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 In this paper, the bulk gas dynamics of an internal burning rocket motor are described 
using a rotational, incompressible, and viscous flow model that incorporates the effects of 
radial wall regression.  The mathematical model developed herein is also applicable to semi-
open porous tubes with expanding walls.  A spatial transformation is used that takes 
advantage of the linear variation in the mean axial velocity.  A self-similar transformation in 
time is also used.  By applying these similarity transformations in both space and time, the 
Navier-Stokes equations are reduced to a single, nonlinear, fourth-order differential 
equation.  After providing the details leading to the exact Navier-Stokes formulation, the 
resulting equation is solved using variation of parameters and small-parameter 
perturbations based on small viscosity.  The asymptotic solutions for the velocity, pressure, 
and shear are obtained as function of the crossflow Reynolds number R  and the 
dimensionless regression ratio α .  By way of verification, we show that as / →R 0α  Yuan 
and Finkelstein’s solutions can be restored from ours.  Similarly, as / →R 0α , Taylor’s or 
Culick’s inviscid profiles are recovered.  This work demonstrates that, for a range of small 

/ Rα , inviscid solutions are practical.  However, for fast burning propellants such as those 
being developed for high-acceleration interceptor vehicles, the inviscid assumption 
deteriorates.  Being applicable over a wider range of physical parameters, the current 
analysis leads to an improved mean flow solution that may be used, instead of the inviscid 
model, to a) reevaluate viscous and rotational vortico-acoustic fields, b) investigate the onset 
of hydrodynamic instability, and c) simulate the internal flow in rapidly regressing motors.  

 

Nomenclature  
a   = instantaneous wall radius, m 
a!   = wall regression rate, m/s 
F  = similarity function 
p  = dimensional pressure, Pa 
r   = radius, m 
r   = normalized radial coordinate, /r a  
R  = injection Reynolds number 
t   = time, s 
u  = velocity ( ru , zu ), m/s 
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z  = axial coordinate, m 
z   = normalized axial coordinate, /z a  
α  = dimensionless regression ratio 
∆  = difference 
ε   = reciprocal of the injection Reynolds number 
η   = transformed radial coordinate, 21

2 r  
Ω  = vorticity, rad/s 
ρ  = density, 3kg/m  
τ   = normalized shear stress 
ν   = kinematic viscosity, 2m / s  
θ   = normalized transformation coordinate 
ψ  = normalized stream function 
 
Subscripts 
m  = mean value at a given cross section 
r   = radial component or partial derivative 
s   = solid phase 
t   = temporal derivative 
b   = porous boundary or burning surface 
z   = axial component or partial derivative 
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I. Introduction 
EVERAL mathematical problems of real concern 
involve the motion of an injection-driven fluid 

inside a tube with transpiring walls.  Past and recent 
interests have ranged over a wide spectrum of technical 
applications.  These include, but are not limited to, 
paper making,1 sweat cooling and heating,2,3 flow 
filtration and isotope separation,4-6 thermal and viscous 
boundary layer control,7-9 and internal flow modeling in 
solid rocket motors.  Internal flow modeling has 
received considerable attention over the past four 
decades due to the central role that it plays in the 
overall assessment of rocket combustion instability.  
This is due, in part, to the strong dependence of the 
volumetric stability integrals in solid rocket motors on 
the precise determination of the velocity and pressure 
fields.  The need to accurately describe the bulk gas 
motion inside rocket motors has therefore motivated, 
over the past years, a number of capable investigators to 
seek mathematical models of increasing levels of 
refinement.  
  To better understand the evolution of the problem 
at hand, it should first be recognized that the internal 
flow has been traditionally viewed as consisting of a 
superposition of mean and oscillatory fields.  It should 
also be recognized that the oscillatory field is driven, in 
part, by the mean flow motion.  As such, it would be 
certainly desirable to obtain both components under the 
same fundamental flow conditions and comparable 
levels of precision. 
  The first adequate mean flow solution was 
presented by Culick10 and constituted a worthy 
improvement over the one-dimensional formulation 
used in previous studies.11 Despite being inviscid, 
steady, and incompressible, Culick’s profile was 
rotational and could satisfy the fundamental boundary 
conditions associated with an internal-burning 
cylindrical grain.  Unlike its predecessor, it could now 
satisfy the vital no-slip condition at the wall and insure 
that gases are ejected perpendicularly to the burning 
surface.  It also matched Taylor’s solution1 obtained in 
an unrelated problem.  The latter involved running 
watery suspensions of fibers over porous sheets through 
which the fluid could be drained to form paper.  Both 
solutions were exact in the limit of an infinitesimally 
small viscosity or of an infinitely large injection 
velocity.  Culick’s solution was convenient, simple, and 
reasonably accurate over a range of Reynolds numbers 
exceeding 200.  It also lent itself to both numerical12 
and experimental verifications by Dunlap et al.13 and 
Yamada, Goto and Ishikawa.14 Aside from a small 
region near the head-end of the chamber, Culick’s 
profile appeared to adequately represent the viscous 
flow solution measured in a porous tube.  Culick’s 
inviscid profile has also been used as the basis to 

