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In the presence of small-amplitude pressure oscillations, the linearized Navier-Stokes equations are solved to
obtain an accurate description of the time-dependent field in a channel having a rectangular cross section and two
equally permeable walls.  The mean solution is based on Taylor’s classic profile while the temporal solution is
synthesized from irrotational and rotational fields.  Using standard perturbation tools, the rotational component of
the solution is derived from the linearized vorticity transport equation.  In the absence of an exact solution to rely
on, asymptotic formulations are compared to numerical simulations. In essence, the analytical formulation reveals
rich vortical structures and discloses the main link between pressure oscillations and rotational wave formation.  In
the process, the explicit roles of variable injection, viscosity, and oscillation frequency are examined.  Using an
alternative methodology, both WKB and multiple scale techniques are applied to the linearized momentum equation.
The momentum equation is of the boundary value type and contains two small perturbation parameters.  The
primary and secondary parameters are, respectively, the reciprocal of the kinetic Reynolds and Strouhal numbers.
The multiple scale procedure employs two fictitious scales in space: a base and an undetermined scale.  The latter is
left unspecified during the derivation process until flow parameters are obtained in general form.  Physical
arguments are later used to define the arbitrary scale, –which could not have been conjectured a priori.  The
emerging multiple scale solution offers several advantages.  Its leading-order term is simpler and more accurate
than other formulations.  Most of all, it clearly displays the relationship between physical parameters that control
the final motion.  It thus provides the necessary means to quantify important flow features.  These include the
corresponding vortical wave amplitude, rotational depth of penetration, near-wall velocity overshoot, and surfaces
of constant phase.  In particular, it discloses a viscous parameter that has a strong influence on the depth of
penetration, and furnishes a closed-form expression for the maximum penetration depth in any oscillation mode.
These findings enable us to quantify the location of the shear layer and corresponding penetration depth.  By way of
theoretical verification, comparisons between asymptotic formulations and numeric predictions are reassuring.  The
most striking result is, perhaps, the satisfactory agreement found between asymptotic predictions and data obtained,
totally independently, from numerical simulations of the nonlinear Navier-Stokes equations.  In closing, a standard
error analysis is used to confirm that the absolute error associated with the analytic formulations exhibits the
correct asymptotic behavior.
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1 INTRODUCTION
 N this article, we consider a weakly oscillatory flow
inside a long and narrow channel with porous walls.

In this problem, the mean fluid motion is induced by
large injection at the walls.  In addition to the mean
motion, the presence of small-amplitude oscillatory

waves must be accounted for.  These waves are due to
self-excited pressure disturbances that are caused by
inevitable fluctuations in the injection rate. The strong
coupling between oscillatory pressure gradients and
mean fluid motion entails complex structures that we
wish to describe.  Such structures can arise in a number
of engineering applications that involve unsteady flows

I
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inside enclosures with transpiring walls.   For example,
transpiring walls can be used to simulate surface
ablation, phase sublimation, and the burning of solid
propellant slabs. Relevant applications may thus include
rocket propulsion, filtration mechanisms, sweat cooling,
chemical dispensing, and other membrane separation
processes.  In order to develop asymptotic formulations
for the problem at hand, the total solution will be
synthesized from its mean and time-dependent
components.  The total solution will thus depend on an
accurate definition of the steady field.  The latter has
been addressed previously by a number of investigators.

Characterization of steady fluid motions in porous
channels may be traced back to the pioneering works of
Berman [1]. In fact, assuming a similarity
transformation, Berman investigated the laminar, two-
dimensional flow of an incompressible fluid driven by
uniform injection inside a rectangular channel with
porous walls.  His motivation was the industrial
separation of U235  from U238  by gaseous diffusion.  He

thus reduced the Navier-Stokes equations to a single,
nonlinear, fourth-order differential equation with four
boundary conditions and a cross-flow Reynolds number
R .  The latter was based on the normal injection speed

wv  and channel half-spacing h .  Being unable to solve

the resulting equation in general form, Berman
employed a regular perturbation scheme, for small R ,
to produce an asymptotic formulation.  Numerous
studies of channel flows with permeable walls
followed.

For large suction, Sellars [2] obtained the first term of
an approximation that was further expanded by Terrill
[3].  Using an integral approach, Proudman [4]
investigated the large R  case with both equal and
dissimilar injection or suction velocities.  Using
numerical curve-fitting principles, Morduchow [5]
invoked the method of averages to arrive at simple
approximations over the entire injection range.  For
similar reasons, White et al. [6], provided, for arbitrary
R , an absolutely convergent power series whose
coefficients were relegated to numerical routines.
Other authors considered the large-suction case,
including Robinson[7], Lu et al. [8], MacGillivray and
Lu [9], and Cox and King [10].

For large injection, two contemporaneous and
independently derived solutions were reported by
Taylor [11], and Yuan [12].  The former was a subset of
the latter in the limiting case of an infinite R .  The
inability of Yuan’s regular perturbation expansion to
incorporate the viscous layer near the core was
overcome by Terrill [13] who employed matched
asymptotic expansions to capture the inner layer.

The spatial stability of steady solutions of the Berman
equation was addressed by several authors as well.
These included Varapaev and Yagodkin [14], Raithby

and Knudsen [15], Hocking [16], Sviridenkov and
Yagodkin [17], Brady [18], and Durlofsky and Brady
[19].  Some of their results suggested that injection
flows tended to be absolutely stable and well-behaved,
asymptotically in R , and that increasing R  reduced
the steady flow development length.  Conversely,
suction flows appeared to be amenable to instability and
reversal, exhibiting inflection points and dual solutions
in some ranges of R .

The proof of solution multiplicity over different
ranges of R  has also attracted the attention of several
mathematicians.  Insofar as injection is concerned,
Skalak and Wang [20] were the first to report a unique
solution for all R .  Their formal conclusion was
confirmed in a rigorous fashion by both Shih [21] and
Hastings et al. [22].

