) ( )2
m m m bk k i O Mω α= + + +  (22) 

where mk  is the wave number for the unperturbed 
acoustic mode m . In the multidimensional case, m  
may consist of three mode integers. We will restrict the 
evaluation to axial modes for clarity; then a single 
integer, m , identifies the mode being investigated. 
More complex modes can be handled in an entirely 
similar way. The result for a simple plane wave axial 
mode is shown in Eq. (8). The dimensionless 
corrections, m miω α+ , are of the order of the mean 
flow Mach number. In the conventional energy-balance 
procedure, the frequency correction, mω , is not 
evaluated. For simplicity, we follow this approach. The 
frequency correction is implicitly accounted for in the 
wave number mk . 
 Since quadratic combinations of the variables appear, 
it is first necessary to take the real parts of the pressure 
and velocities to be inserted in the equations. Thus one 
writes  

  ( ) ( )ˆ ˆ exp cosm m mp p t k tα=  (23) 

  ( ) ( )ˆ ˆ exp sinm m mt k tα=u u  (24) 

  ( ) ( ) ( ) ( ) ( )exp cos sinr i
m m m m mt k t k tα  = + u u u� � �  (25) 

where superscripts ( r ) and ( i ) refer to the real and 
imaginary parts. This notation is necessary since the 
rotational velocity vector contains the spatial 
exponential term ( )exp iφ ψ+ . Inserting these 
expressions into Eq. (17) yields the time-averaged 
energy density  

( ) 21
4

irrotational
ˆ ˆexp 2 m m m me t pα = + ⋅ u u


������
 

   ( ) ( ) ( ) ( ) ( )

rotational

ˆ2 i r r i i
m m m m m m

+ ⋅ + ⋅ + ⋅ u u u u u u

��������������

� � � � �  (26) 

which has been partitioned to emphasize the new terms. 
This result should be compared to the classical 
expression for the energy density, which consists of 
only the first two terms in Eq. (26). The additional three 
terms represent the kinetic energy residing in the 
unsteady vorticity. Inserting these expressions into Eq. 

(18), carrying out the time averaging, and 
differentiating with respect to time, one finds 

   ( ) 2d exp 2
d m m m
E t E
t

α α=  (27) 

where the energy normalization function  

( ) ( )22 1
2 ˆ ˆ ˆ2 i

m m m m m m
V

E p ′= + ⋅ + ⋅∫∫∫ u u u u�  

   ( ) ( ) ( ) ( ) dr r i i
m m m m V+ ⋅ + ⋅ u u u u� � � �  (28) 

is expressed here by the same symbol used in earlier 
stability analyses. It is written as a squared quantity to 
indicate that it is positive-definite. 
 It is interesting to compare values from Eq. (28) to 
those found in earlier computations. The mode shapes 
are needed for this purpose. Equations (6), (7) and (10) 
give the required information for the assumed axial 
oscillations to zeroth-order in bM :  

 ( )ˆ cosm mp k z=   (29) 

 ( )ˆ sinm m zk z=u e   (30) 

 ( ) ( ) ( ) ( )( ) sin exp sin sin sinr
m m zx x k zφ ψ=   u e�  (31) 

 ( ) ( ) ( ) ( )( ) sin exp cos sin sini
m m zx x k zφ ψ= −   u e�  (32) 

The acoustic pressure and velocity mode shapes are 
related by  

   ˆ ˆ /m m mp k= −∇u  (33) 
for later use. Figure 4 shows the results of integration of 
the kinetic energy terms in Eq. (28) across the chamber 
from the centerline to the wall at a given axial location. 
Note that the term involving the cross-product of the 
acoustic and vortical parts does not contribute to the 
integrated result because it oscillates in the radial 
direction, and is zero at the upper limit. However, the 
rotational correction shows a net value, which is half of 

0
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density components. 
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the integrated acoustic energy density. Clearly, the 
rotational effects represent a significant change in the 
system energy. 
 When the entire volume integral of Eq. (28) is carried 
out for the axial mode case, using Eqs. (29)–(32) one 
finds that 

   2 5
8 /mE L Rπ=  (34) 

which is 25% larger than the conventional acoustic 
value for longitudinal oscillations. However, the most 
important changes in the growth rate, mα , appear in the 
integral terms on the right side of Eq. (19). We must 
now attend to this important part of the stability 
analysis. 

