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  This study considers the laminar oscillatory flow in a porous tube with uniform wall suction.  For a low 
aspect ratio tube, the time-dependent governing equations are decomposed following a regular perturbation 
of the dependent variables.  The method of matched-asymptotic expansions is then used to obtain a solution 
for the unsteady momentum equation developing from flow decomposition.  The numerically verified end 
results suggest that the asymptotic scheme is capable of providing a sufficiently accurate solution.  This is due 
to the error associated with the matched-asymptotic expansion being smaller than the error introduced while 
linearizing the Navier-Stokes equations.  A basis for comparison is established by examining the evolution of 
the oscillatory field in both space and time.  The corresponding boundary-layer behavior is also characterized 
over a range of oscillation frequencies and wall suction velocities.  In general, the current solution is found to 
exhibit features that are consistent with the laminar theory of periodic flows.  By comparison to the exact Sexl 
profile established in nonporous tubes, the current critically-damped solution exhibits a slightly smaller 
overshoot and depth of penetration.  These features may be attributed to the suction effect that tends to 
attract the shear layers closer the wall.   
 

I. Introduction  
HE purpose of this paper is to derive a closed-form 
analytical solution for the oscillatory velocity field 

in a porous tube with large wall suction.  The governing 
equations will be solved for the unsteady laminar flow 
using the assumption of axial symmetry.  Flow 
decomposition will be feasible using standard 
perturbation techniques.  The scope will be limited to 
cases for which the cross-flow Reynolds number based 
on the wall suction velocity wv  and tube radius a  is 
large ( )/ 20wR v a ν= ≥ . 
  Suction-induced flows of this type arise in the 
modeling of the respiratory function in the lungs and 
airways, in the design of hydraulic line transmissions, 
in sweat cooling, and in boundary-layer control.  Past 
studies have primarily concentrated on the non-
oscillatory flow developed due to mass extraction at the 
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boundaries.  This study attempts to account for possible 
flow periodicity that can be often introduced either 
internally, through a self-sustaining mechanism, or 
externally, through an oscillating boundary.  
  Examples of self-induced oscillatory motions can 
be realized in many practical flows.  The reason is that 
pressure oscillations that take place at random 
frequencies can be unavoidable due to small inevitable 
fluctuations in the wall suction rate.  Those pressure 
waves that are excited at the tube’s natural frequency 
go on to promote a self-sustaining oscillatory field.  
Conversely, there are numerous flow models applicable 
to permeable tubes that exhibit an externally-induced 
oscillatory motion.  One may cite the modeling of the 
respiratory and circulatory functions in biological 
organisms.  Irrespective of the source of periodicity, 
this study will attempt to derive the solution for the 
oscillatory field in the presence of large wall suction 
and laminar conditions. 
  Berman’s landmark paper1 precipitated a number 
of interesting investigations into the laminar porous 
flow problem.  Incidentally, Berman was the first to use 
asymptotics in solving for the mean component 
developed in flows with very small suction.  This was 
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accomplished after reducing the Navier-Stokes 
equations into a single, non-linear ordinary differential 
equation (ODE) of fourth order.  Based on Berman’s 
equation, numerous studies ensued, some with the 
purpose of generating descriptions for suction-driven 
flows over different ranges of R .  In fact, Yuan,2,3 
Sellars,4 and Terrill5,6 have extended Berman’s small 
suction case to encompass higher ranges of R .  While 
Yuan extended Berman’s solution to 20R =  in both 
channels and tubes, Sellars and Terrill developed 
approximate solutions that became exact as R→ ∞ . 
  In addition to these studies, other investigations 
have addressed the issues of flow stability and 
multiplicity.7-16  For the cylindrical tube, a total of four 
solutions, some of which being unstable, have been 
detected over large ranges of R .17  In summary, it was 
found that two solutions existed in the range 
0 2.3R≤ ≤ , no solutions existed for 2.3 9.1R< < , 
while four possible solutions appeared for 
9.1 R≤ <∞ .  It should be noted that the leading-
order solution for large R  that will be used throughout 
this work was proven to be temporally stable.17  Since 
our approach relies on time-dependent perturbations to 
arrive at a closed-form solution, the scope of this article 
will be limited to stable solutions only. 
  The mathematical modeling starts in Sec. II with a 
definition of the basic flow model.  This is initiated 
with a description of the system geometry and physical 
criteria.  In Sec. III, the governing equations are 
presented in their general dimensional form.  
Subsequently, equations and variables are normalized, 
linearized and decomposed into steady and time-
dependent sets.  The temporal field is further 
decomposed using the momentum transport formulation 
in Sec. IV.  This decomposition produces acoustic and 
vortical equations.  The first, pressure-driven response 
is dealt with immediately, while the second, vorticity-
driven component is split using separation of variables.  
At the outset, it can be realized that a successful assault 
on the problem is contingent upon solving the separated 
equation in the radial direction.  The latter turns out to 
be a second order ODE involving two perturbation 
parameters.  To proceed, the distinguished limit and 
boundary-layer form are determined from a systematic 
scaling analysis in Sec. V.  This is followed in Sec. VI 
by the presentation of a composite solution based on  