investigate the onset of hydrodynamic instability by 
Varapaev and Yagodkin,15 and, more recently, by 
Casalis, Avalon and Pineau.16 While the former carried 
out a preliminary numerical study of the linear stability 
of Culick’s solution, the latter employed an original, 
analytical approach the results of which could be 
compared to experimental measurements.  Other 
workers have also investigated the onset of turbulence 
and its evolution from the mean flow.  To name a few, 
one may enumerate Beddini and Roberts,17 Sabnis, 
Gibeling and McDonald,18 Tissier, Godfrey and 
Jacquemin,19 Roh, Tseng and Yang,20 and Apte and 
Yang.21 In addition to its pertinence to studies of 
hydrodynamic instability, the mean-flow profile has 
also been influential in the development of the 
oscillatory flow component that is used to describe the 
vortico-acoustic wave motion inside rocket motors. 
  In fact, it may be safely stated that the oscillatory 
flow analogue was pioneered by Flandro22 who pointed 
out the shortcomings of using a one-dimensional plane 
wave solution.23 As a quick remedy, Flandro presented 
an analytical solution for the oscillatory field that 
accounted for the presence of solid boundaries.24 His 
early model was two-dimensional only artificially since 
it ignored the downstream convection of unsteady 
vorticity and the spatial depreciation of Culick’s radial 
velocity.  It was, however, valid in a small region above 
the burning surface wherein important mechanisms 
were present.  An asymptotic solution by Majdalani and 
Van Moorhem ensued.25,26 The latter employed the 
exact Culick profile but still was unable to incorporate 
the axial dependency. 
  Following Flandro’s footsteps, Kirkköprü, Zhao 
and Kassoy27 attempted to use multiple scales, which 
were successfully employed by Majdalani,28 in order to 
analyze the developing transient flow that preceded the 
inception of steady-state oscillations.  Kirkköprü and 
co-workers provided a crude flow approximation that 
was based on a quasi-analytical approach and two 
conjectured scales found by intuition.  Being the 
product of guesswork, these scales were different from 
the uniformly valid transformations that were 
prescribed by the problem’s solvability condition and 
the principle of least singular behavior.  As such, they 
differed from those derived and verified by Majdalani,29 
and Majdalani and Roh.30   
  Flandro31 later presented an inviscid solution that 
fully retained Culick’s profile and the correct spatial 
dependency.  Shortly thereafter, Flandro obtained a 
multidimensional solution that incorporated viscosity.32  
A practically equivalent solution based on multiple-
scales was furnished by Majdalani and Van Moorhem.25  
Majdalani and Van Moorhem33 would later demonstrate 
the agreement between both contemporaneous solutions 
and full numerical simulations.  Their results were also 
found to reasonably agree with test measurements 
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acquired by Barron, Van Moorhem and Majdalani,34 
Brown et al.35 and Dunlap et al.36  The multiple-scale 
solution was also able to elucidate the nature of the 
acoustic boundary layer that, until then, had been the 
subject of controversy in the propulsion community.37   
  The slab-rocket analogue has also been analyzed 
by Majdalani and Roh30 and, for an arbitrary mean-flow 
profile, by Majdalani,38 and Majdalani and Van 
Moorhem.39 Therein, a fully rotational and viscous 
representation for the oscillatory field has been 
accomplished.  Being of higher-order and expressible in 
a general conceptual format, the newly developed 
representation offers the advantage of accommodating 
any valid mean-flow profile.  Inasmuch as the higher 
level of precision achieved in these recent studies 
remains limited by the accuracy of the inviscid mean-
flow solution, the motivation arises for a higher-order 
approximation that can be consistent with the unsteady 
flow details.   
  In addition to the fact that a more comprehensive 
mean-flow solution can a) improve the accuracy of 
existing time-dependent models, b) provide a better 
platform to investigate linear hydrodynamic stability, 
and c) enhance our internal flow predictive capabilities, 
it also serves to extend the range over which current 
models apply.  In fact, according to Yuan40 (cf. p. 267), 
there are numerous problems of real interest that exhibit 
crossflow Reynolds numbers that can be as low as 10. 
  Due to the foregoing reasons, as for so much else, 
it is the purpose of this article to obtain a more general 
mean-flow solution that not only satisfies the basic 
boundary conditions, but is also capable of fully 
incorporating viscous forces and wall regression.  A 
direct consequence of such a higher-order mean-flow 
solution is the attainment of a total internal flow 
solution in general form that is consistently rotational 
and viscous in both its mean and oscillatory 
components.  Furthermore, the resulting solutions 
should be useful over a broader range of physical 
applications.  They become especially suitable to model 
motors with high burning rate propellants such as those 
being developed for high-acceleration interceptor 
vehicles.  Aside from its practical usefulness, this work 
serves as an extension to the planar solution presented 
recently by Majdalani38 and Zhou and Majdalani.41  
  The article can be divided into two parts.  In the 
first, we apply Goto and Uchida’s approach42 to provide 
the clear steps leading to the reduction of the Navier-
Stokes system into a single, exact, similarity solution.  
The procedure involves a spatial transformation that 
presumes a linearly varying axial velocity and a 
temporal transformation that is granted by a constant 
(dimensionless) regression ratio.  
In the second part, we follow Yuan and Finkelstein43 
and Terrill12 in perturbing the resulting fourth-order 
nonlinear equation.  In the process, we follow a similar 

procedure to that used by Zhou and Majdalani41 who 
have recently obtained an expression for the mean-flow 
field in a slab rocket motor.  As such, we find it 
necessary to apply a quadruple variation of parameters.  
Subsequently, a higher-order mean-flow approximation 
is obtained for the velocity, pressure and shear stress 
distributions.  These are described in addition to 
limiting process verifications that we have employed to 
validate our solutions.  Our results clearly indicate the 
existence of a range over which the inviscid 
approximation deteriorates.  By the same token, we 
demonstrate the suitability of Culick’s profile over a 
substantial range of conditions arising in solid rocket 
motors.  A numerical comparison that is identical to 
that described by Zhou and Majdalani41 is also carried 
out but will be omitted here for lack of novelty.   

II. Mathematical Model 
  The internal-burning cylindrical grain model of a 
solid rocket motor is idealized as a long tube with one 
end closed.  Furthermore, the circumferential walls are 
assumed to be sufficiently permeable to allow the radial 
influx of a secondary fluid.  The radially incoming 
stream turns and merges into the primary axial flow 
while heading downstream.  As the circumferential 
walls expand at a speed equal to a! , the head-end is 
assumed to be sufficiently compliant to stretch in the 
radial direction while remaining perpendicular to the 
tube’s axis at any radius ( )a t .  As shown in Fig. 1, a 
coordinate system can be chosen in such a way to take 
advantage of the problem’s axisymmetry.  With this 
choice, the incompressible mass and momentum 
conservation equations may be written as 

( ) ( ) 0z rru ru
z r

∂ ∂
+ =

∂ ∂
  (1) 

2

2

1z z z z
z r

u u u upu u
t z r z z

ν
ρ

∂ ∂ ∂ ∂∂
+ + = − + ∂ ∂ ∂ ∂ ∂

 

  1 zur
r r r

∂ ∂  +  ∂ ∂ 
  (2) 

2

2

1  r r r r
z r

u u u upu u
t z r r z

ν
ρ

∂ ∂ ∂ ∂∂
+ + = − + ∂ ∂ ∂ ∂ ∂

 

  ( )1 rru
r r r

∂ ∂  +  ∂ ∂ 
  (3) 

where variables have their usual significance or as 
given in the Nomenclature.  Boundary conditions are: 
  ( ), 0,  z rr a t u u V= = = −  (4) 

  0, 0,  0z
r

ur u
r

∂
= = =

∂
  (5) 

and 0, 0zz u= =   (6) 
where V  is the absolute velocity at the wall.   
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A. Basic Assumptions 
  Equations (1)–(6) are written under the implicit 
assumptions that: 
1) The bulk flow is incompressible and isothermal. 
2) Body forces are absent. 
3) The kinematic viscosity ν  is constant. 
4) The fluid enters the tube at a uniform velocity V . 
5) Swirling effects can be ignored. 
6) The azimuthal component of velocity is zero. 
7) Conditions preclude the onset of turbulence. 
8) No heat is transferred to the gas. 