A. Growth Rate Calculations 
 In estimating the system growth rate for a given 
mode of oscillation, it can be seen that it consists of the 
linear superposition of fifteen volume integrals as 
shown in Eq. (19). The simplest procedure is to 
consider each of these (or selected groups) to be 
evaluated individually. One can then represent the net 
growth rate as a linear sum of gains and losses as 

   1 2 3
1

N

m i
i

α α α α α
=

= + + + = ∑"  (35) 

in the usual fashion. The dimensionless values of the 
several terms are given in the following paragraphs. 
The reader is reminded that, in order to compute the 
corresponding dimensional values, it is necessary to 
multiply by 0 /a R , the inverse of the characteristic 
time used in the formulation. Then the growth rates are 
obtained in the familiar units of rad/sec ( 1sec− ).  

B. Irrotational Growth Rate Contributions 
 To illustrate the computational procedure, consider 
the first three irrotational terms: 

( )
( )21

1 22
1 ˆˆ ˆ

exp 2 b
m m V

p M p
t E

α
α

 = −∇ ⋅ + ∫∫∫ u U  

  ( )ˆ ˆ dbM V− ⋅∇ ⋅  u U u  (36) 

where the first two terms have been combined by using 
the vector identity for the divergence of the product of a 
scalar and a vector and by noting that 0∇ ⋅ =U  for 
continuity of the incompressible mean flow. Thus, the 
first term can be converted to a surface integral using 
Gauss’s divergence theorem. The second can be written 
in terms of the pressure by means of Eq. (33); after 
some algebra it also reduces to a surface integral. 
Assuming a short, quasi-steady nozzle, one finds 

( ) ( )2 21
1 22

ˆ ˆ1 d d
2

b N

b
b m N z m

m S S

M
A p S A U p S

E
α

 
= + − + 

  
∫∫ ∫∫  

   ( ) ( )2 1 1
2

b
b

m

M L A
RE

π
γ+ − +  �  (37) 

 The first term in Eq. (37) is, of course, the classical 
pressure coupling effect except that it is now somewhat 
reduced in size because of the larger energy 
normalization integral. The entire surface integral has 
not been represented in Eq. (37). Non-burning chamber 
surfaces can be accommodated in the surface integrals 
if required. The several admittance functions are taken 
to be quantities of (1)O ; the mean flow Mach number 
has been factored out as in most traditional 
computations. The admittance for non-burning surfaces, 

sA , is usually neglected, although rough chamber walls 
and insulation layers may display substantial (usually 
negative) admittance. 
 The fourth term, the volume (dilatational) acoustic 
viscous energy loss, is usually ignored in standard 
combustion stability computations; it is discussed 
extensively in the acoustic literature since it represents 
a main source of decay of acoustic waves in a variety of 
applications. It is readily evaluated for the present case 
with the result that 

( )
( )2

2 2
1 ˆ ˆ d

exp 2 d
m m V

V
E t

α δ
α

= ⋅∇ ∇ ⋅∫∫∫ u u  

   
2 2 2 2

2
2 2

ˆ d
2

d m d m
m

m mV

k k Lp V
RE E

δ δ π
= − −∫∫∫ �  (38) 

where Eq. (33) has again been used. Note that this 
damping effect may not be negligible when turbulence 
is present; then the transport properties are modified, 
and the effective viscosity coefficient may be much 
larger than the laminar values over a substantial volume 
of the chamber.10 Other irrotational growth rate terms 
are not displayed here. These include effects of 
aluminum particulates and residual combustion.77-79 
Since the system is linear, they may be superposed later 
as required.  
 Two of the rotational terms are traditionally included 
with the strictly irrotational growth rate contributions 
just evaluated. These are the effects of the mean flow 
rotationality and the flow-turning effect. To account for 
the rotational mean flow, one writes 

( )
( ){ } ( )2

3 2
1 ˆ ˆ d

exp 2 b b
m m V

M V O M
E t

α
α

= ⋅ × =∫∫∫ u u Ω

    (39) 
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as evaluated by Culick2 in his rotational mean flow 
paper, and shown by him to represent a negligible 
correction.  
 Before proceeding to the next term in Eq. (19), the 
reader is reminded that Culick first identified the flow-
turning loss in his one-dimensional acoustic stability 
analysis.4,47,80 As shown by Flandro,8,9 this damping 
effect appears because, by requiring the unsteady flow 
to enter the duct in a direction perpendicular to the 
burning surface, Culick effectively invoked the no-slip 
condition. Although this term cannot arise in the 
multidimensional irrotational stability analysis, Culick 
insisted that it be “patched” onto the acoustic growth 
results. If we follow this dictum, we must add 