matched-asymptotic expansions.  Finally, in Sec. VII 
results are displayed and discussed. 

II. The Basic Flow Model 

A. The Porous Tube 

  A long slender tube is considered here with porous 
walls at a radius a .  Fluid is extracted from the porous 
surface at a uniform wall velocity wv .  The length of 
the tube is defined by L  and the system can be 
simplified by imposing the condition of symmetry 
about the tube’s axis.  An axisymmetric flow can thus 
be realized when variations in the θ -direction are 
ignored.  This enables the solution domain to become 
reducible to 0 x l≤ ≤ , and 0 1r≤ ≤ , where 

/l L a=  is the dimensionless tube length.  For 
illustrative purposes, Fig. 1 is used to present a cross-
section of the tube with the meanflow streamlines 
calculated from Terrill’s solution for large suction.6 
  Under the influence of small variations in the 
suction rate, a tube that is closed at the head end and 
open at the aft end can develop longitudinal pressure 
oscillations of amplitude A .  The corresponding 
acoustic frequency can be specified by18,19 
   ( )½ /s sm a Lω π= − ,  (1) 
where sa  is the speed of sound, and m  is the 
oscillation mode number. 

B. Limiting Conditions 

  In order to simplify the analysis to the point where 
an analytical solution can be arrived at, several 
restrictions must be observed.  First, the meanflow must 
be Newtonian, laminar, and unsusceptible to mixing, 
swirling, or turbulence.  Furthermore, the oscillatory 
pressure amplitude is taken to be small in comparison 
with the stagnation pressure. 
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Fig. 1  System geometry showing meanflow streamlines
based on Terrill’s large suction-flow solution. 
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III. Governing Equations 

A. The Conservation Equations 

  Employing asterisks to designate dimensional 
variables, density, pressure, time, velocity, and the 
shear stress tensor can be represented by *ρ , *p , *t , 

*u , and *τ , respectively.  Continuity and 
conservation of momentum can then be written in their 
general forms20 
   * / * * ( * *) 0tρ ρ∂ ∂ +∇ ⋅ =u  (2) 
  ( * *)/ * * ( * * *)tρ ρ∂ ∂ +∇ ⋅ =u u u  
    ( )* * * *p τ−∇ − ∇ ⋅ . (3) 

By using continuity to simplify Eq. (3) and viscous 
transfer for a Newtonian fluid, one can transform Eq. 
(3) into 
 ( )* * / * * * * * *t pρ  ∂ ∂ + ⋅∇ = −∇ u u u  

  ( ) ( )* 4 * * * /3 * * *µ  + ∇ ∇ ⋅ −∇ × ∇ × u u  (4) 

where *µ  is the dynamic viscosity. 
  To be general, dimensionless parameters are 
introduced.  Spatial coordinates are hence normalized 
by a , while velocity and time are made dimensionless 
by sa  and sω , respectively.  In summary, we let 
 * /x x a= , * /r r a= , *st tω= , * / sa=u u , 
   * /( )sp p pγ=  and * / sρ ρ ρ= , (5) 
where γ  is the ratio of specific heats, and sρ  and sp  
are the stagnation density and pressure.  Following this 
choice, Eqs. (2) and (4) become 
   ( )/ 0tω ρ ρ∂ ∂ +∇⋅ =u , (6) 
 [ / ( ) ]tρ ω∂ ∂ + ⋅ ∇ =u u u  
   ( ) ( )[ ]4 /3p Mε−∇ + ∇ ∇⋅ −∇× ∇×u u . (7) 

Equations (6)–(7) follow the definitions of the non-
dimensional frequency /s sa aω ω≡ , the suction Mach 
number /w sM v a≡ , and the small parameter 

1/Rε ≡ .   