Recently, the temporal stability of such flows has
received attention vis-à-vis studies made by Zaturska et
al. [23], Taylor et al. [24], and Watson et al. [25],  Such
studies agreed that steady symmetric flows
corresponding to the wall injection type were stable to
time-dependent perturbations.  Temporal stability has
been considered also by Cox [26].

While the majority of these pioneering studies relied
on numerical simulations for validation purposes, some
drew conclusions from experimental observations.  In
fact, laboratory experiments on steady channel flow
through porous sheets were conducted by Taylor [11],
Varapaev and Yagodkin [14], Raithby and Knudsen
[15], and Sviridenkov and Yagodkin [17].  These
indicated that Taylor’s or Yuan’s similarity solutions
with injection were observed to develop rapidly within
the channel.

The addition of longitudinal pressure oscillations in
channels with plane porous walls was realized
experimentally by Ma et al. [27], Barron et al. [28],
Avalon et al. [29], and Casalis et al. [30].  Both Ma and
Barron borrowed the concept of producing an
alternating flow by external means from Richardson
and Tyler [31] who used electric motors to control the
reciprocating motion of a piston mounted at the end of a
crank.  Naturally, the to-and-fro piston motion caused
the injected gas inside the channel to vibrate
harmonically.  In both instances, carbon dioxide was
expelled from flat blocks of sublimating dry ice to
simulate the injectant.  More recently, Avalon et al. [29]
and Casalis et al. [30] demonstrated the existence of
intrinsic, self-induced harmonic oscillations in their
experimental facility.  Theirs comprised a long channel
with two opposing permeable and impermeable walls.
As uniform air injection was maintained through the
plane porous sections of their apparatus, small
unavoidable fluctuations in the injectant rate led to the
onset of a strong acoustic environment.  In all three
experiments, the placement of a choked orifice or
nozzle at the downstream end determined whether the
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oscillation mode character was of the closed-closed or
closed-open type.  In this article, we shall focus on the
basic laminar flow model that corresponds to pressure
oscillations of the closed-closed type.

The objective will be, therefore, to derive an accurate
asymptotic solution to the two-dimensional oscillatory
field in a channel with plane porous walls.  We hope
that the detailed knowledge we gain will help develop
physical intuition into more realistic flows in channels
and tubes.

The forthcoming treatment is organized in the
following manner.  We start in Sec. 2 by defining the
geometry at hand, Berman’s mean flow solution, and
fundamental criteria.  This is followed in Sec. 3 by
linearizing the Navier-Stokes equations via regular
perturbations in the injection Mach number and
fluctuating pressure amplitude.  In Sec. 4 we employ a
powerful theorem that permits decomposing the time-
dependent field into irrotational and solenoidal
components.  While the irrotational, pressure-driven
solution can be obtained rather straight-forwardly, the
solenoidal, vorticity-driven component demands a
careful treatment and is deferred to Sec. 5.  Results are
compared to numerical solutions of the linearized
Navier-Stokes equations in Sec. 6.  In the ensuing
discussion, the time-dependent vortical structure is
closely examined.  Since one would expect the
transpiring walls to become inactive when injection is
suppressed, our asymptotic formulation is compared to
the corresponding exact solution of the Stokes type for
a plane, periodic flow between parallel walls.

To complete our flow field investigation, we extend
our work by devising alternative formulations.  These
have the capability of elucidating the boundary layer
structure and corresponding flow characteristics.  To
that end, we develop a more sophisticated strategy,
based on WKB and multiple scale theories, to obtain a
more accurate and yet simpler representation of the
velocity field.  In the process, we introduce a space-
reductive procedure that holds several advantages over
our former perturbation solution set out in Sec. 6.  Thus,
by devising alternative formulations, we are able to
achieve two additional objectives: to confirm the
validity of the former asymptotic solution, and to obtain
closed-form expressions for the boundary layer
thickness and other important flow features.  Instead of
working with the vorticity transport equation, the
velocity will now be derived directly from the
momentum equation.  This can be accomplished in Sec.
7 via separation of variables but will result in a singular
ordinary differential equation.  We proceed thereafter
by expanding the separated equation via WKB and two-
variable multiple scales.

As we insist on verifications, results from the
multiple scale solution are compared to the former
solution in Sec. 8.  This is accompanied by comparisons

with computational data acquired from numerical
simulations of the complete Navier-Stokes equations in
their nonlinear form.  Having established a high level of
confidence in the asymptotic formulations, the
Richardson velocity overshoot factor is evaluated in
both magnitude and location.  The penetration depth is
also quantified.  The error associated with the multiple
scale expansion is computed and compared with its
precursor.  Finally, we recapitulate and conclude the
analysis in Sec. 9.

2 MODEL DESCRIPTION

2.1 Geometry

The flow to be studied is established inside a long
rectangular channel of length L , width w , and
bounded by plane porous walls that are h2  apart.
Through these walls, a Newtonian fluid is injected with
constant uniform velocity wv .  In this article, we shall,

in fact, limit our attention to a perfect gas.  Taking one
side of the cross section to be smaller than the other two
enables us to treat the problem as a case of two-
dimensional flow.  We note parenthetically that it has
been demonstrated by Terrill [3] (cf. pp. 309-310) that
the ratio of the width to the height of the channel does
not have to be large to justify ignoring the influence of
passive side walls.  In addition, symmetry reduces the
solution domain by half, making it sufficient to
investigate the flow behavior over half of the channel.
This is especially true since, for large injection (cf.
Zaturska et al. [23]), one expects unique, stable and
symmetric temporal solutions about the channel’s
center-line.  As shown schematically in Fig. 1, a
coordinate system can be chosen with the origin at the
porous wall.  After normalizing all spatial coordinates
by h , the streamwise, transverse, and spanwise
coordinates are denoted by x , y , and z , respectively.
The benefit of selecting y  to be the normal distance
measured from the wall will become apparent in later
discussions of boundary layer issues.  Disregarding the
influence of rigid boundaries, we assume no variations
in z  and confine our solution to x l0 ≤ ≤ , and

y0 1≤ ≤ , where l L h/= .