( ) ( )
2

4 flow turning ˆ d
exp 2

m
b

m V

E
M V

t
α α

α

−

= = ⋅ ×∫∫∫ u U ω  

  
( )

( )2
ˆ d

exp 2
b

m m m V

M
p V

k E tα
= − ∇ ⋅ ×∫∫∫ U ω  (40) 

to the other irrotational terms. This is not justified in 
reality, since the unsteady vorticity must be used in the 
evaluation of Eq. (40). Inclusion of this single rotational 
term in the energy balance to the exclusion of all the 
others is a not a mathematically legitimate step. 
Nevertheless, we place it in Eq. (19) with the 
irrotational terms in accordance with accepted practice. 
In evaluating Eq. (40), it is necessary to remember that 
the unsteady vorticity is 

 ( )r z z
b

u u u O M
z r rθ θ

∂ ∂ ∂ = ∇× = − = − + ∂ ∂ ∂ 
u e eω

� � ��  (41) 

The derivative of the radial velocity component with 
respect to z  is of the order of the mean Mach number, 
and can therefore be dropped as indicated. Using Eq. 
(25) for the axial rotational velocity, the amplitude of 
the vorticity vector becomes 

 ( )
( )

( )
( )

( )exp cos sin
r i

z z
m

u ut kt kt
r r

ω α
 ∂ ∂

= − + 
∂ ∂  

� �
 (42) 

Taking the cross product with the mean flow vector 
yields 

   ( ) ( )z r r zU Uω ω× = − +U e eω  (43) 
For longitudinal modes, the pressure gradient is in the 
z -direction, so the flow-turning integral reduces to 

   
( )

( )4 2 sin d
2

i
b z

r m
m V

M uU k z V
rE

α
∂

= −
∂∫∫∫
�

 (44) 

Flandro8 showed that the volume integral of Eq. (44) 
can be reduced to a surface integral that is identical to 
Culick’s original flow-turning expression (see sections 
V.B and V.C of Ref. 8). Since the flow-turning integral 

is considered to be a key damping effect, it is 
appropriate to review its evaluation in detail for the 
axial mode case.  
 First, consider the derivative of the axial rotational 
velocity (the vorticity) appearing in Eq. (44),  

 
( )

( )(cos )sin exp sin sin
i

z
m

u x k z x
r r

ψφ
∂ ∂

= − +
∂ ∂
�

…  (45) 

Only the leading term in this derivative is shown, since 
it is several orders of magnitude larger than the other 
terms resulting from chain-rule differentiation of factors 
such as sin x  or expφ . The reason for this expansion 
becomes obvious when it is remembered that the 
derivative of ψ  with respect to r  is proportional to the 
inverse of the mean flow Mach number as shown in Eq. 
(12). Then 

( )
( )sin exp sin sin sin (1)

i
mz

m
b r

ku x k z x O
r M U

φ ψ
∂

= +
∂
�

 (46) 

and the volume integral of Eq. (44) can be evaluated for 
the assumed cylindrical chamber as 

2 121
4 2 0 0 0

sin exp sin
L R

m mk E d r x
π

α θ φ ψ−= − ∫ ∫ ∫  

   ( ) ( )sin sin sin d dm mk z x k z r z×  (47) 
To find the exact value, it is necessary to use numerical 
integration due to the complicated radial dependence. 
Following the observation made in Ref. 8 (see section 
V.B) that the integrand oscillates around zero from the 
chamber axis to the surface, the value of the integral 
depends only on its behavior near the upper limit. Then 
to very good approximation 

( )
/ 12

4 2 0 0
sin d sin exp sin d

L Rm
m

m

k
k z z r x r

E
π

α φ ψ= − ∫ ∫  

 
1

2 20
sin exp sin d

2 2
m b

m m

k ML Lr x r
R RE E

π π
φ ψ= − −∫ �  (48) 

The final numerical value of this damping effect is the 
same as in Culick’s original calculation if the acoustic 
form of the normalization parameter ( 2 1

2 /mE L Rπ= ) is 
inserted. Then 4 bMα = − , in dimensionless form, and 
the dimensional value becomes  

   10
4* secb

a
M

R
α −= −  (49) 