B. The General Mass Balance Requirement 
  Consider in Fig. 1 a control volume ϑ  extending 
from the head-end to an arbitrary position z . The 
average axial flow velocity m ( , )u z t  at a given cross 
section c ( )A z  can be determined from 

   
c

m
c

1( , ) d
A

u z t
A

= ⋅∫ u A   (7) 

where u  is the local axial velocity and d dA=A n  is the 
element of area whose normal unit vector is axial.  
Since 2

cA aπ=  and b ( ) 2A z azπ=  denotes the 
volume’s circumferential area, conservation of mass 
across ϑ  necessitates that 

   
c

b bd d 0
A

A V
t ϑ

ρ ϑ ρ ρ∂
+ − ⋅ =

∂ ∫ ∫ u A  (8) 

where cd dA zϑ =  and bV  is the fluid velocity with 
respect to the wall.  Recalling that the flow is 
incompressible, one may substitute Eq. (7) into Eq. (8), 
and then integrate from 0  to z .  After some 
rearrangement, one obtains 

  b c
m b b

c c

2 ( ) 2
A Az z zu V V a V
A A t a a

∂
= − = − =

∂
!  (9) 

where bV V a= − !  is the absolute inflow velocity with 
respect to an inertial reference frame.  Equation (9) 
indicates that the mean velocity is proportional to the 
axial coordinate and suggests the possibility of a 
similarity transformation. 

C. Mass Balance at the Propellant Surface 
  In problems for which fluid injection and wall 
motion are controlled by separate processes, bV  and a!  
are independent parameters.  In solid propellant rocket 
motors, however, the relative velocity of the gas with 

respect to the regressing walls and the speed of wall 
regression are related.  To find this relation, one must 
recognize that, in any given time interval, the mass of 
propellant burned must equal the mass of gases ejected 
into the chamber.  Since bA  denotes the burning 
surface in a solid propellant motor (or the sublimating 
surface in a cold-flow simulation of the burning 
process,34,44,45) conservation of mass at the solid-gas 
interface requires that b b s bA V A aρ ρ= ! .  The gas 
velocity with respect to the wall becomes 
   b s( / )V aρ ρ= !  (10) 
where sρ  is the density of the solid phase (before solid 
propellant pyrolysis or hard-wall sublimation).  From 
Eq. (10), the absolute velocity can be seen to be 
   s( / 1)V a Aaρ ρ= − =! !  (11) 
where s / 1A ρ ρ= −  is the wall permeance or injection 
coefficient.42  Since /A V a≡ ! , it is a measure of wall 
permeability.  In rocket motors, -32000 kg.msρ ∼ , 

-320 kg.mρ ∼ , and 100A ∼ .  At the other extreme, 
one may envisage a cold-flow experiment in which the 
walls are allowed to expand in the absence of forced 
injection (e.g., for nonreactive walls).  For such a 
hypothetical case, bV  will be zero, V a= − ! , 1A = − , 
and the flow reverses to suction due to pure expansion 
of the inert walls. 

D. Similarity in Space 
  The condition of incompressibility enables us to 
use the stream function ψ  and reduce the Navier-
Stokes equations.  Starting with 

   1 1 z ru u
r r r z

ψ ψ∂ ∂
= = −

∂ ∂
 (12) 

one may follow Goto and Uchida42 and write the stream 
function in a form that is consistent with mass 
conservation; namely, a form that can lead to a linear 
z − variation in the axial velocity.  We thus let 

   ( , )zF r tψ ν= ;  
( )
rr

a t
=  (13) 

In terms of F , the axial and radial velocities become 

  2
1 1 ( ) 1

z
zF z Fu

r r r r r ra
ψ ν ν∂ ∂ ∂

= = =
∂ ∂ ∂

 (14) 

  1 1 ( )
r

zF Fu
r z r z ar

ψ ν ν∂ ∂
= − = − = −

∂ ∂
 (15) 

Since the radial velocity is independent of z , vorticity 
simplifies into 

   zu
r

∂
Ω = ∇× = −

∂
u  (16) 

The vorticity transport equation becomes, 
   2

t ν+ ⋅∇ = ∇uW W W  (17) 

a(t)

r z

 

Fig. 1 Coordinate system for a cylindrical motor
with regressing inner walls. 
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or  z z z
z r

u u uu u
r t r z r r

∂ ∂ ∂∂ ∂ ∂     + +     ∂ ∂ ∂ ∂ ∂ ∂     
 

   1 0zur
r r r r

ν
 ∂ ∂ ∂  − =  ∂ ∂ ∂  

 (18) 

In order to apply the transformations given by Eqs. (13)
–(15), partial derivatives must be carefully evaluated.  
These involve: 

  2 3
2z r ru F Fz z a

t t r ra a
ν ν ∂ ∂

= − ∂ ∂  
!  (19) 

  3
z ru Fz

r r ra
ν  ∂ ∂

=  ∂ ∂  
,  2

z ru F
z ra

ν∂
=

∂
 (20) 

2

4
z r

r
u Fz Fu
r r r ra

ν  ∂ ∂
= −  ∂ ∂  

,  
22

4
z r

z
u Fzu
z ra

ν  ∂
=  ∂  

 (21) 

and,  4
1 1z ru Fzr r
r r r r r r ra

ν   ∂∂ ∂ ∂  =    ∂ ∂ ∂ ∂    
 (22) 

E. The Reduced Navier-Stokes Equation 
  Substituting Eqs. (19)—(22) in Eq. (18) yields 

{ 3 4( / )( / ) ( / )( / )rt r rz a F r a zr a F rν ν− + !  

  4 2 5 2(2 / )( / ) ( / )( / )r ra a z r F z a F rν ν+ −!  