When the channel is closed at the head end and
choked at the downstream end, small fluctuations in the
injectant rate give rise to harmonic pressure
oscillations.  These small pressure fluctuations can, in
turn, couple with the mean flow to induce a time-
dependent field that we wish to investigate.  The
streamlines depicted in Fig. 1 correspond to typical
flow patterns pertaining to the undisturbed state.
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2.2 Criteria

In seeking a closed-form solution, several criteria
must be met.  In connection with the mean flow motion,
we require that steady conditions prevail in a laminar,
rotational, and incompressible regime.  Furthermore,
neither swirling nor mixing can take place between
incoming streams.  The condition of uniform porosity is
simulated by prescribing a constant normal velocity at
the wall that is independent of position.  On the one
hand, we limit our scope to cross-flow Reynolds
numbers satisfying wR v h / 20ν= > , where ν  is the

kinematic viscosity.  The advantage is that, in this
range, the mean flow can be adequately expressed by
the well-known Taylor solution.  The upper limit
imposed on R  is decreed, on the other hand, by the
need to maintain an injection Mach number

w sM v a/=  of order 310− , with sa  referring to the

stagnation speed of sound.  The reason is this:  In
linearizing the Navier-Stokes equations, M  will be
employed as a perturbation parameter.  Consequently,
the final formulation will entail an error of M( )O .  As

sa  far exceeds wv  in most applications, M  will be

small in practice.
In what concerns the harmonic field performing small

oscillations about the base flow, we constrain the
oscillatory pressure amplitude A  to remain small when
compared with the stagnation pressure sp  evaluated at

x 0= .  This enables us to construct another small
parameter that scales with sA p/ .  Since the mean

pressure decreases in the streamwise direction, we limit
the channel length to l 100< , for consistency in
perturbation levels.  Finally, we assume that the
presence of isentropic oscillations does not affect the
bulk fluid motion.

2.3 Mean Flow Definition

In the absence of harmonic disturbances, the Navier-
Stokes equations can be solved exactly using a
similarity transformation.  As demonstrated by Berman
[1], when the steady stream function Ψ  is taken to vary
linearly in the streamwise direction, viz. xF y( )Ψ = − ,

one can write (following Varapaev or Proudman),
u v xF F0 0( , ) ( , )′= − , where u v0 0 0= +u i j  is the

mean velocity vector normalized by wv .  The separable

component F  must satisfy Berman’s equation,
ivF R F F FF( ) 0′ ′′ ′′′+ − = , which depends on R  and

four boundary conditions: F (0)′ F(1)= F (1)′′= 0= ,

and F(0) 1= .  Note that, in our notation, we follow

Morduchow [5] and Terrill [13] in defining R  to be
positive for injection.  With this choice, the unstable
solution reported by Zaturska et al. [23] will correspond
to the R 6<−  suction range.  Although it is possible to
manage a time-dependent formulation for arbitrary F ,
we are inclined to use a simple and practical solution
corresponding to ( )F y2cos π= , which becomes exact

as R → ∞ .  More sophisticated Berman functions can
give rise to technical issues that tend to complicate and
slightly obscure the necessary analysis.  This ideal
solution, attributed to Taylor [11], has been thoroughly
verified both numerically and experimentally to be a
reasonable approximation for R 20> .  In this range,
Varapaev [14] notes minimal solution changes and
almost no changes for R 100> .  With this choice of
F , the velocity and vorticity fields can be expressed by

( )u x y2 20 sinπ π= , ( )v y20 cos π= ,

and ( )x y2

4 20 cosπ πω = − , (2.1)

which satisfy all the boundary conditions, including the
no-slip at the wall.  After normalizing the mean
pressure by spγ , (where γ  is the ratio of specific

heats), one can integrate the ideal momentum equation
to get

( )p x y M x y22 2 2
4 20( , ) 1/ cos /2π πγ  = − +  
M x2 21/ ( )γ= +O . (2.2)

The last formula makes it abundantly clear that the error
associated with a uniform mean pressure assumption
will be less than a few percent when x 100≤ .  Were it
not for this limitation, our analysis would have been
applicable to a semi-infinite channel.

3 LINEARIZED NAVIER-STOKES EQUATIONS

3.1 Fundamental Equations

Assuming constant kinematic viscosity and negligible
bulk viscosity, the differential conservation of mass and
momentum can be cast into the familiar nondimensional
form

( )t �� �/ 0ρ ρ∂ ∂ +∇ =. u , (3.1)

( )[ ]t� � �� /ρ ∂ ∂ + ∇ =u u. u

( ) ( )[ ]p R � �� 1 4 / 3−−∇ + ∇ ∇ −∇× ∇×.u u (3.2)

where the total instantaneous velocity 
�u  is normalized

by the speed of sound sa , spatial coordinates by h , and

time is made dimensionless by reference to sh a/ , the0

1

0 2 4 6 8 x

y

 

Figure 1-  Two-dimensional mean flow streamlines.
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average time it takes for a pressure disturbance to travel
from the wall to the core.  Using asterisks for
dimensional variables, the instantaneous pressure and
density can be referenced to stagnation conditions.
Setting sp p p� �* /( )γ≡ , s

� �* /ρ ρ ρ≡ , the acoustic

Reynolds number R  that appears in Eq. (3.2) will be

sa h /ν .

3.2 Variable Decomposition

When periodic oscillations are introduced at a radian
frequency k , the instantaneous pressure can be written
as a sum of its steady and fluctuating components.
Using subscripts for perturbation orders, the total
pressure can be expanded into
p p x y p x y t� * * * * * * *

0 1( , ) ( , , )∗ = + =

p AP x y kt* * * *
0 ( , )exp( i )+ − (3.3)

where P  is a function of (1)O  that will be determined

in Sec. 4 .  Normalizing and using sp p*
0 = , we get

mp x y t P x y k t M x� 2 2( , , ) 1/ ( , )exp( i ) ( )γ ε= + − +O
p x y t11/ ( , , )γ ε≅ + (3.4)

where m sk kh a/=  is the nondimensional frequency,

and sA p/( )ε γ=  is the pressure wave amplitude.