B. Perturbed Variables 
  With the introduction of small amplitude 
oscillations at a frequency sω , the instantaneous 
pressure can be expressed as the linear sum of time-
dependent and steady components: 
   0 1 exp( )p p p itε= + − , (8) 

where 1i = − , /( )sA pε γ= , and 0 1( , )p p  are 
spatial functions.  Noting that the meanflow solution is 
incompressible, small compressibility effects can only 

influence the time-dependent field.  Density can thus be 
normalized by its mean component and expanded in a 
similar fashion viz. 
   11 exp( )itρ ερ= + − . (9) 

The total velocity can also be expanded as 
   0 1 exp( )M itε= + −u u u . (10) 

The Mach number multiplies 0u  because the latter is 
the meanflow velocity normalized by wv . 

C. Leading-order Decomposition 
  Equations (8)–(10) can be inserted back into Eqs. 
(6)–(7).  The zero-order terms yield the meanflow 
equations 
   0 0∇⋅ =u  (11) 

  ( )2
0 0 0M p⋅ ∇ =−∇u u  

   ( ) ( )2
0 04 / 3M ε  + ∇ ∇⋅ −∇× ∇×  u u . (12) 

Following Berman,1 a steady streamfunction can be 
defined by 
   ( )xF rΨ =− . (13) 
Subsequently, the velocity can be expressed by 

( ) ( )
0 0( , ) [ / , / ]u v xF r r F r r′= − .  By substituting these 

definitions into Eq. (12), Terrill has shown that 2F r=  
will correspond to the exact meanflow solution for the 
infinitely large suction case.6  The mean pressure 
arising in this context can be integrated from Eq. (12) to 
obtain 
   ( )0 , 1/p x r γ= − ( )2 2 21 /2M r x+ . (14) 

D. Time-dependent Equations 
  Terms of ( )εO  in Eqs. (6)-(7) lead to 
   ( )01 1 1i Mωρ ρ− +∇⋅ =− ∇⋅u u , (15) 

1iω− =u  

 ( ) ( ) ( )0 0 01 1 1M  − ∇ ⋅ − × ∇× − × ∇×  u u u u u u  

 ( ) ( )1 1 14 / 3p Mε  −∇ + ∇ ∇⋅ −∇× ∇×  u u . (16) 

Equations (15) and (16) describe the intimate coupling 
between mean and unsteady motions.  They clearly 
indicate that the wall suction velocity 0u  can strongly 
influence the oscillatory flow motion. 
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IV. Momentum Transport Formulation 

A. Irrotational and Solenoidal Vectors 
  In order to proceed, temporal disturbances can be 
split into solenoidal and irrotational components.  Using 
a circumflex to denote the curl-free pressure-driven 
part, and a tilde for the divergence-free boundary-
driven part, the time-dependent velocity component can 
be expressed as 
   1

ˆ= +u u u�  (17) 
with  1∇× = ∇×u u� , 1 ˆp p= , 1 ˆρ ρ= . (18) 

  This decomposition charges all vortices to the 
solenoidal field, and compressibility sources and sinks 
to the irrotational field. 

B. The Linearized Navier-Stokes Equations  
  Insertion of Eqs. (17)-(18) into Eqs. (15)-(16) leads 
to two independent sets that are coupled through the 
boundary conditions at the wall.  These responses are 
byproducts of pressure-driven and vorticity-driven 
oscillation modes at ( )εO .  While the acoustic, 
compressible, and irrotational equations collapse into 
   ( )0ˆˆ ˆi Mωρ ρ− +∇⋅ =− ∇⋅u u , (19) 

  ( )ˆ ˆˆ 4 /3i p Mω ε− = −∇ + ∇ ∇⋅u u  

   ( ) ( )0 0ˆ ˆM  − ∇ ⋅ − × ∇×  u u u u , (20) 

the rotational and incompressible set is comprised of 
   0∇⋅ =u� , (21) 
  ( )i Mω ε− = − ∇× ∇×u u� �  

 ( ) ( ) ( )0 0 0M  − ∇ ⋅ − × ∇× − × ∇×  u u u u u u� � � . (22) 

C. Coupling Conditions 
  Two boundary conditions must be satisfied by the 
unsteady velocity component 1u .  These are the no-slip 
condition at the wall 1( , 1) 0u x = , and symmetry about 
the midsection plane, 1( , 0)/ 0u x r∂ ∂ = . 