  2 5( / )( / )( / ) (1/ )( / )r r r rz a F r F r r F rν+ +  

  }( / ) 0r rr r
F r+ =   (23) 

Next, one introduces the dimensionless expansion ratio  
   ( ) /t aaα ν≡ !  (24) 
Clearly, α  is a Reynolds number based on the 
expansion speed of the walls.  Inserting Eq. (24) into 
Eq. (23) renders, after some algebra, 

( ) ( ){ / (1 ) / /r rrr r
F r F r r F rα + + +   

  ( ) }2/ 2 / ( / )( / )  0r rt r
F r F r a F rα ν− − − =  (25) 

whose boundary conditions may be obtained from Eqs. 
(4)–(6).  These translate into 
  / 0,  / ;  at 1rF r F r R r= = =  (26) 

  ( )/ 0,  / 0;  at 0r r
F r F r r= = =  (27) 

where /R Va ν≡  is the Reynolds number based on the 
absolute injection velocity.  Equation (25) embodies a 
generalization of Yuan and Finkelsetein’s43 and is 
consistent with that solved numerically by Goto and 
Uchida.42  Note that R  and α  are generally unrelated.  
However, for cases involving propellant combustion or 
solid phase sublimation, Eq. (11) can be multiplied by 

/a ν  to obtain 
   s/ ( / 1) /Va aaν ρ ρ ν= − ! , or R Aα=  (28) 
Under such conditions, R  and α  become intimately 
related by the solid-to-gas density ratio.  For illustrative 
purposes, a range of physical parameters corresponding 
to solid propellants is taken from Sutton46 and compiled 

in Table 1 (cf. pp. 370, 375, 418, and 435).  We note 
that data regarding viscosity is based on the Lucas 
model which is applicable at high temperatures and 
pressures.47  We also note that the maximum regression 
speed is taken from a recent work by Beckstead.48 

F. Similarity in Time 
  In order to make further headway towards a more 
manageable equation, we assume self-similarity in time 
that can be reasonably justified in practice.  Using the 
same argument presented by Uchida and Aoki,49 we 
first apply the transformation [ ]( , ) , ( )F r t F r tα→  and 
then define α  to be invariant in time. To realize this 
condition, α  must be specified by its initial value, 
namely 0 0/ /aa a aα ν ν= =! !  (29) 
where 0a  and 0a!  represent the initial radius and 
regression rate.  The ensuing similarity transformation 
can be arrived at by integrating Eq. (29) with respect to 
time.  One obtains 
   2

0 0( ) 1 2a t a taνα −= +  (30) 
Since /a aαν= ! , Eq. (30) indicates that 

   ( )
1
22 2

0 0 0( ) / 1 2 1a t a a t a tνα να
−− −= + ≅ −! !  (31) 

  From a physical standpoint, the similarity in time 
corresponds to slowly decelerating walls.  In a solid 
propellant motor, such a condition can be associated 
with a progressive, neutral, or regressive thrust since 
the burn area always increases with the passage of time.  
Neutral or regressive thrust traces can be modeled, for 
example, when the slow reduction in a!  as time 
progresses is sufficient to exactly or more than offset 
the increased mass influx resulting from the constantly 
increasing bA .  Note that when A  is fixed, Eq. (11) 
suggests that ( ) / (0)V t V  will vary according to Eq. (31) 
as well. 

G. A Self-Similarity Solution in Time and Space 
  Under the auspices of a time-invariant α , we find 
it useful to define 
   /F F R≡ ; 21

2 rη ≡ ; and 1/ Rε ≡  (32) 
Backward substitution into Eq. (25) yields, at length, 

Table 1.  Range of parameters for SRMs 
 

Variables/Parameters Symbol Range Units 
Radius of motor grain a  0.005 – 3.5 m 
Grain density sρ  1,500 – 2,500 kg/m3 

Gas density ρ  10 – 20 kg/m3 

Kinematic viscosity ν  10-6 – 10-5 m2/s 
Grain burn rate a!  0.0005 – 0.1 m/s 
Gas injection velocity bV  0.0075 – 10 m/s 
Expansion ratio α  0.125 – 35,000  
Injection Reynolds no. R  35 – 3,300,000  
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4 3 2

4 3 2

d d d2 (2 3) 4
d d d

F F Fε η αη α
η η η

 
+ + + 

 
 

  
3 2

3 2
d d d 0

dd d
F F FF

ηη η
+ − =   (33) 

which is subject to 

  
( )1

2d
0;

d
F

η
= ( )1

2 1;F = (0) 0F =  (34) 

  
2

2
dlim 2 0
d0

Fη
ηη

=
→

  (35) 

Next, we solve this set using asymptotic tools. 

III. Analytical Solution 
  According to Terrill,12,50 a regular perturbation 
expansion is expected to hold true for moderate to large 
injection Reynolds numbers everywhere except near the 
core where a special treatment is necessary.  To start, 
we expand the solution via 2

0 1 ( )F F F Oε ε= + +  and 
substitute back into Eq. (33).  At zeroth order, a basic 
solution is obtained, namely, 

   
3 2

0 0 0
0 3 2

d d d
0

d d
F F F

F
d ηη η

− =  (36) 

The solution to this equation can be guessed to be 
0 sin( )F πη= . Defining θ πη≡ , the first-order 

equation of ( )O ε  may now be written as 
3 2

1 1 1
13 2sin cos sin cosd F d F dF F

dd d
θ θ θ θ

θθ θ
− + −  

  4 (2 3)cos sinθ αα θ θ
π π

= + + 2 sinθ θ−  (37) 

A. Variation of Parameters 
  In order to make headway, one must guess that a 
partial solution must be 1 coshF θ= .  The variation of 
parameters approach can then be used to determine the 
correction multiplier based on 1 ( ) coshF C θ θ= .  Thus, 
backward substitution into the homogeneous part of Eq. 
(37) yields 
   2sin cos 2 sin 0C C Cθ θ θ′′′ ′′ ′′− − =  (38) 
wherefrom 0 1 2( ) tanC K K Kθ θ θ= + +  (39) 
The complete homogeneous solution becomes 
   1 0 1 2sin cos coshF K K Kθ θ θ θ= + +  (40) 
where 0K , 1K  and 2K  are yet to be determined.  The 
method of variation of parameters is applied once more 
by turning the three integration constants into 
undetermined functions.  We thus set 

1 0 1 2( ) ( )sin ( ) cos ( )cosF K K Kθ θ θ θ θ θ θ θ= + +  (41) 
Substituting the above into Eq. (37) leads to 

0 1 2sin cos cos 0K K Kθ θ θ θ′ ′ ′+ + =  (42) 

0 1 2cos (cos sin ) sin 0K K Kθ θ θ θ θ′ ′ ′+ − − =  (43) 
2 2

0 1 2sin (2sin cos sin ) cos sinK K Kθ θ θ θ θ θ θ′ ′ ′+ + +
[(2 / ) 3]cos (4 / )sin 2 sinα π θ θ α π θ θ θ= − + + −  (44) 

Solving Eqs. (42)—(44) simultaneously enables us to 
determine the variable coefficients.  These are found to 
be 

1
0 2( / ) csc 3ln tanK α π θ θ θ= − + ](cos sin )θ θ θ+ −  

  3 1
02 2csc sin cos ( )S Cθ θ θ θ θ− − − − +  (45) 