Other fluctuating variables can be expanded in a similar
fashion.  For example, one can define s

*
1 1ρ ερ ρ≡ , and

sa
*
1 1ε≡u u , where 1ρ  and 1u  are time-dependent

functions of (1)O  that can be later evaluated.  At the

outset, one can write

( )s sx y t x y t� *
1 1( , , ) / 1 ( , , )ρ ρ ρ ρ ερ= + = + (3.5)

In much the same way, velocity lends itself to
decomposition.  Knowing the mean solution from Eqs.
(2.1) and (2.2), we may follow Lighthill [32] by
assuming small velocity oscillations about the mean and
expand the dimensional velocity as

x y t x y x y t� * * * * * * * * * *
0 1( , , ) ( , ) ( , , )= +*u u u

wv x y x y t* * * * * *
0 1( , ) ( , , )= +u u (3.6)

Normalizing by sa  begets, for the velocity and vorticity

companion,
x y t M x y x y t�

0 1( , , ) ( , ) ( , , )ε= +u u u ,

x y t M x y x y t�
0 1( , , ) ( , ) ( , , )ε= +ω ω ω . (3.7)

3.3 Linearization

Inserting Eqs. (3.4) through (3.7) back into Eqs. (3.1)
and (3.2) produces the zero order expansion in the wave
amplitude (which is already satisfied by the mean flow).
Collecting terms of ( )εO , the first order linearized

expansion of the fundamental equations is obtained:

( )t M 01 1 1/ρ ρ∂ ∂ +∇⋅ = − ∇⋅u u (3.8)

( )t M 01 1 1/ ∂ ∂ = − ∇ ⋅ −u u u u

( ) ( )0 0 1
× ∇× − × ∇× u u u

( ) ( )p R 1
1 1 14 / 3−  −∇ + ∇ ∇⋅ −∇× ∇×  u u (3.9)

This set encapsulates the influence of bulk fluid motion
on the temporal field.  The reader unfamiliar with this
set may, if so inclined, derive it straight-forwardly or
apply to the first author for a typescript.

4 VECTOR SUPERPOSITION

4.1 Flow Field Decomposition

It is useful to decompose the time-dependent vector
into an irrotational and a solenoidal component, the
former being the gradient of a scalar s , and the latter
being the curl of a vector q .  This notion correlates to a
known mathematical theorem which can be used to
synthesize the total harmonic disturbance out of two
components associated with irrotational, pressure-
driven, and solenoidal, vorticity-driven modes.  Using a
circumflex to designate irrotational parts, and a tilde for
solenoidal parts, the time-dependent velocity can be
expressed as

s�
1

ˆ= + ≡ ∇ +∇×u u u q . (4.1)

Clearly, ˆ 0∇× =u , and � 0∇⋅ =u .  Similar
decomposition of a small disturbance into pressure and
vorticity modes has been effectuated previously by
numerous authors, including Chu and Kovásznay [33],
Carrier and Carlson [34], and others.  It follows that

� �
1 1≡ ∇× = ≡ ∇×u uω ω , p p1

ˆ= , and 1
ˆρ ρ=
(4.2)

In other words, time-dependent vorticity is ascribed to
the rotational mode and harmonic pressure is associated
with the irrotational mode.  The pseudo-pressure arising
in the vortical mode analysis can be safely dismissed,
being of second order.  The last term in Eq. (4.2) stems
from the known relation, p̂ ρ̂= , for a perfect gas

undergoing isentropic oscillations.

4.2 Splitting the Linearized Navier-Stokes
Equations

When Eqs. (4.1)-(4.2) are substituted back into Eqs.
(3.8)-(3.9), two independent sets of formulae can be
segregated.  These are coupled through existing
boundary conditions and are given by

4.2.1 Irrotational Set

( )t M 0
ˆˆ ˆ/ρ ρ∂ ∂ +∇⋅ = − ∇⋅u u (4.3)

( ) ( )t p M 0 0
ˆ ˆ ˆˆ/  ∂ ∂ = −∇ − ∇ ⋅ − × ∇×  u u u u u
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( )R 1 ˆ4 /3−+ ∇ ∇⋅u (4.4)

4.2.2 Solenoidal Set
� 0∇⋅ =u , (4.5)

( ) ( )t M� � �
0 0/ ∂ ∂ = − ∇ ⋅ − × ∇×u u u u u

( ) ( )R� �1
0

−− × ∇× − ∇× ∇×u u u (4.6)

4.3 Auxiliary Conditions

In deriving 1u , both û  and �u  must be first

determined and then superposed in a manner to
correctly satisfy two auxiliary conditions.  These are: 1)
no slip at the wall demanding that u x1( , 0) 0= , or

u x u x�(̂ , 0) ( , 0) 0+ = , and 2) symmetry at y 1=

requiring that u x y1( , 1)/ 0∂ ∂ = .

4.4 Irrotational Solution

When p̂ ρ̂=  is used, standard manipulation of Eqs.