D. Pressure-driven Solution 
  When Eq. (19) is multiplied by iω− , the 
divergence of Eq. (20) can be evaluated; resulting terms 
can be added to produce the following wave equation: 
 ( )2 2 2 ˆˆ ˆ 4 / 3p p Mω ε∇ + =− ∇ ∇⋅u   

   ( ) ( ){ 2
0 0ˆˆM i pω− ∇⋅ −∇ ⋅u u u  

   ( ) }0ˆ +∇⋅ × ∇× u u . (23) 

A solution at ( )MO  can be readily achieved through 
separation of variables and closed-open boundary 
conditions. The ensuing acoustic pressure and velocity 
are 
   ( )ˆ cos ( )p x Mω= +O , (24) 
   ( )ˆ ˆsin ( )xi x e Mω= +u O . (25) 

E. Vortical Equations 
  Assuming that the ratio of the normal to axial 
velocity is of the same order as the Mach number (i.e. 

/ ( )v u M=� � O , v�  can be dropped at leading order.  
This assumption can be justified in view of the 
arguments presented by Flandro21 and Majdalani and 
Van Moorhem.22  Applying this condition, along with 
the definition of the meanflow velocity, the axial 
momentum equation reduces to 

 
( )0

0

uu uiSu v
x r

∂ ∂= +
∂ ∂
� �� ( )ur M

r r r
ε  ∂ ∂ − +  ∂ ∂

�
O  (26) 

where /S Mω≡  is the Strouhal number.  When 
expressed in terms of the meanflow streamfunction, Eq. 
(26) becomes 

  F F u xF uiS u
r r r r x

 ′ ′∂ ∂ + = −  ∂ ∂ 
� ��   

   ( )ur M
r r r
ε  ∂ ∂ − +  ∂ ∂

�
O . (27) 

A solution for Eq. (27) will be presented next. 

F. The Separable Boundary-layer Equation 
  A solution for Eq. (27) can be developed through 
the use of separation of variables.  Assuming the form 
   ( ), ( ) ( )u x r X x Y r=� , (28) 

substitution into Eq. (27) leads to 

  
2

2
d d d
d d d

x X F Y r Y
X x F Y r F Y r

ε= −
′ ′

  

   d 1
d n
Y iSr

F Y r F
ε κ− − − =
′ ′

 (29) 

where 0nκ >  is the separation eigenvalue.  Integration 
of the x -equation can be performed easily and then 
inserted into Eq. (28).  The outcome is 
   ( , ) ( )n

n n
n

u x r c x Y rκ=∑� , (30) 

where nc is the integration constant for each nκ .  
Satisfaction of the no-slip condition at the wall requires 
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setting the acoustic and vortical velocity components 
equal and opposite at 1r = .  One finds 
   ( ,1) sin( )u x i xω=−� . (31) 
Using a series expansion of the sine function, and 
setting the result equal to Eq. (30), one gets 

   
2 1

0

( 1) ( )(1)
(2 1)!

n

n n

n n
n n

xc x Y i
n

κ ω +∞

=

−=−
+∑ ∑ . (32) 

Equating terms necessitates that 

 
2 1( 1)2 1, , (1) 1

(2 1)!

n n

n n nn c i Y
n

ωκ
+−= + =− =

+
, (33) 

where 0,1,2,...n = ∞ . The rotational velocity 
component becomes 

   ( )
2 1

0

( 1) ( )( , )
(2 1)!

n n

n
n

xu x r i Y r
n
ω +∞

=

−=−
+∑� . (34) 

In order to bring closure to Eq. (34), nY  needs to be 
determined from Eq. (29).  One finds that nY  must be 
obtained from the doubly-perturbed boundary-value 
problem 

  
2

2
d d
d d
n nY F Y
r r r r

εε  + − +     

   ( )2 2 0n
FiS n Y
r

 ′ + + + =  
 (35) 

where 
   (1) 1nY = ,  (0) 0nY =′ . (36) 
These two boundary conditions stem from the no slip 
and core symmetry requirements. 