( ) 31
1 2 2( / ) csc 3ln tan cscK α π θ θ θ θ= − +  

  1( )S Cθ+ +   (46) 
2

2 ( / ) 3 ( ) cos sin cscK Sα π θ θ θ θ θ θ = − − −   

 31
1 22 2cos sin csc ( )S Cθ θ θ θ θ θ− + − − +  (47) 

where 
0

( ) csc d ,S
θ

θ φ φ φ= ∫  2
1 0
( ) csc dS

θ
θ φ φ φ= ∫  (48) 

In series form, these integrals become 

( )
( )

1 2
2 1

2 2
1 1

1 22 1( )
2 1

k
k

k k
k n

S x x x
knπ

−∞ ∞
+

= =

− 
= +   + 

∑ ∑  (49) 

( )
( )

1 22
2 2

1 2 2
1 1

1 21 1( )
2 1

k
k

k k
k n

xS x x
knπ

−∞ ∞
+

= =

− 
= +   + 

∑ ∑  (50) 

B. First-order Solution 
  To recapitulate, we recall that θ πη=  and express 
the basic and first order solutions for F .  These are 

0 sinF θ=   (51) 

1F = 1
2( / ) 3ln tan (sin cos ) 2α π θ θ θ θ θ− −     

  2− ( cos sin ) ( )Sθ θ θ θ+ −  
  [ ]13( / ) ( ) ( ) cosS Sα π θ θ θ+ −  
  0 1 2cos sin cosC C Cθ θ θ θ+ + +  (52) 
The remaining constants can be determined from the 
boundary conditions given by Eqs. (34)–(35).  One 
finds 

( ) ( )( )2 21
0 2(4 / ) 2 / 1 6 / 1C Sπ α π π α π= − + − − +  

  ( )1
1 2(2 / )Sπ π+   (53) 

( )1
1 22C Sα π = + +  , 2 2C =  (54) 

  At this juncture, the axial and radial components of 
velocity and pressure can be readily evaluated.  One 
finds Taylor’s,1 Culick’s,10 or Yuan and Finkelstein’s43 
to be recoverable from Eqs. (51)–(54).   
  To avoid singularities at the core, however, we 
resort to η  as our independent coordinate for 
calculations and plots.  To maintain generality, we 
present variables in the following dimensionless form 

   zz
a

= , 2 zF
a V
ψψ = = , 2

pp
Vρ

=  (55) 
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2

r
r

u F Fu
V r η

= = − = −  (56) 

   d
d

z
z

u z F Fu z
V r r η

∂
= = =

∂
,  m

m 2uu z
V

= =  (57) 

Pursuant to these choices, the axial velocity normalized 
by the mean axial velocity becomes, at any position, 
   1/ m 2 d / dzu u F η=  (58) 
  In like fashion, the normalized radial pressure loss 
measured from the core can be found.  Starting with  

   
2

d d d
d d d

P F FFε αε
η η η η

  
= − + +  
   

 (59) 

one may integrate from the core to any radial location.  
The resulting drop is found to be 

[ ]( , ) (0, )rp p z p zη∆ ≡ − −  

  
2d 1 d (0)

d 2 d
F F FFε αε ε
η η η

−
 = + +  
 

 (60) 

  Similarly, the axial pressure drop measured from 
the head-end becomes 

( , ) ( ,0)zp p z pη η∆ ≡ −  
2 3

21
2 2 3

d 1 d d2
2 dd d

F F Fz ε η
η ηη η

 
= − + + 

 
 

22

2
d d d2
d dd
F F Fα αη
η ηη

  
+ + −  

 

d d
d d

F F FF
η η η


− + 


 (61) 

  Finally, the shear stress may be determined from 
Newton’s law for viscosity.  One finds 

   
2

2 2
d 2
d

Fz
V
ττ εη

ρ η
= =  (62) 

which, at the wall, gives 

   
2

1
b 22

d ( )
d

Fzτ ε
η

=  (63) 

IV. Results 
  To gain better understanding of the effects of 
viscosity and wall regression on the flow character, the 
main flow attributes are described over different ranges 
of the control parameters.  This description is hoped to 
aid in interpreting the significance of the higher-order 
formulation and gain more insight into the physics of 
the problem.  This will be accomplished by examining 
the behavior of flow streamlines, axial and radial 
velocities, axial and radial pressure distributions, and 
shearing stress at the wall. 

A. Streamlines 
  In Fig. 2, streamline patterns are shown for two 
widely dissimilar values of the Reynolds number either 
a) with and b) without wall regression.  From Fig. 2a, it 
may be inferred that, in the absence of wall motion, 

only slight differences in streamline curvatures are 
noticed near the head-end despite the two orders of 
magnitude separating the Reynolds numbers.  
Differences in streamline curvatures and, hence, the 
flow turning speed, become more appreciable when 
moving downstream.  The effects of viscosity are, 
therefore, more significant in the downstream portions 
of the tube.  Furthermore, as the Reynolds number is 
decreased from 1000 to 10, the viscous decay of the 
radial component of the velocity takes place more 
rapidly than the slower decay in the axial direction.  As 
a result, the flow turning speed is increased, leading to a 
sharper streamline curvature near the walls.   
  Figure 2b, on the other hand, indicates that lower 
Reynolds number flows are more sensitive to changes 
in wall regression than inviscid flows.  As it can be 
inferred by inspection of Eq. (33), the determining 
factor appears to be / Rα  or 1/ A .  The smaller this 
factor is, the less sensitive the flow will be, and more 
closely will it resemble the inviscid analogue, 
especially near the head-end.  Far downstream, 
however, the otherwise negligible discrepancies 
between viscous and inviscid flows with stationary or 
expanding walls become magnified due to their 
cumulative nature while crossing the length of the tube.  
Figure 2b also indicates that the effect of fast wall 
expansion is to reduce the flow turning speed (e.g., for 

10R = ).  The higher the expansion speed, the longer 
will the radial velocity be large in comparison to its 
axial counterpart while approaching the core.  The 
radius of curvature of an incoming streamline is thus 
increased with a! .  A purely hypothetical case arises, 
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Fig. 2 Influence of the regression rate on the 
streamlines for R = 10,  R = 1000. 
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for instance, when the walls expand at nearly the same 
speed as that of the fluid entering the tube (i.e., ba V=! ).  
Under such conditions, the expansion process will 
offset the effect of injection to the point that streamlines 
will exhibit an infinite radius of curvature and remain 
perpendicular to the walls.  If this happens, the flow 
turning process will be delayed indefinitely. 