(4.3)-(4.4) condenses the set into a single hyperbolic
partial differential equation,

( ){p t p M p t2 2 2
0ˆ ˆ ˆ/ /∂ ∂ −∇ = − ∇⋅ ∂ ∂u

( ) ( ) }2
0 0

ˆ ˆ −∇ ⋅ +∇⋅ × ∇× u u u u (4.7)

At this juncture, a solution can be managed at M( )O
by applying separation of variables and the rigid wall
boundary conditions.  Since l 1>> , the lowest
naturally excited frequencies will correspond to the
least damped longitudinal oscillation modes, making it
safe to neglect transverse modes of higher frequencies.
In practice, laboratory experiments confirm that low
frequency modes tend to dominate because they require
less energy to excite.  For axial harmonic waves in a
long channel with constant cross section, a solution to
Eq. (4.7) is readily available.  Expressed in Euler’s
notation, the corresponding harmonic pressure
component is

( ) ( ) ( )m mp x t k x k t Mˆ , cos exp i ( )= − +O , (4.8)

where the dimensionless wave number is given by

m sk kh a m l m …/ / ,  1, 2, 3,π= = = ; m  being the

oscillation mode number.  The velocity companion can
be integrated from Eq. (4.4) to get

( ) ( ) ( )m mx t k x k t Mˆ , i sin exp i ( )= − +u i O . (4.9)

4.5 Solenoidal Equations

Letting x y u v( , ) ≡ +u i j , and x y( , ) ω≡ ∇× =u kω ,

we use Euler’s notation and write the vortical
fluctuations as

( )mx y t x y k t�( , , ) ( , )exp i= −u u ,

( )mx y t x y k t�( , , ) ( , )exp i= −ω ω . (4.10)

In lieu of Eq. (4.5)-(4.6), we now have
0∇⋅ =u , (4.11)

( )0 0 0i /S = ∇ ⋅ − × − × u u u u uω ω
/K+∇×ω (4.12)

where

w

kh
S

v
= , and 

kh h
K

k

2 2

2( / )ν ν
= = (4.13)

The two emerging similarity parameters are the
Strouhal number S , and the kinetic Reynolds number
K , each representing the quotient of time-dependent
inertia to either mean flow convection or diffusion.
Practically, since the kinematic viscosity of most gases
happens to be very small, the parametric variation in K
reported by many researchers has fallen into the range

K4 810 10< < .  On that account, we define K1/ε ≡
to be a primary perturbation parameter.  For similar
reasons, since unsteady flows are characterized by
appreciable Strouhal numbers, we define S1/σ = .

We note that ε  is always smaller than σ  since the ratio

wv h/ /σ ε ν=  is the cross-flow Reynolds number R ,

which is large irrespective of frequency.
Subject to confirmation at the conclusion of the

forthcoming analysis, we now make the conditional
stipulation that v u/ = M( )O .  This proviso is

necessary to forge ahead with the leading-order
approximation.  Being a smaller quantity, v  can be
omitted at the first perturbation level.  On that account,
Eq. (4.12) collapses at M( )O  into

( ) u uu uu v
x y y

2

20 0i σ ε
 ∂ ∂ ∂ = + − ∂ ∂ ∂ 

or

( )u uu v
x y0 0i ωσ ω ε

 ∂ ∂= − + 
 ∂ ∂ 

(4.14)

5 VORTICITY TRANSPORT FORMULATION

5.1 Vorticity Transport Equation

Taking the curl of Eq. (4.12) and using Eq. (4.10), the
vorticity transport equation emerges:

( ) M2
0 0i ( )σ ε= − ∇× × + × − ∇ +u u Oω ω ω ω

(5.1)
This can be rearranged in a scalar form that places
leading-order terms on the left-hand side:

u u
y v v x v x v x y

2 2
0 0

2 2
0 0 0 0

i ωω ω ω ε ω ω
σ σ

 ∂∂ ∂ ∂ ∂ − + = − + +   ∂ ∂ ∂ ∂ ∂ 
(5.2)

The right-hand side quantities representing the steady
vorticity gradient and the viscous diffusion of time-
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dependent vorticity can be ignored at the first
perturbation level.  The base solution can now be
achieved by expanding ω  in powers of M , viz.,

M M 2
0 1 ( )ω ϖ ϖ= + +O .  Following substitution

into Eq. (5.2), the leading-order term can be obtained,
by separation of variables, from

u
y v v x

0 0 0 0

0 0

i
0

ϖ ϖ ϖ
σ

∂ ∂
− + =

∂ ∂
. (5.3)

This, of course, must be contingent upon satisfaction of
both the no-slip condition at the wall, and the no-flow
restriction at the head end.  Using X x Y y0 ( ) ( )ϖ =  in

Eq. (5.3), integration gives
n

n

n

x y c x y0( , ) cos
2

λπϖ
λ

  =      
∑

( )2iexp ln tan 1
4

yπ
πσ

     × +      
(5.4)

where 0ϖ  contains a denumerable set of arbitrary

constants nc  associated with each nλ .  Here nλ  must be

a positive number for a nontrivial solution.  Both nc
and nλ  must be specified in a manner to satisfy the no-

slip condition at the wall, written for vorticity.  The
latter requires a delicate treatment and is addressed
separately.

5.2 Pressure-driven Vorticity

Recalling that �
1ω ω= , v v�1 = , p p1

ˆ= , and that

u x t1( , 0, )  must vanish to prevent slippage, Eq. (3.9)

can be projected along x  and evaluated at the wall.
The result is

( ) p
M vv v v

x x R y
�� � �

0 0 0

ˆ 1
0 ωω ω

 ∂ ∂ ∂= − − − − − 
 ∂ ∂ ∂ 

(5.5)
Rearranging, and using the fact that

( ) ( )m mp k x k tˆ cos exp i ,= −  the no-slip condition

translates into
p v xv

M x y x
�� ��

2ˆ1
4

ε ω πω
σ

∂ ∂ ∂= + + +
∂ ∂ ∂

( ) ( )m mS k x k t M
R y

�1sin exp i ( )ω∂= − − + +
∂

O (5.6)

which can be recast into

( )mx S k x M
R y
1( , 0) sin ( )ωω ∂= − + +

∂
O (5.7)

Equation (5.7) indicates that ‘fresh’ vorticity owes its
origin at the wall to the oscillatory pressure gradient
that is at right angles to incoming fluxes.  We also
realize that vorticity is most intense at
x l m m/ (2 1)/(2 )= − , coinciding with pressure nodes

where the pressure-induced û  has maximum amplitude.