C. The Rotational Flow Correction 
 Consider now the first rotational flow stability 
integral in Eq. (19), 

   
( )5 2

1 ˆ d
exp 2m m V

p V
E t

α
α

= − ⋅∇∫∫∫ u�  (50) 
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A companion term, the product of the acoustic velocity 
with the pressure gradient term in the momentum 
equation, has already been evaluated and shown to give 
rise to the pressure coupling effect of central 
importance. The physical interpretation of Eq. (50) is 
apparent. It represents the rate-of-work done on the 
rotational part of the unsteady flow by the oscillatory 
pressure forces. In this respect, it is analogous to the 
pressure coupling, which as already shown, collapses to 
a surface integral and is then interpreted as the dp V  
work done on the incoming flow.1 Obviously, this term 
vanishes in a strictly irrotational environment; hence, it 
does not appear in the usual acoustic stability 
computations. Using Eqs. (23) and (25), and carrying 
out the time averaging, Eq. (50) reduces to 

   ( )
5 2

1 ˆ d
2

r
m m

m V

p V
E

α  = − ⋅∇ ∫∫∫ u�  (51) 

Notice that, for axial modes, it is only necessary to 
know the axial component of the rotational velocity 
field, since the pressure gradient is in the z -direction. 
No information regarding the rotational radial velocity 
is required in the evaluation of 5α . Equation (51) is 
readily evaluated for axial modes in a cylindrical 
chamber by the same method described for the flow-
turning integral; one finds for low-order modes, 

   5 22
b

m

M L
RE

π
α �  (52) 

which is equal to the flow-turning result but opposite in 
sign.  
 The growth rate contribution, 5α , has been the 
source of much dispute68 in the rocket combustion 
instability community. It must therefore be scrutinized 
here in full detail. It appears in Eq. (51) in its natural 
form as an integral over the chamber volume. In its 
original apparition,8,9 5α  arose as a surface integral 
because Culick’s perturbed wave equation method was 
used for computing the growth rate. To display 5α  in 
its original format, convert Eq. (51) to surface integral 
form by application of Gauss’s divergence theorem. 
Remembering that the rotational field is solenoidal, 

0∇ ⋅ =u� , and using the vector identity for the 
divergence of a scalar times a vector, one may use 

   ( )ˆ ˆ ˆ ˆp p p p∇ ⋅ = ⋅∇ + ∇ ⋅ = ⋅∇u u u u� � � �  (53) 
The conversion to a surface integral follows 
immediately, one finds 

 ( ) ( ) ( )ˆ ˆ ˆd d d
V V S

p V p V p S⋅∇ = ∇ ⋅ = ⋅∫∫∫ ∫∫∫ ∫∫u u n u� � �  (54) 

The growth rate contribution in surface integral form 
then becomes 

   ( )
5 2

1 ˆ d
2

r
m m

m S

p S
E

α  = − ⋅ ∫∫ n u�  (55) 

This is precisely the term described in Eq. (89) of Ref. 
8 as the rotational flow correction, for want of a better 
name. The difficulty with the surface integral form is 
that its evaluation implies detailed knowledge of the 
normal component of the rotational velocity at the 
surface. This approach was followed in Refs. 8 and 9, 
and the radial component, ru⋅ =n u� � , was deduced by 
integrating the continuity equation.11 It was found that 
the radial component of the rotational velocity, ru� , is 
proportional to the mean flow Mach number, does not 
vanish at the edge of the combustion zone, and is 
proportional to the unsteady pressure mode shape.8,9,11 
These findings lead to an unfortunate interpretation, 
reported in Ref. 8, that 5α  can be treated as a correction 
to the surface coupling effect deduced in the irrotational 
part of the stability calculation. This forces one to 
search for new sources of mass flux within the flame 
zone. Critics68 misinterpreted this observation to imply 
that changes in the surface response to pressure 
fluctuations are implied. The actual source of the new 
radial mass flux can be readily identified in the parallel 
gas motions within the combustion layer. Since there 
exists a momentum defect at the surface due to the no-
slip requirement, additional oscillatory mass flux in the 
radial direction is generated. The simple control volume 
shown in Fig. 5 describes the two-dimensional field in 
the combustion zone and illustrates these ideas.  