B. Axial Velocity 
  Figures 3 and 4 illustrate the behavior of axial 
velocity profiles, normalized by their mean values mu , 
over a range of R  and α .  Similar trends to those 
associated with streamline curvatures may be observed.  
For instance, a greater sensitivity to wall regression is 
observed at smaller values of R .  Figure 3 indicates 
that, as α  changes from a) 10 to b) 100, the centerline 
velocity increases from 1.63 to 2.15 times the average 
velocity for a Reynolds number of 100.  This 32% 
increase in the centerline-to-mean velocity ratio is quite 
significant by comparison to the 7% and 3% increases 
observed at 500R =  and 1000 , respectively.  It is 
interesting to note that, when the walls are made 
permeable and allowed to expand, the 2.15 overshoot 
over mu  in Fig. 3b exceeds the factor of 2 associated 
with a fully-developed Poiseuille flow in a tube. 
  For fixed R , the regression rate is now varied by 
equal increments in Fig. 4 over the range 0 to 100.  In 
Fig. 4a, a significant variation in the centerline-to-mean 
velocity ratio is observed ranging from 1.57 to 7.41 as 
α  is increased from 0 to 100.  This 372% speed 
augmentation at the centerline can be achieved or even 
exceeded when α  is prescribed in a manner to be of the 
same order or larger than R .  When this is no longer 
the case, such as in Fig. 4b (where 1000R = ), the 
mean-flow overshoot at the centerline is increased only 
from 1.57 to 1.63; this marks a mere 4% magnification, 
for the same variation in α .  We conclude that the 
centerline-to-mean velocity overshoot is sensitive to the 
relative expansion speed and therefore commensurate 
with the size of / Rα .  For sufficiently small / Rα , the 
centerline-to-mean velocity ratio asymptotes to 1.57 or 
1
2 π .  This ratio is due to the mean velocity being 2z  

according to Eq. (57), and to the inviscid axial velocity 
being 21

2( , ) cos( )zu r z z r zπ π π= =  at the centerline.  It 
also coincides with the center-to-mean velocity ratio in 
a planar channel with porous walls wherein 

1 1 1
2 2 2( , ) cos( )zu x y x y xπ π π= =  and the mean velocity 

is simply x .39 

C. Radial Velocity 
  The radial velocity is described in Fig. 5 for three 
different values of the relative regression rate / Rα .  At 
the outset, two interesting phenomena are observed.  
The first corresponds to the existence of a point on the 
interval 1

20 η< <  where the radial velocity exceeds its 
(absolute) value at the wall.  At first glance, this 
behavior appears paradoxical since ru  is expected to 
diminish monotonically until it vanishes at the 
centerline.  At least, this was the trend observed in the 
slab rocket motor analogue.39  The difference here lies 
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Fig. 3 Influence of the regression rate on the axial
velocity for  R = 100,  R = 500, R = 1000.
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in the existence of a finite curvature to which one can 
attribute the near-wall overshoot.  The reason is this. 
Since the cylindrical flow area n ( ) 2A r rLπ=  normal to 
incoming streams is proportional to the radius, the 
sudden reduction in nA  in the vicinity of the wall 
(where the axial velocity is insignificant) forces the 
radial velocity to increase (in absolute value) in order to 
continue satisfying mass conservation.  The second 
interesting phenomenon is observed when the relative 
expansion ratio increases.  In that event, since 
expansion delays flow turning, the point of maximum 
radial velocity moves away from the wall.  This is 
clearly depicted in Fig. 5 for 100R = . Past that point of 
maximum radial velocity, the axial component is no 
longer insignificant. In that event, the downstream mass 
transport becomes sufficiently appreciable to offset the 
effect of a radial compression of nA .  For the three 
cases shown at / 1,0.2,Rα =  and 0.1, the radial 
velocity overshoot relative to the wall is found to be 
1.236, 1.087, and 1.076 at 0.250,0.343,η =  and 0.357 .  
These points correspond to 0.707,0.828,r =  and 
0.845 ; they indicate that the distance from the wall to 
the point of maximum ru  is commensurate with the 
size of / Rα .  We conclude that the closest distance to 
the wall and smallest overshoot occur when either a) 
the walls are not moving, or b) the Reynolds number is 
very high.  From the inviscid formulation, one finds 
that the smallest overshoot is 1.07 at a radius of 0.861. 

D. Radial and Axial Pressure Distribution 
  The pressure difference given by Eq. (60) is plotted 
in Fig. 6 for a) fixed α  and a range of R , and b) fixed 
R  and a range of α .  The drop is always positive, 
indicating, as one would expect, a higher pressure along 
the centerline. Consistent with the radial velocity 
distribution, the pressure drop exhibits a maximum on 
the interval 1

20 η< < .  As shown in Fig. 6a, for 
/ 1,0.2,Rα =  and 0.1, extrema of 1.66, 0.77, and 0.67 

occur at 0.783,0.854,r =  and 0.859 .  These locations 

are 11, 3, and 1.7% closer to the wall than the loci of 
maximum radial velocities.  Both the wall-distance and 
magnitude of the overshoot seem to decrease with 
successive decreases in / Rα .  These trends are further 
confirmed in Fig. 6b where, due to comparable sizes of 
α  and R , significant overshoot values in the pressure 
drop are realized at increasing distances from the wall. 
  Consistent with Eq. (61), the axial pressure drops 
in a parabolic fashion along the axis of the tube.  Its 
dependence on / Rα  follows the same physical 
arguments presented above. 

E. Wall Shear Stress 
  Lastly, Fig. 7 illustrates the influence of R  and α  
on the shear stress at the expanding wall.  For fixed α  
and a range of R , Fig. 7a verifies that the shear stress 
at the wall decreases with successive increases in the 
Reynolds number.  Thus, as the role of viscosity is 
diminished, the friction force is weakened as well.  
  When, in Fig. 7b, the Reynolds number is fixed at 

10R = , varying the regression rate of comparable size 
leads to more appreciable stresses at higher expansion 
rates.  The expansion process may therefore be viewed 
as a mechanism that promotes higher friction at the 
wall.  This stress increases downstream due to the 
relative growth in the parallel-to-normal velocity ratio.  
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Fig. 5 Influence of the regression rate on the radial
velocity for  R = 100,  R = 500, R = 1000.
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Fig. 6 a) Influence of the injection Reynolds number 
on the radial pressure distribution for 
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V. Conclusions 
  In this article, a higher-order mean-flow 
approximation is presented.  In addition to its ability in 
accounting for wall regression, the solution is 
consistently viscous and rotational.  As such, it is 
adequate for determining the complete vortico-acoustic 
solution that has received much scrutiny in the past.  It 
can also be used to investigate, by way of linear 
stability theory, the hydrodynamic evolution of the 
mean-flow shear layers.  Its applicability over a broader 
range of physical parameters extends its usage to 
problems for which the inviscid solution deteriorates.  
These include high-acceleration interceptor vehicles 
that utilize high regressive propellants.  The details of 
the mathematical arguments provided here may also be 
employed in handling other self-similar equations that 
are exact solutions of the Navier-Stokes equations.  In 
fact, self-similar transformations often lead to fourth-
order differential equations whose solutions may be 
obtained using a similar approach to the one described 
above.  Unlike numerical and experimental studies that 
have verified the adequacy of Culick’s profile,10 it is 
reassuring that our formulation, by embracing the 
inviscid solution at leading order, demonstrates its 
importance over a range of physical parameters that are 
characteristic of many solid rocket motors.  