By comparison to the pressure, time-dependent vorticity
is larger by S( )O .

5.3 Inviscid Vorticity

Equation (5.7) can now be used in conjunction with
Eq. (5.4) to specify the separation eigenvalues:

( ) ( )mx S k x M R 1
0 , 0 sin ( , )ϖ −= − +O

( ) ( )
( )

nn
m

n

k x
S

n

2 1

0

1
2 1 !

+∞

=

−
≡ −

+∑ (5.8)

thus,

2 1n nλ = + , ( ) ( ) ( )nn
n mc S k n2 11 / 2 1 !+= − − + (5.9)

whence

( )
( )

( )
n

n

m
n

x y S k x y
n

2 1

20
0

1
( , ) cos

2 1 !
πϖ

∞ +

=

  −  = −   +  
∑

( ){ }2
4exp i ln tan 1S yπ

π
 × +  (5.10)

Recalling Taylor’s mean flow stream function from
Sec. 2, we recognize that the infinite series between
braces is a Sine function of Ψ .  At the outset, we let
x y( , )Ζ ≡ mk x y( , )Ψ , and simplify Eq. (5.10) into

x y S0 0( , ) sin( )exp( i )ϖ = Ζ − Φ (5.11)

where the temporal phase lead of the vortical wave is
found to depend on

Φ0
2

4
2 1

21y S y S ya f a f=− + =− −
π

π
π

πln tan gd ( )

(5.12)
The last expression corresponds to
gd( ) arctan( )ς ς π= −2 2 , the Gudermannian function

described in Abramowitz and Stegun [35].

5.4 Inviscid Stream Function

We now resort to the time-dependent stream function
s k==== ψ , where u ≡ ∇×s .  These expressions are

used to replace the velocity components via
u y= ∂ ∂ψ /  and v x=−∂ ∂ψ / .  Starting with

ω ψ ψ= ∂
∂

− ∂
∂
=− ∂

∂
− ∂

∂
v
x

u
y x y

2

2

2

2
, (5.13)

we then proceed heuristically by posing that ψ  must

possess the same axial dependence as ω .  Since we are
using successive approximations, we set ψ ψ ϖ0 0= c ,

and substitute back into Eq. (5.13).  Balancing leading-
order terms implies

ψ σ π
c y= 2 2

2cos a f  or

ψ σ π π
0

2
2 2 0= − −cos sin[ cos ]exp( )y k x yma f a f iΦ (5.14)

Having determined the inviscid flow stream function, it
follows that the companion velocity is

( ) ( )[ ]3
2 2( , ) i cos sin( ) cos cos( )x y y M yπ π= Ζ + Ζu i j

( )0exp i× − Φ . (5.15)
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5.5 Viscous Corrections

Subject to verification at the conclusion of this
section, we state without proof that both u  and ω
must possess the same axial dependence as their
inviscid counterparts.  This is implemented by setting

u x y u yc( , ) ( )sin( )exp= −Ζ Φi 0a f ,
ω ϖ( , ) ( )sin( )expx y yc= −Ζ Φi 0a f (5.16)

where viscous correction multipliers, uc  and ϖc , must

be evaluated.  After substitution into the full vorticity
transport equation, given by Eq. (5.2), several terms
cancel out except for lower order terms and terms of
O( )S 2 .  Balancing leading-order terms requires that

d dϖ ξ ϖπ π
c c cy y u/ sec+ − =3

2 4
2 0a f , (5.17)

where ξ = k M Rm
2 3/ ( )  appears as a dynamic

similarity parameter, chiefly in control of the viscous
correction multiplier.  In seeking a relationship between
uc  and ϖc , we use Eq. (4.14) and find that

u y yc c= +iσ ξσ ϖπ πcos sec2
2

2a f a f . (5.18)

Inserting this formula into Eq. (5.17) leads to an
ordinary differential equation in ϖc :

d d iϖ ξ σ ϖπ π π
c cy y y/ sec cos+ − =3

2 4 2
2 0a f a f

(5.19)
which, after some algebra, gives

ϖ ζc y C( ) exp= (5.20)

where, by omitting the imaginary argument in ζ  of

effective O( )σ2 , we find

3 3
00 0

( )d ( )d
y y
v Fζ ξ τ τ ξ τ τ− −= − = −∫ ∫

( ) ( ) ( )[ ]1
4 2 2ln tan 1 sec tany y yπ π π

π ξ= − + +
(5.21)

5.6 Corrected Vorticity

The complex constant of integration C  can be
evaluated from the vorticity boundary condition at the
wall as specified by Eq. (5.7).  Updating ϖc  gives, at

O( , )M σ 2

{ } [ ]2
01 (0) i (0) sin ( , 0)C xξσ ζ ′− − Φ Ζ′ 

[ ] ( )0exp (0) i (0) sin mS k xζ× − Φ = − (5.22)

where

′ =−ζ ξ( )0 ; Φ0 0′ =−( ) S ; ζ( ) ( )0 0 00= =Φ (5.23)

Direct substitution gives
C S Sr = +3 2 2/ ( )ξ ,   C S Si = +ξ ξ2 2 2/ ( ) (5.24)

The superscripts here designate real and imaginary
parts.  Backward substitution into Eqs. (5.20), (5.16)
and (4.10) yields

~( , , ) sin( )expω ζx y t C k tm= − −Ζ Φi i0a f (5.25)

5.7 Corrected Axial Velocity

In much the same way, the velocity corrective
multiplier can be deduced from Eq. (5.18), viz.

u y y C Bc = + ≡i iσ ξσ ζ ζπ πcos sec exp exp2
2

2a f a f
(5.26)

where
B C v C vr r i= +σ ξσ0 0/a f ,
B C v C vi i r= −σ ξσ0 0/a f (5.27)

so that ~u  is soluble by backward substitution into Eqs.
(5.16) and (4.10).  At length, we find that

( )( , , ) exp i mu x y t u k t= −�

( )0i sin( )exp i i mB k tζ= Ζ − Φ − (5.28)

5.8 Normal Velocity

In principle, the normal component ~v  can be derived
from continuity.  In practice, this may prove difficult
unless we proceed heuristically by first proposing an
ansatz of the form
~ ( )cos cos expv g y k x y k tm m= − − −π ζ2 0a f a fi iΦ (5.29)

Later substitution into Eq. (4.5) furnishes g y( ) .  Setting

∂ ∂ ≡ −∂ ∂~/ ~/v y u x , we find, to leading order,

g MBv= 0
2 .  Therefore,

~( , , ) cos( )expv x y t MBv k tm= − −0
2

0Ζ Φζ i ia f (5.30)

which lends support to the former stipulation
contending that ~/ ~ ( )v u M= O .