V. Boundary-layer Analysis 
  Substitution of Terrill’s meanflow solution into Eq. 
(35) leads to 

 ( )
2

2

d d/
d d

n nY Yr r
r r

ε ε+ − +  

   ( )[ ]4 4 0niS n Y+ + + = . (37) 

  In what follows, Eq. (37) will be solved using the 
method of matched-asymptotic expansions.  To that 
end, the perturbation parameters need to be first 
identified.  Since our concern is with solutions 
corresponding to large R , the primary perturbation 
parameter is clearly 1 1Rε −= � .  Furthermore, one 
must recognize that the condition of 1S �  is 
necessary to ensure a sufficiently oscillatory flow.  
Otherwise, the flow becomes quasi-steady. 
  Asymptotic approximations to Eq. (37) depend on 
the development of a relationship between the two 
perturbation parameters present in the problem.  By 

inspection of numerical simulations carried out for the 
large suction case, one comes to the conclusion that the 
problem exhibits a typical second-order wave type 
response that bears a strong resemblance to a critically-
damped wave.  On that account, a distinguished limit 
will be needed to relate ε  and S  in a manner to 
produce the expected response. 
  To start, an order of magnitude relationship 
between the control parameters must be posited.  For 
example, one can let  
   ( )S ζε−O∼ . (38) 

Also, rescaling of the viscous domain requires a 
distortion of the independent variable in the form 
   1 kr zε− = . (39) 
In order to determine the distinguished limit, one may 
apply the stretching transformation and use S ζε−=  in 
Eq. (37).  The result is 

 ( )
2

1 2
2

d d/
d d

k kn nY Yr r
z z

ε ε ε− −+ −  

   ( )4 4 0ni n Yζε− + + + =   . (40) 

For a critically damped response to occur near the wall, 
a balance between all three terms in Eq. (40) must be 
established.  Clearly, all terms will be in balance when 

1kζ = = .  These distinctive orders indicate that the 
boundary-layer thickness is of ( )εO  and that, 
   ( )1S ε−=O . (41) 
It may be interesting to note that these distinguished 
limits are dissimilar from those arising in the injection 
flow analogue.23  The disparity can be attributed to the 
reversal in the physics of the problem, namely, in the 
relocation of the viscous boundary layer to the vicinity 
of the wall when suction is imposed. 

VI. Matched-asymptotic Expansions 

A. The Relevant Scales 

  In order to proceed, the characteristic length scale 
necessary to magnify the thin viscous region near the 
wall needs to be identified.  From the foregoing order 
of magnitude analysis, the relevant scales can be 
recognized to be r r=  in the outer domain, and 
   ( )1 /z r ε= −  (42) 
in the inner region.  Solving the problem with matched-
asymptotic expansions involves the formulation of two 
separate solutions over the domain of interest.  While 
Eq. (37) is only valid in the outer domain (i.e., the 
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inviscid region), a transformed equation is needed to 
capture the rapid variations near the wall (inside the 
viscous boundary layer).  In both cases, we find it 
convenient to multiply Eq. (37) by r  and write the 
governing equation as 

 ( )
2

2
2

d d
d d
n nY Yr r
r r

ε ε+ − +  

   ( )[ ]4 4 0nr iS n Y+ + + = . (43) 

B. The Outer Solution 

  Using regular perturbations to construct the outer 
solution o

nY , one may start by expanding  
   ( )20 1

o o o
nY Y Yε ε= + +O . (44) 

Inserting Eq. (44) into Eq. (43) gives 

 
2

2 20 0 1 0
2

dd d d
d d d d

oo o oYY Y Y
r r r
r r r r

ε ε ε− − +  

   ( )[ ]( ) ( )20 14 4 0o or n iS Y Yε ε+ + + + + =O . (45) 

Keeping in mind that ( )1S ε−=O , the equations 
defining the first two terms in the outer solution 
become 
   0 0oiSrY =  (46) 

   ( )2 0
01

d
4 4

d

o
o oY

iSr Y r r n Y
r

ε = − + . (47) 

Solving these equations leads to 
   0 1 0o oY Y= = ,    20 ( )o

nY ε= +O . (48) 

C. The Inner Solution 

  Having realized that the outer solution is zero, the 
stretching transformation must now be applied to the 
original coordinate in order to obtain the inner equation.  
This procedure converts Eq. (43) into 

 ( ) ( )
2

2
2

d d1 1 2 1
d d

i i
n nY Yz z z
z z

ε ε ε − + − + +   

   ( ) ( )[ ]2 4 4 0i
nz n iS Yε ε+ − + + = . (49) 

The inner solution can be similarly expanded using 
( )20 1

i i i
nY Y Yε ε= + +O .  The result of substitution is  

 ( ) ( )
22

20 1
2 2

dd
1

d d

ii YY
z z
z z

ε ε ε− + −  

  ( ) 2 0 1dd
1 2 1

d d

ii YY
z z

z z
ε ε ε

   + − + + +    
 

   ( ) ( )[ ]( )2
0 14 4 0i iz n iS Y Yε ε ε+ − + + + = . (50) 