References 
 1Taylor, G. I., “Fluid Flow in Regions Bounded by Porous 
Surfaces,” Proceedings of the Royal Society, London, Series 
A, Vol. 234, No. 1199, 1956, pp. 456-475. 
 2Peng, Y., and Yuan, S. W., “Laminar Pipe Flow with 
Mass Transfer Cooling,” Journal of Heat Transfer, Vol. 87, 
No. 2, 1965, pp. 252-258. 
 3Yuan, S. W., “Cooling by Protective Fluid Films,” 
Turbulent Flows and Heat Transfer, Section G, Vol. V, edited 
by C. C. Lin, Princeton University Press, Princeton, New 
Jersey, 1959. 
 4Berman, A. S., “Laminar Flow in Channels with Porous 
Walls,” Journal of Applied Physics, Vol. 24, No. 9, 1953, pp. 
1232-1235. 
 5Berman, A. S., “Effects of Porous Boundaries on the Flow 
of Fluids in Systems with Various Geometries,” Proceedings 
of the Second United Nations International Conference on the 
Peaceful Uses of Atomic Energy, Series P/720, Vol. 4, 1958, 
pp. 351-358. 
 6Berman, A. S., “Laminar Flow in an Annulus with Porous 
Walls,” Journal of Applied Physics, Vol. 29, No. 1, 1958, pp. 
71-75. 
 7Acrivos, A., “The Asymptotic Form of the Laminar 
Boundary-Layer Mass-Transfer Rate for Large Interfacial 
Velocities,” Journal of Fluid Mechanics, Vol. 12, No. 3, 
1962, pp. 337-357. 
 8Leadon, B. M., “The Status of Heat Transfer Control by 
Mass Transfer for Permanent Surface Structures,” 
Aerodynamically Heated Structures, edited by P. E. Glaser, 
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962. 
 9Libby, P. A., “The Homogeneous Boundary Layer at an 
Axisymmetric Stagnation Point with Large Rates of 
Injection,” Journal of the Aerospace Sciences, Vol. 29, No. 1, 
1962, pp. 48-60. 
 10Culick, F. E. C., “Rotational Axisymmetric Mean Flow 
and Damping of Acoustic Waves in a Solid Propellant 
Rocket,” AIAA Journal, Vol. 4, No. 8, 1966, pp. 1462-1464. 
 11Hart, R. W., and McClure, F. T., “Combustion Instability: 
Acoustic Interaction with a Burning Propellant Surface,” The 
Journal of Chemical Physics, Vol. 10, No. 6, 1959, pp. 1501-
1514. 
 12Terrill, R. M., and Thomas, P. W., “On Laminar Flow 
through a Uniformly Porous Pipe,” Applied Scientific 
Research, Series A, Vol. 21, 1969, pp. 37-67. 
 13Dunlap, R., Willoughby, P. G., and Hermsen, R. W., 
“Flowfield in the Combustion Chamber of a Solid Propellant 
Rocket Motor,” AIAA Journal, Vol. 12, No. 10, 1974, pp. 
1440-1445. 
 14Yamada, K., Goto, M., and Ishikawa, N., “Simulative 
Study of the Erosive Burning of Solid Rocket Motors,” AIAA 
Journal, Vol. 14, No. 9, 1976, pp. 1170-1176. 
 15Varapaev, V. N., and Yagodkin, V. I., “Flow Stability in 
a Channel with Porous Walls,” Fluid Dynamics (Izvestiya 
Akademii Nauk SSSR, Meckanika Zhidkosti i Gaza), Vol. 4, 
No. 5, 1969, pp. 91-95. 
 16Casalis, G., Avalon, G., and Pineau, J.-P., “Spatial 
Instability of Planar Channel Flow with Fluid Injection 
through Porous Walls,” The Physics of Fluids, Vol. 10, No. 
10, 1998, pp. 2558-2568. 
 17Beddini, R. A., and Roberts, T. A., “Turbularization of an 
Acoustic Boundary Layer on a Transpiring Surface,” AIAA 
Journal, Vol. 26, No. 8, 1988, pp. 917-923. 

-2.0

-1.5

-1.0

-0.5

0.0

α = 10

a)

τb

0 2 4 6 8 10
-16

-12

-8

-4

0

b)

R = 10

τb

z
 

Fig.7 a) Influence of the injection Reynolds number 
on the wall shear stress for a moderate regression 
rate and  R = 100,  R = 500,  R = 1000.   

 b) Wall shear stress at a moderate injection 
Reynolds number and a range of regression rates: 

 0,  20,  40,  60,  80, 100.