5.9 The Real Time-dependent Solution

Retracing our steps, the meaningful components of
time-dependent axial and normal velocity are
recapitulated below along with their vorticity
companion.

( ) ( ) ( )1 sin sin sin cosr i
m mu k x k t B Bϕ ϕ= − −

( )exp sin cosmk xζ θ× (5.31)

v Mv B B k xr i
m1 0

2=− +cos sin exp cos cosϕ ϕ ζ θa f a f
(5.32)

ω ϕ ϕ ζ θ1 ==== −−−−C C k xr i
mcos sin exp sin cos+a f a f

(5.33)
where

θ π= 2 y , and ϕ
π

π θ= − +FHG
I
KJk t Sm

2
4 2

ln tan (5.34)

As the harmonic motion is driven by the oscillatory
pressure field, the first term in Eq. (5.31) can be
envisaged as the inviscid response to the fluctuating
pressure.  Likewise, the second term can be interpreted
as the viscous and vortical response that disappears
asymptotically with increasing distance from the wall.
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6 VORTICAL WAVE CHARACTER

6.1 Numerical Verification

In order to gain confidence in the asymptotic
formulae based on Eq. (5.31), we rely on computer-
generated numerics and numerics combined with
physical arguments.  To that end, we use a shooting
method to handle the two-point boundary value
problem posing itself via Eq. (4.14) and the two
auxiliary conditions described in Sec 4.  Careful choices
of initial guesses are found to be necessary to ensure
convergence.  Our preference is to guess small nonzero
values at the core and integrate backwards using a
seventh order Runge-Kutta scheme until the no-slip
condition at the wall is satisfied.  Uniform steps, albeit
very minute ones because of the desired accuracy, are
found to be adequate for the most part.  If the spatial
grid is too coarse, then a numerical overflow occurs.
Naturally, the numerical difficulty arises at large kinetic
Reynolds numbers.  Continual spatial grid refinement is
hence necessary at successive increases in K .  The
number of grid points needed for convergence varied in
our monitored routine from 10,000 to 20,000,000
points, but no effort was made to optimize the number
by employing non-uniform meshes.

For typical values of the control parameters, the
velocity’s numerical solution is compared in Fig. 2 with
its asymptotic counterpart evaluated from Eq. (5.31).
For the first three oscillation modes, profiles are shown
at four selected times of a complete cycle.  For the
fundamental mode, u1  starts at zero at the wall, in

satisfaction of the no-slip condition, then undergoes a
velocity overshoot of twice the irrotational core
amplitude, before decaying gradually to its inviscid
form.  This overshoot near the wall is a well-known

feature of oscillatory flows that has been first reported
by Richardson [36].  The observed doubling in
amplitude takes place when rotational and irrotational
waves happen to be in phase.  This virtual 100 percent
amplification is far more intense than the 13 percent
overshoot described in Rott [37] (cf. p. 402) and
reported in laboratory experiments conducted, in the
absence of wall injection, by Richardson [36], and
Richardson and Tyler [31].

For higher modes, similar damped waves are
observed for 0 1< <x l m/ / , in the upstream portion

that is delimited by the first internal velocity node.  In
the downstream portion, additional structures emerge.
Specifically, a premature decay in the rotational wave is
noted m−1  times downstream of the mth  velocity
node.  Such structures are depicted in Fig. 2 for m = 2
and 3 , at the last pressure node where irrotational
velocity amplitudes are largest.  Beyond these
premature rotational velocity ‘nodes,’ so to speak, the
vortical field recuperates some strength before
resuming its normal depreciation.  In order to justify the
presence of such intellectually challenging rotational
nodes, a characterization of the time-dependent vortical
structure is deemed necessary.  In the process, the
influence of varying wall injection and kinematic
viscosity is captured.

6.2 Time-dependent Vortical Structure

For m = 1 , Eq. (5.33) can be used to generate contour
plots showing constant vorticity lines in percent of the
maximum vorticity amplitude that is produced at the
wall’s pressure nodes.  When the frequency and
kinematic viscosity are held constant, corresponding to
a typical K = 106  value, the Strouhal number can be
modified by an order of magnitude by reducing the

0

½

1

-1 0 1

m = 1
 

-1 0 1

m = 2
 

-1 0 1

m = 3
 

Figure 2.  A plot of u1  versus y  at four successive times separated by a /2π  phase difference.  For every

oscillation mode, profiles are depicted at the last harmonic pressure node, where x l m m/ (2 1)/2= − .  Here S =

25m and K = 106m.  To the accuracy of the graph, asymptotics (full lines) and numerics (broken lines) are
indistinguishable.
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injection rate.  The corresponding vortical structures are
shown in Fig. 3, for S = 10 20,  and 100 .  In

particular, we note in Fig. 3 (a) the deeper vortical
penetration with higher injection, and the downstream
convection of vorticity, originating at the wall, that
follows the mean flow streamlines.  In Figs 3a and 3b,
intense vorticity is still present at the downstream end
measuring close to 100 percent of its maximum
generated at the wall.  When injection is diminished in
Fig. 3 (c), the irrotational region anchored at the core
broadens out, resulting in a substantial reduction in
rotational depth.  When this happens, intense vortical
waves are entrained in the vicinity of the wall, and only
weak vorticity persists at the downstream end.