Since the inner equation is of second order, two 
conditions must be imposed on the inner solution at 
each perturbation level.  While the first can be 

determined from the no-slip at the wall, the second 
must be concluded via matching with the outer domain. 
Using Eq. (36) and the expansion for i

nY , the boundary 
condition at the wall gives 
   ( )0 0 1iY z = = ,   1 ( 0) 0iY z = = . (51) 

At this juncture, the leading and first order correction 
terms can be readily found.  From Eq. (50), the ( )1O  
equation reads  

   
2

0 0
2 0

d d
0

d d

i i
iY Y

iS Y
z z

ε+ + = , (52) 

wherefore 
 ( )1

20 1 exp 1 4 1iY c iS zε = − −    

   ( )1
22 exp 1 4 1c iS zε + − − +   . (53) 

Straightforward application of the boundary condition 
at the wall renders 
   2 11c c= − . (54) 

Hence, 
 ( )1

20 1 exp 1 4 1iY c iS zε = − −    

   ( ) ( )1
211 exp 1 4 1c iS zε + − − − +   . (55) 

Next, the ( )εO  equation that can be collected from Eq. 
(50) is 

 
2 2

1 1 0
2 21

d d d
d d d

i i i
iY Y Y

iS Y z
z z z

ε+ + =  

   ( ) ( )0
0

d
2 1 4 4

d

i
iY

z n iS z Y
z

ε+ + − + − . (56) 

While the homogeneous solution can be evaluated by 
inspection via 
 ( )1

211,h exp 1 4 1iY B iS zε = − −    

   ( )1
22 exp 1 4 1B iS zε + − − +   , (57) 

the right hand side of Eq. (56) can be rearranged into  

 ( ) ( )2 2 11
4 21 1 4 1 1 4 1zc iS z iSε ε+ − − + − −

 

 ( )] ( )1
24 4 exp 1 4 1n iS z iS zε ε − + − − −    

( ) ( ) ( )2 2 11
4 211 1 4 1 1 4 1zc iS z iSε ε+− − + − − +

  

 ( ) ( )1
24 4 exp 1 4 1n iS z iS zε ε − + − − − +   . (58) 

A particular solution must therefore be assumed such 
that 
 ( ) ( )2 1

21,p 3 4 exp 1 4 1iY B z B z iS zε = + − −    

   ( ) ( )2 1
25 6 exp 1 4 1B z B z iS zε + + − − +   . (59) 
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After differentiating and substituting Eq. (59) into the 
left hand side of Eq. (56), equating terms of order 1  
and 2z  requires that 

  
( )92

3 1

41
2 1 4

n
B c

iSε
 + = − − 

, 4 0B = , 

  ( ) ( )92
5 1

411
2 1 4

n
B c

iSε
 + = − + − 

, 6 0B = . (60) 

By writing 1 1,p1,h
i i iY Y Y= +  and enforcing Eq. (51), the 

inner solution turns into 

 ( )92
1 2 1

41
2 1 4

i
n

n
Y c B c z

iS
ε ε

ε
   +  = − + −   −   

 

   ( )1
2exp 1 4 1iS zε × − −    

 ( ) ( ) ( )92
1 2 1

411 1
2 1 4

n
c B c z

iS
ε ε

ε

   +  + − + + − +   −   
  

   ( )1
2exp 1 4 1iS zε × − − +   . (61) 

D. Asymptotic Matching 

  Inner and outer solutions can be readily matched 
using Prandtl’s matching principle.24  By requiring the 
inner solution in the outer domain to match the outer 
solution in the inner domain, one may set 
   ( ) ( ) ,cp0i o

n n nY z Y r Y→ ∞ = → = , (62) 

where ,cpnY  is the common part in the overlap region 
shared by both inner and outer solutions.  In our 
problem, both the outer and common parts are zero.  
The inner solution in the outer domain will also vanish 
according to Eq. (62) if, and only if, 1 2 0c B= = .  
These constants bring closure to the inner solution and 
enable the construction of a uniformly valid composite 
solution.  Hence, by adding the inner and outer 
solutions, less ,cpnY , one finally obtains 

 ( ) ( ) ( )92411 1
2 1 4n

n
Y r r

iSε
   +  = + − +   −   

 

   ( )( )1exp 1 4 1
2
riSε
ε

 − × − − +
  

. (63) 