y
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Fig. 5 Mass balance across the combustion zone. 
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 It is clear that, due to the gradient in axial velocity 
fluctuations parallel to the surface, there is a net flux of 
mass into the vertical sides of the control volume. This 
is reflected in the net unsteady mass flux at the edge of 
the combustion zone. It is this additional radial mass 
flux that is accounted for in Eq. (52); no modification 
of the oscillatory mass flux created by pressure 
coupling at the propellant side (i.e., solid/gas interface) 
of the control volume is implied. 
 The formal approach just described, carried out in 
detail, fully justifies the results reported in the earlier 
papers.8,9 Despite these findings, the combustion 
instability community is understandably wary of any 
suggestion indicating that a mechanism other than the 
time-honored pressure coupling arises in the 
combustion zone. This point of confusion is resolved by 
using the volume integral form, Eq. (51), in place of the 
surface integral, Eq. (52). Both forms represent the 
same destabilizing influence on system stability, but the 
volume integral is more easily evaluated, and is 
therefore the preferred form.  
 It is also important to understand that the rotational 
flow correction, Eq. (51), and the flow-turning integral, 
Eq. (40), are separate and distinct parts of the 
interaction of the acoustic field with vorticity 
production. Despite claims to the contrary, Eq. (51) is 
not an alternative way to represent flow-turning. Brown 
has attempted to prove that the sign on 5α  given in 
Refs. 8 and 9 should be reversed.68 If he is correct in 
this assertion then both contributions to the growth rate 
have the same sign. Since, as shown in Ref. 8 they have 
nearly equal magnitude, Brown then assumes that they 
must represent, in reality, the same physical effect. He 
claims that Eq. (51) duplicates what is already 
accounted for by Eq. (40).68 Since this paradoxical 
claim can have important consequences in the 
combustion stability research community, it is 
necessary to resolve the matter here.  
  Consider the combination of the flow turning and the 
rotational flow correction as represented by Eqs. (44) 
and (51). Their sum is  

( )
( ) ( )4 5 2

1 sin d
2

i
rz

b r m z m
m V

uM U k u k z V
rE

α α
 ∂

+ = − + 
∂  

∫∫∫
� �  

    (56) 
If the value for the derivative of the imaginary part 
from Eq. (46) is used and Eq. (31) is substituted for the 
real part of the rotational axial velocity, then the 
integrand becomes 

( )
( ) sin exp sin

i
r mz

b r m z b r
b r

kuM U k u M U x
r M U

φ ψ
∂

− + = −
∂
� �  

( ) ( )sin sin sin exp sin sin sin 0m m mk z x k x k z xφ ψ× + =  

    (57) 
This proves that the flow-turning is exactly cancelled 
by the rotational flow correction as asserted in Refs. 8 
and 9; that is 

   4 5 0α α+ =  (58) 
This result may seem contrary to some experimental 
results, which apparently require that flow-turning be 
included for acceptable agreement with the stability 
theory.81 Contrary opinions have been expressed by 
many other experimentalists who find that removal of 
the flow-turning leads to better agreement with motor 
growth rate data. However, several other rotational flow 
corrections remain to be evaluated. Let us reserve 
judgment until all the pieces have been finally 
assembled.  

D. More Rotational Growth Rate Contributions 
 It is now necessary to tackle the remaining terms in 
Eq. (19); a seemingly daunting task. None of these new 
terms has been accounted for in previous studies. 
Fortunately, some of them do not contribute 
significantly to the system energy balance. Again, it is 
instructive to examine these stability integrals 
individually.  
 The second term on the third line in Eq. (19) can be 
converted immediately to a surface integral by using 
standard vector identities and the fact that the rotational 
velocity field is solenoidal. One finds that 

 ( )ˆ ˆ db
V

M V− ⋅∇ ⋅∫∫∫ u U u  

   ( ) ( )2ˆ ˆ db b
S

M S O M= − ⋅ ⋅ =∫∫ n u U u  (59) 

Since, as already shown, the normal velocity fluctuation 
at the surface is of order bM , this term is negligible. 
 The third and fourth terms are most easily handled 
together. The volume integral can be converted to the 
sum of a surface integral and a simpler volume integral. 
The result is 

( ) ( )ˆ db
V

M V− + ⋅∇ ⋅∫∫∫ u u U u� �  

 ( ) ( ) ˆd db b
S V

M S M V= − ⋅ ⋅ + ⋅ ∇ ⋅∫∫ ∫∫∫n u U u U u u� �  

    (60) 
where the surface integral is again second-order in the 
Mach number because the normal velocity fluctuation 
is of the order of bM . Then the remaining part must be 
evaluated. Using the continuity equation with Eq. (23) 
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( ) ( ) ( )ˆˆ ˆ exp sinm m m m b
p k p t k t O M
t