AIAA-2001-3870 

 –11–  
American Institute of Aeronautics and Astronautics 

 18Sabnis, J. S., Gibeling, H. J., and McDonald, H., “Navier-
Stokes Analysis of Solid Propellant Rocket Motor Internal 
Flows,” Journal of Propulsion and Power, Vol. 5, No. 6, 
1989, pp. 657-664. 
 19Tissier, P. Y., Godfroy, F., and Jacquemin, P., 
“Simulation of Three Dimensional Flows inside Solid 
Propellant Rocket Motors Using a Second Order Finite 
Volume Method - Application to the Study of Unstable 
Phenomena,” AIAA Paper 92-3275, July 1992. 
 20Roh, T. S., Tseng, I. S., and Yang, V., “Effects of 
Acoustic Oscillations on Flame Dynamics of Homogeneous 
Propellants in Rocket Motors,” Journal of Propulsion and 
Power, Vol. 11, No. 4, 1995, pp. 640-650. 
 21Apte, S., and Yang, V., “Effects of Acoustic Oscillations 
on Turbulent Flowfield in a Porous Chamber with Surface 
Transpiration,” AIAA Paper 98-3219, July 1998. 
 22Flandro, G. A., “Solid Propellant Acoustic Admittance 
Corrections,” Journal of Sound and Vibration, Vol. 36, No. 3, 
1974, pp. 297-312. 
 23Culick, F. E. C., “The Stability of One-Dimensional 
Motions in a Rocket Motor,” Combustion Science and 
Technology, Vol. 7, No. 4, 1973, pp. 165-175. 
 24Flandro, G. A., “Effects of Vorticity Transport on Axial 
Acoustic Waves in a Solid Propellant Rocket Chamber,” 
Combustion Instabilities Driven by Thermo-Chemical 
Acoustic Sources, Nca, Vol. 4, American Society of 
Mechanical Engineers, New York, 1989, pp. 53-61. 
 25Majdalani, J., and Van Moorhem, W. K., “The Unsteady 
Boundary Layer in Solid Rocket Motors,” AIAA Paper 95-
2731, July 10-12, 1995 1995. 
 26Majdalani, J., and Van Moorhem, W. K., “A Multiple-
Scales Solution to the Acoustic Boundary Layer in Solid 
Rocket Motors,” Journal of Propulsion and Power, Vol. 13, 
No. 2, 1997, pp. 186-193. 
 27Kirkköprü, K., Kassoy, D. R., and Zhao, Q., “Unsteady 
Vorticity Generation and Evolution in a Model of a Solid  
Rocket Motor,” Journal of Propulsion and Power, Vol. 12, 
No. 4, 1996, pp. 646-654. 
 28Majdalani, J., “Improved Flowfield Models in Rocket 
Motors and the Stokes Layer with Sidewall Injection,” Ph.D. 
Dissertation, University of Utah, 1995. 
 29Majdalani, J., “A Hybrid Multiple Scale Procedure for 
Boundary Layers Involving Several Dissimilar Scales,” 
Zeitschrift für angewandte Mathematik und Physik, Vol. 49, 
No. 6, 1998, pp. 849-868. 
 30Majdalani, J., and Roh, T. S., “The Oscillatory Channel 
Flow with Large Wall Injection,” Proceedings of the Royal 
Society, Series A, Vol. 456, No. 1999, 2000, pp. 1625-1657. 
 31Flandro, G. A., “Effects of Vorticity on Rocket 
Combustion Stability,” Journal of Propulsion and Power, 
Vol. 11, No. 4, 1995, pp. 607-625. 
 32Flandro, G. A., “On Flow Turning,” AIAA Paper 95-
2530, July 1995. 
 33Majdalani, J., and Van Moorhem, W. K., “Improved 
Time-Dependent Flowfield Solution for Solid Rocket 
Motors,” AIAA Journal, Vol. 36, No. 2, 1998, pp. 241-248. 
 34Barron, J., Van Moorhem, W. K., and Majdalani, J., “A 
Novel Investigation of the Oscillatory Field over a 
Transpiring Surface,” Journal of Sound and Vibration, Vol. 
235, No. 2, 2000, pp. 281-297. 
 35Brown, R. S., Blackner, A. M., Willoughby, P. G., and 

Dunlap, R., “Coupling between Velocity Oscillations and 
Solid Propellant Combustion,” Final Technical Rept. F49620-
81-C-0027, Bolling Air Force Base, Washington DC, August 
1986. 
 36Dunlap, R., Blackner, A. M., Waugh, R. C., Brown, R. S., 
and Willoughby, P. G., “Internal Flow Field Studies in a 
Simulated Cylindrical Port Rocket Chamber,” Journal of 
Propulsion and Power, Vol. 6, No. 6, 1990, pp. 690-704. 
 37Majdalani, J., “The Boundary Layer Structure in 
Cylindrical Rocket Motors,” AIAA Journal, Vol. 37, No. 4, 
1999, pp. 505-508. 
 38Majdalani, J., “The Oscillatory Channel Flow with 
Arbitrary Wall Injection,” Zeitschrift für angewandte 
Mathematik und Physik, Vol. 52, No. 1, 2001, pp. 33-61. 
 39Majdalani, J., and Van Moorhem, W. K., “Laminar Cold-
Flow Model for the Internal Gas Dynamics of a Slab Rocket 
Motor,” Journal of Aerospace Science and Technology, Vol. 
5, No. 3, 2001, pp. 193-207. 
 40Yuan, S. W., “Further Investigation of Laminar Flow in 
Channels with Porous Walls,” Journal of Applied Physics, 
Vol. 27, No. 3, 1956, pp. 267-269. 
 41Zhou, C., and Majdalani, J., “Improved Mean-Flow 
Solution for Slab Rocket Motors with Regressing Walls,” 
AIAA Paper 2000-3191, July 2000. 
 42Goto, M., and Uchida, S., “Unsteady Flows in a Semi-
Infinite Expanding Pipe with Injection through Wall,” 
Transactions of the Japan Society for Aeronautical and Space 
Sciences, Vol. 33, No. 9, 1990, pp. 14-27. 
 43Yuan, S. W., and Finkelstein, A. B., “Laminar Pipe Flow 
with Injection and Suction through a Porous Wall,” 
Transactions of the American Society of Mechanical 
Engineers: Journal of Applied Mechanics, Series E, Vol. 78, 
1956, pp. 719-724. 
 44Ma, Y., Van Moorhem, W. K., and Shorthill, R. W., 
“Innovative Method of Investigating the Role of Turbulence 
in the Velocity Coupling Phenomenon,” Journal of Vibration 
and Acoustics-Transactions of the ASME, Vol. 112, No. 4, 
1990, pp. 550-555. 
 45Ma, Y., Van Moorhem, W. K., and Shorthill, R. W., 
“Experimental Investigation of Velocity Coupling in 
Combustion Instability,” Journal of Propulsion and Power, 
Vol. 7, No. 5, 1991, pp. 692-699. 
 46Sutton, G. P., Rocket Propulsion Elements, 6th ed., John 
Wiley & Sons, Inc., New York, 1992. 
 47Reid, R. C., Prausnitz, J. M., and Poling, B. E., The 
Properties of Gases and Liquids, 4th ed., McGraw Hill, New 
York, 1987, p. 388–490. 
 48Beckstead, M., “Overview of Combustion Mechanisms 
and Flame Structures for Advanced Solid Propellants,” Solid 
Propellant Chemistry, Combustion, and Motor Interior 
Ballistics, Vol. 185, edited by V. Yang, T. B. Brill, and W.-Z. 
Ren, Progress in Astronautics and Aeronautics, Washington, 
DC, 2000, pp. 267-285. 
 49Uchida, S., and Aoki, H., “Unsteady Flows in a Semi-
Infinite Contracting or Expanding Pipe,” Journal of Fluid 
Mechanics, Vol. 82, No. 2, 1977, pp. 371-387. 
 50Terrill, R. M., “On Some Exponentially Small Terms 
Arising in Flow through a Porous Pipe,” Quarterly Journal of 
Mechanics and Applied Mathematics, Vol. 26, No. 3, 1973, 
pp. 347-354. 

 


	ma1: G. A. Flandro
	ma3: Tullahoma, TN 37388
	ma2: University of Tennessee Space Institute