E. The Oscillatory Velocity 

  Insertion of Eq. (63) into Eq. (34) results in an 
expression for the rotational velocity component.  The 
addition of the acoustic component, given by Eq. (25), 
enables us to express the total axial velocity as an 
infinite sum, namely, 

 ( ) ( )
( ) ( )

( )

2 1

1
0

1
, sin

2 1 !

n n

n

x
u x r i x

n
ωω

∞ +

=

 −= − + ∑  

  ( )
( )92411 1

2 1 4
n

r
iSε

   +  × + − +   −   
 

  ( )( )1
exp 1 4 1

2
r

iSε
ε

 −  × − − +   
. (64) 

  Since ( )1 r−  is small near the wall, one may use 
0n =  in the secondary term arising from the first-

order inner correction.  The resulting expression can be 
summed, at leading order, over all eigenvalues, and 
placed in closed form by recognizing and grouping the 
implicit sine function expansion.  This manipulation 
produces 

( ) ( )
( )

1

1 9, sin 1 1 1
2 1 4
r

u x r i x
iS

ω
ε

    −  = − + +      − 
 

   ( )( )1exp 1 4 1
2
riSε
ε

 −  × − − +   
. (65) 

The latter is found to be practically equivalent to Eq. 
(64). 

VII. Discussion 

A. Temporal Field Decomposition 

  The decomposition of the time-dependent 
governing equations presented in Sec. IV, during the 
momentum transport formulation, was first introduced 
by Flandro25 and further developed by Majdalani and 
co-workers18,19,22,23,26-30  For porous tubes with wall 
injection, the momentum transport formulation has 
provided accurate predictions that could be 
substantiated using full computational fluid dynamics 
models.  The asymptotic approximations were also 
shown to agree favorably with experimental data 
obtained in cold-flow simulations of solid rocket 
motors.  Although the physical nature of the problem 
changes when suction is introduced, the assumptions 
used in reducing the governing equations remain valid, 
irrespective of the direction of the velocity at the wall.  
By analogy with the injection-driven problem, one may 
expect the same level of agreement to exist between the 
asymptotic formulations given here and either 
numerical or experimental studies of the model at hand.  
In the absence of experimental data to compare with, 
numerical simulations will be resorted to. 
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B. Numerical Verification 

  The solution developed using matched-asymptotic 
expansions has been compared to a numerical solution 
of Eq. (37) obtained from a code that was originally 
developed for injection-driven flows by Majdalani and 
Van Moorhem.22  The algorithm employs a fixed step 
fifth order Runge-Kutta method with shooting to handle 
the boundary conditions.  For the suction case, the step 
size used was 61 10−× .  In former studies,23,29,30 the 
same code was shown to provide satisfactory agreement 
with experimental data.  Therein, the code was also 
shown to match very closely computational data 
obtained independently by Yang31 and Roh32 who 
utilized a fully compressible, finite-volume Navier-
Stokes solver.33  

C. Graphical Confirmation 

  Figure 2 illustrates the agreement between the 
numerical solution and Eq. (63).  Over typical ranges of 
physical parameters, the graphical comparison clearly 
indicates that the matched-asymptotic solution is in 
close agreement with the numerical.  From the graph, 
the accuracy of the approximate formulation is seen to 
increase with increasing Reynolds and Strouhal 
numbers.  This observation is reassuring since it 
indicates that the solution exhibits the proper 
asymptotic behavior as 1 0Rε −= →  and 1 0S− → .  It 
is also satisfying to note the nearly critical damped-
wave response.  This rapid damping in both depth and 
amplitude is consistent with the arguments introduced 
in Sec. V regarding the scaling orders of S  and ε  used 
to obtain the correct distinguished limit.  This wave 
behavior is different from the highly under-damped 
wave solution associated with injection-driven flows.  
In the latter, numerous peaks of diminishing amplitude 
appear as the distance from the wall is increased.  
  In order to assess the truncation error associated 
with Eq. (63), the maximum absolute error between 
asymptotics and numerics is shown in Fig. 3 for the 
first three eigenvalues and a range of S  and R .  When 
plotted versus ε , the error is seen to exhibit a clear 
asymptotic order as 0ε → .  It also decreases in 
magnitude with successive increases in S .  From the 
graph, it can be seen that the slope of the error curves 
and, by the same token, the order of the truncation error 
approach unity for sufficiently small ε .  This confirms 

the order claimed for the approximation.  It should also 
be noted that the slight increase in the error intercept at 
higher eigenvalues does not affect the total solution.  
This is due to the rapid convergence of the series in Eq. 
(64) as n  is increased.  