α∂
∇ ⋅ = − = +

∂
u  (61) 

and inserting Eq. (25), one finds the growth rate to be  

( ) ( )2
2 0

ˆ d 2 sin
2

L Rim b
m m m

m V

k M
p V z k z

E
π ⋅ = ∫∫∫ ∫U u�  

 ( )
1

0
cos d cos sin exp cos dmk z z r x x rφ ψ× ∫  (62) 

The radial integral yields a value of the order of the 
mean Mach number, so this term represents a negligible 
growth rate contribution. 
 The fifth term is highly interesting since it is the 
companion of the original flow-turning effect 
represented by Eq. (40). Now, we must evaluate 

  
( )

( )6 2
1

exp 2 b
m m V

M dV
E t

α
α

= ⋅ ×∫∫∫ u U ω�  (63) 

where the rotational velocity appears in the place of the 
acoustic velocity as in the flow-turning integral. Using 
Eq. (42) for the unsteady vorticity, and dropping terms 
of the second-order, one finds 

 ( ) ( ) ( ) ( )
6 2 d

4
r r i ib

r
m V

M
U V

rE
α ∂  = − ⋅ + ⋅ ∂∫∫∫ u u u u� � � �  (64) 

Inserting the expressions for the rotational velocity, and 
integrating over the volume, one finds, for a cylindrical 
chamber, 

1 2 2
6 2 20

3
sin sin exp d

4 8
b b

m m

M ML Lx x r
R r RE E

π π
α φ∂

=
∂∫ �  (65) 

This is an energy source rather than a sink as was the 
case for the flow turning. In a sense, it represents an 
unexpected finding. Conventional analyses indicate that 
the only energy source in the motor chamber is that 
produced by the pressure coupled combustion response; 
all other stability integrals are thought to be sinks of 
energy. This new source term is clearly related to the 
creation of unsteady vorticity at the boundaries. There 
are connections to the well-known vortex shedding 
energy source that we will examine carefully in the next 
section of the paper. 
 The sixth remaining term, involves the volume 
integral  

   ( )ˆ db
V

M V− − ⋅ ×∫∫∫ u u Ω�  (66) 

This growth rate contribution is negligible, since the 
cross product yields an axial vector component 
proportional to the radial acoustic velocity. Therefore, 
only terms of second-order in the mean flow Mach 
number are generated. 
 The last two terms are viscous damping expressions. 
In the classical (irrotational) combustion instability 

calculations, viscous effects are ignored completely on 
the basis that there are no strong velocity gradients at 
the surface to give rise to significant shearing stresses. 
Acoustic boundary layer corrections of the usual sort do 
not properly account for the shearing stresses when 
there is strong convection through the surface layer. A 
correction to the dilatational (volume damping) effect is 
represented in the seventh rotational term. Using the 
same methods used to evaluate the other terms, this one 
can be transformed into a surface integral, viz. 

( ) ( )12 2ˆ d / dd d
V S

V p t Sδ δ⋅∇ ∇ ⋅ = − ⋅ ∂ ∂∫∫∫ ∫∫u u n u� �  (67) 

which, for realistic values of the parameters, must be 
negligible because both the dimensionless viscosity 
coefficient 2

dδ  and the normal velocity at the bounding 
surfaces are of the order of the mean flow Mach 
number. 
 Finally, the last term represents the viscous damping  

( )
( ) ( )2

7 2
1 ˆ d

exp 2m m V

V
E t

α δ
α

= − + ⋅ ∇×∫∫∫ u u ω�  (68) 

where the composite unsteady velocity appears instead 
of just the acoustic part as in previous works (cf. Eq. 
(95) in Ref. 8). After carrying out the indicated 
calculations and inserting the various components of 
the velocity vectors, the viscous growth rate reduces to 

( )
( )

( )
( )2 22

7 2 2 2 d
2

r i
r iz z

z z
m V

u uu u V
E r r

δα
 ∂ ∂

= + 
∂ ∂  

∫∫∫
� �� �  

  ( )
22

2 2 2
2 exp sin d

2
m

m
bm V

k
r k z V

ME
δ φ

 
= −  

 
∫∫∫  (69) 

where smaller terms have been dropped. This 
expression is easily evaluated for a full-length 
cylindrical grain. The result is 

   
22

7 2 28 8
m b

bm m

k ML L
R M RE E

π ξπδα
 

− = − 
 

�  (70) 

to good approximation. Notice that the importance of 
viscous damping increases rapidly with frequency. 
Since the square of the Mach number appears in the 
denominator, this term may be as important as any of 
the others retained in the analysis. Contrary to previous 
assessments, we find that viscous damping must not be 
discarded, especially in the case of turbulent mean 
flows. Then the transport properties are modified, and 