½

1

S = 2050

 numerical
 matched-asymptotic expansions

100

(a)
 

 

r

 

½

1

   

100 50 20
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1

0 0.5

100 50 20
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r

 
Fig. 2  Here, nY  is plotted for 0n = over a range of
Reynolds and Strouhal numbers.  The figures show the
slightly under-damped response of the solution for large
suction with (a) 20R =  and (b) 50R = . 



AIAA-2001-2162 

 9  
American Institute of Aeronautics and Astronautics 

D. Variation of Flow Parameters 

  Figures 4-5 illustrate the effect of varying either 
the suction velocity or the oscillation frequency on the 
time-dependent solution.  In both figures, the velocity is 
seen to be a wave traveling in time.  While a viscous 
and rotational layer is present near the wall, a broad 
inviscid and irrotational region covers the remaining 
domain.  Interestingly, the unsteady velocity reaches a 
maximum value inside the viscous layer where a small 
velocity overshoot is realized near the wall.  This 
phenomenon is well known as Richardson’s annular 
effect and seems to be characteristic of oscillatory flows 
in tubes and channels with and without wall 
permeation.  The small percentage overshoot that 
accompanies a suction-driven flow is of the same order 
as that associated with a flow inside a nonporous tube.  
It is significantly smaller than the 100% overshoot (i.e., 
velocity doubling) that recurs near the wall of injection-
driven flows. 
  According to the theory of laminar periodic flows, 
one could expect the magnitude of the velocity 
overshoot to increase at higher oscillation frequencies.  
The reason is this.  As S  is increased, the spatial 
wavelength diminishes, being inversely proportional to 
S .  The first oscillation peak stemming from a 
favorable coupling between acoustic and vortical waves 
will thus occur closer to the wall.  Since the rotational 

component diminishes with the distance from the wall, 
a larger vortical contribution can be added to the 
acoustic wave when their coupling occurs closer to the 
wall (e.g., at higher frequencies).  The reduction in 
spatial wavelength at higher Strouhal numbers increases 
the rate of viscous dissipation and causes the boundary-
layer thickness to decrease.34  The latter is often 
referred to as the penetration depth and is a measure of 
the viscous and rotational layer above the solid 
boundary. 
  Figure 4 illustrates the effects of increasing the 
Reynolds number while decreasing the Strouhal number 
via an order of magnitude increase in wv .  As the 
suction speed is increased from Fig. 4a to 4b, the 
rotational layer is reduced in both depth and overshoot.  
While the reduction in overshoot can be attributed to 

10-3 10-2 10-1

10-3

10-2

100

50

S = 20

En

ε

     n = 
 0
 1
 2

Fig. 3  The maximum error for the approximate
solution is plotted vs. ε . 

½

1
 

r

t = 
 90o

 180
 270
 360

(a)
 

 

½

1

-1.0 -0.5 0 0.5 1.0

 

   

r

(b)  

 

Fig. 4  The oscillatory velocity ( )
1 expu it− is shown at

four different times for 1m =  and / 0.5x l = .
Properties correspond to (a) 20R =  and 50S = , and
(b) 200R =  and 5S = . 
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the smaller S  and therefore vortical contribution, the 
smaller depth may be attributed to the increased R . 
Evidently, the increased fluid withdrawal rate has the 
effect of attracting the viscous layer closer to the wall.   
  Figure 5 confirms the previous statements made 
regarding the oscillation frequency.  Clearly, through an 
order of magnitude increase in S , the penetration depth 
is decreased, while Richardson’s effect is made more 
appreciable.   

E. Oscillation Modes 

  In closing, Fig. 6 is used to show the spatial 
evolution of the oscillatory velocity for the first two 
oscillation modes at o90t = .  Also plotted are the 
amplitudes of the inviscid velocity at sixteen equally 
spaced times.  This is done to illustrate the strong 
correspondence between the pressure-driven inviscid 

mode shapes and the spatial distribution of the total 
velocity.  Since the rotational contribution always 
decays away from the walls, it is clear that the inviscid 
solution dominates near the core.  The spatial amplitude 
of the oscillatory velocity is thus controlled by the 
pressure-driven mode shapes associated with the 
inviscid wave.  Except for the small viscous layer that 
is drawn to the wall by hard suction, the flow is 
primarily irrotational.  In later work, it is hoped that a 
more general solution could be presented for an 
oscillatory flow with arbitrary levels of suction. 
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