2δ  may be much larger than for the laminar case. In 
order to properly evaluate Eq. (69) in the turbulent case, 
a comprehensive numerical algorithm will be needed. 
Work of this sort has already begun.10,18,19 
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III. Discussion 
 The system stability is determined by superposition 
of a set of stability integrals that includes both the 
original set found from the classical irrotational 
analysis and several new ones that represent the effects 
of the rotational unsteady flow. We must now assess the 
impact of the proposed changes on stability assessment 
methodology.  
 It is useful to compare the theoretical irrotational and 
rotational calculations for typical motor parameters. 
Please note that account is not taken of other gain loss 
effects such as particulate drag and residual combustion 
that could be important in real rocket motors. Then for 
the classical model, the growth rate is  

   1 2 3 4standardα α α α α= + + +  (71) 
which includes the flow-turning correction that is 
usually assumed, and where evaluations are to be made 
using the irrotational energy normalization value 

   ( )2 1
2irrotational

/mE L Rπ=  (72) 

for the case of axial modes in a cylindrical combustion 
chamber. 
 For the full stability calculation, including all 
rotational corrections, one must use 

   1 2 3 6 7compositeα α α α α α= + + + +  (73) 

where the cancellation of the flow-turning effect and the 
rotational flow correction is accounted for; 
furthermore, evaluations must be made using the 
corrected energy normalization value 

   ( )2 5
8composite

/mE L Rπ=  (74) 

written, again, for axial modes in a full-length cylinder. 
 No attempt is made here to compare numerical values 
to experimental results published recently, which come 
from nonlinear decay data.81,82 It has been claimed that 
some measurements demonstrate that the standard 
acoustic stability results give acceptable prediction of 
the observed behavior. It must be remarked that none of 
the experimental points illustrated are taken from 

sections of the data where there was rapid growth in the 
waves; only pulse decay data was utilized. The standard 
stability calculations did not predict linear growth for 
any of the motors tested. Careful study of the data 
reduction process suggests that the reason data points 
displayed show unusually high damping is that it was 
necessary to filter the data to eliminate the strong 
harmonic content; the presence of higher modes with 
quite appreciable amplitude accompanying the filtered 
first mode data indicates nonlinear interactions that 
cannot be ignored. Linear theory does not apply in the 
situation described.81,82 
 A few simple calculations will demonstrate some 
features of the results found here. It is quite easy to 
apply the formulas for a cylindrical chamber. Table 1 
from Ref. 9, showing values for the key parameters for 
representative motors is reproduced here for 
convenience. Let us focus on large motors of the type 
described as Space Shuttle Solid Rocket Booster (SRB) 
in the table. As described in the Introduction, there have 
been many observations of longitudinal mode 
instability in large motors such as the SRB. These 
oscillations have most often been attributed to vortex 
shedding phenomena. In that model, the natural 
instability of the mean flow, especially when flow 
separation is present, suggests that large scale vortex 
structures are generated, which may add energy to the 
unsteady field in the manner of a wind musical 
instrument. However, as shown in the papers by French 
investigators,29-32 there is overwhelming evidence that 
such instabilities appear even in the absence of 
protruding restrictors or inter-segment gaps that were 
thought to be sites of vortex shedding in earlier studies.  
 Let us test the result of the analysis given here by 
applying it to a simplified SRB geometry in which the 
grain is assumed to be a long, straight, and 
unsegmented cylinder. No measurements of the 
propellant admittance function need to be attempted for 
the SRB propellant because the natural frequencies in 
this long motor are very low (15 Hz first mode). Hence, 
one may assume a typical (dimensionless) value of 

1bA �  for this situation. Standard short nozzle 

Table 1 Physical parameters for typical motor systems 
 

Motor L  (m) R  (m) bM  δ  mk  S  ξ  

Small Motor 
(Yang and Culick) 

0.60 0.025 1.7–3 5.49–4 1.33–1 76.87 1.0309 

Tactical rocket 
(Typical geometry) 

2.03 0.102 3.1–3 2.74–4 1.58–1 50.84 0.0624 

Cold Flow Experiment 
(Shaeffer and Brown)25-26 1.73 0.051 3.3–3 6.07–4 9.24–2 28.3 0.0909 

Space Shuttle SRB 35.1 0.700 2.3–3 1.04–4 6.27–2 27.24 0.0035 
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damping is also assumed. No attempt is made to 
account for particle damping, since this effect is 
negligible for such a low frequency of oscillation. 
Application of the standard stability code yields, for 
this case, 

   1
standard 5.7 secα −≈ −  (75) 

Being comparable to values that were computed during 
the development of this motor, standard predictions 
lead to the impression that the SRB would be very 
stable. For such large motors, growth or decay rates are 
always found to be small. The result is misleading 
since, in practice, significant thrust oscillations (~ 20 
klbf. peak-to-peak) are observed in static tests of all 
versions of the SRBs. Oscillations are also detected in 
flight with amplitudes sometimes exceeding 2 psi 
(peak-to-peak). If the new analysis is used instead, one 
finds 

   1
composite 2.2 secα −≈  (76) 

The new result reconciles with actual observations 
indicating that strong vorticity waves should be 
expected in this motor. It is interesting that the growth 
rate predictions for the next two or three longitudinal 
modes are of the same order of magnitude as the first 
mode results shown. In the SRB case, three or four 
modes were always readily discernible in the waterfall 
data. 
 Table 2 shows comparisons of stability computations 
(first axial mode) for three of the configurations defined 
in Table 1. Typical admittance values have been used, 
and no attempt has been made to include the effects of 
particle damping.  In all cases, the new model predicts a 
less stable system.  In comparing the standard approach 
to the composite method, in which all rotational effects 
are included, it is clear the numerical values are all of 
the same order of magnitude.  When comparing the 
results to experimental data, it is noted that they exhibit 
the correct order of magnitude.  This does not constitute 
proof that one or the other method is a correct 
representation of the system.  However, at least for one 
situation, namely for the large SRB type motor, there is 
no question that the new method yields a closer 
prediction of the experimental observations. 

IV. Conclusions 
 The new stability estimation method described in this 
paper displays a new energy source term not found in 
the acoustic instability methodology. The new results 
appear to explain the growth of longitudinal oscillations 
in large solid propellant motors that have appeared in 
many development programs. Considerable work lies 
ahead in fully utilizing what we have found as the basis 
for a predictive algorithm for use in motor design and in 
data reduction and interpretation. Although the general 
formulation is not geometry dependent, we have relied 
heavily on the assumption of a simple cylindrical 
geometry with longitudinal plane wave oscillations to 
enable the evaluations shown.  
 Clearly much work will be needed to determine the 
stability characteristics of waves in more realistic motor 
configurations. Extension of the result to partial grains 
requires further study.  Complex geometrical features of 
the burning port such as slots and fins represent 
difficulties that may require a full numerical treatment 
of both the steady and the unsteady flow by application 
of computational fluid dynamics techniques.  Inclusion 
of regions of separated flow, for example at segment 
interfaces in large motors, introduce additional 
complications. Full Navier-Stokes solutions may 
eventually provide the necessary information. It is 
possible that new numerical computations can be 
validated by use of the analytical models that have been 
described herein. 
 The new results introduced in this paper can readily 
be tested using an experimental apparatus already in 
place.  For instance, the cold flow models used by 
French investigators in their Ariane work could be used 
to test the new theoretical framework. Since only 
growth rates are predicted in the linearized theory, it 
would be necessary to modify the test procedure in such 
a way that transient behavior could be assessed. 
 In the latter regard, new emphasis on modeling of the 
nonlinear aspects of unsteady flow with rotational flow 
corrections is clearly justified.  There are no methods 
available for predicting important features of real motor 
operation such as limit-cycle amplitude or triggering.  
Certainly, rotational flow effects will play a central role 
in resolving these difficulties. 
 Finally, new stability integrals discovered in the 
present work, in particular, the “parietal” growth rate, 

6α , may have a bearing on the unresolved problem of 
velocity coupling.  This new growth rate term certainly 
represents one way in which velocity fluctuations affect 
the system stability.  In fact, this term can be recast in 
the form of a surface integral and it is then obvious that 
a “velocity coupling” response function can be 
connected to it.  These matters require further study.  

Table 2 Comparison of stability estimates 
 

Motor bA  
f  

(Hz) 
standardα

 (sec–1) 
compositeα

 (sec–1) 
Small Motor 
(Yang and Culick) 

2.50 1227 32.1 145.4 

Tactical rocket 
(Typical geometry) 

1.20 360 -43.7 26.9 

Space Shuttle SRB 1.00 19.5 -5.70 2.2 
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