When, instead, vw  and k  are held constant, the

effect of kinematic viscosity can be extrapolated in a
similar fashion by varying K .  We find that, when
viscosity is suppressed, a wider and deeper spread of
vorticity ensues.  As such, one can envisage viscosity as
an attenuation agent whose role is to resist the
propagation of rotational waves.  This is contrary to the
role it plays in similar configurations with impermeable
walls discussed, for example, in a survey by Rott [37]
(cf. p. 397).

As the oscillation mode evolves to m = 2 3,  and 4 ,

iso-vorticity lines begin exhibiting interesting
structures.  These are shown in Fig. 4 for typical values
of the control parameters.  In particular, these structures
feature ( )m−1  lines of zero vorticity amplitude,

stemming from the harmonic pressure antinodes at the
wall, for m > 1 .  These irrotational streaks partition the
channel into m  zones characterized by alternating
directions of particle rotation.  When crossing these
delineation lines, vorticity changes sign and therefore
direction.  This effect is captured graphically by
switching between zones from full lines to broken lines.
When time-dependent velocity profiles are

superimposed at select axial locations, we find that the
so-called rotational nodes in u1  coincide precisely with

the transverse location of the zero vorticity streaks.
Similar effects are noted in Fig. 5 where an order of
magnitude increase in viscosity is shown to reduce both
vortical wave propagation depth and amplitude at
higher modes as well.

6.3 Limiting Process Verification

In order to establish the lower limit that our
mathematical model can tolerate for injection speeds,
we reduce vw  until it drops below the diffusion speed,

v kd = 2 ν .  The latter is associated with a Stokes’

oscillatory field in a channel bounded by impermeable
walls.  This is necessitated by the insoluble singularity
at vw = 0  in our formulation.  For example, when

v vw d= / 23 , corresponding to S K= ( / )23 , and

R h k= 21/6 ( / )ν , the Stokes number, defined here as

λS K= ( / )2 , will match the viscous parameter

ξ = S K3 / .  When such conditions are established

( ξ λ= S ), our asymptotic formulation can be compared

to the known exact solution found, for example, in Rott
[37] (cf. p. 402).  The latter corresponds to an
oscillatory flow in an infinitely long impermeable
channel that is neither tailored to accommodate
variations in the streamwise direction, nor oscillation
modes brought about by the finite geometry.  As such,
it maintains a constant core amplitude.  In order to
reproduce this condition caused by ‘pistons-at-infinity,’
we compare solutions at x l/ ½=  and m = 1 , where

the effects of finite body length are not felt.  Results are
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Figure 4.  Evenly spaced iso-vorticity lines shown in
(a), (b) and (c) for the first three harmonics when
S =25m and K = 106m.  The oscillatory velocity u1

is abbreviated by four evenly spread timelines depicted
at select locations coinciding with harmonic pressure
nodes.
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Figure 3.  Evenly spaced iso-vorticity lines shown in
(a), (b) and (c) for S =  10, 20 and 100.  In all cases,
m =1 and K = 106.  This variation can be ascribed to
an order of magnitude depreciation in wall injection.
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shown in Fig. 6 at eight successive times separated by a
π / 4  phase difference.  Apparently, our approximate

solution embraces the exact solution when injection is
suppressed.  Thus, although it is possible to
approximate the impermeable channel solution from
ours, the converse is not true.  This unexpected result
may be attributed to the fact that Taylor's mean flow
solution matches, near the wall, the more accurate
formulation derived by Berman [1] for small injection.
In our notation, the latter is given by
F y y= − +1 3

2
2 1

2
3 , which resembles, near y = 0 ,

Taylor's O2 2 4
2 8cos( ) 1 ( )F y y yπ π= = − + .

7 MOMENTUM TRANSPORT FORMULATION

7.1 Separation of Variables

In Sec. 5, the rotational velocity was produced from
the vorticity and vorticity transport equations following
a number of successive approximations.  Here, ~u  will
be obtained directly from the momentum equation,
written to O( )M .  To that end, we rearrange Eq. (4.14)

into

( ) ( )[ ]{2
2 2 2csc i sinux S y y u

x
π π π

π σ∂ = −
∂

( ) O
2

2 2cos ( )u uy M
y y

πσ ε
∂ ∂ − + +∂ ∂ 

(7.1)

We then call for separation of variables in order to
investigate a solution of the type u x y X x Y y( , ) ( ) ( )= .

Inserting back into Eq. (7.1) renders,

( ) ( )[ ]{2 2 2
d 2 csc i sin
d

x X S y y Y
X x Y

π π πσ
π

= −

( )
2

2 2
d dcos
d d
Y Yy
y y

πσ ε
− + 

nλ= (7.2)

where λn  must be strictly positive.  Integration of the

axially dependent equation is straightforward.  Owing
to the linearity of Eq.(7.1), the general solution takes
the form

u x y c x Y yn n

n

n( , ) ( )=∑ λ

λ
, (7.3)

where cn  is a simple integration constant, and nλ  must

be determined from the no-slip boundary condition at
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Figure 5.  As in Fig. 4, unsteady velocity profiles
overlay evenly spaced iso-vorticity lines in (a), (b) and
(c) for the first three harmonics.  Here K = 105m,
corresponding to an order of magnitude increase in
kinematic viscosity.  In the presence of surface
injection, the penetration of rotationality is inhibited by
viscous dissipation.
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Figure 6.  Velocity profiles of u1  shown at eight

successive time intervals.  Results are obtained from
asymptotic predictions (broken lines) and the exact
Stokes formula (full lines) at two arbitrary values of K
and 

S
ξ λ= .  In the absence of surface injection, the

penetration of rotationality is more pronounced at
higher viscosity settings (left).
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the wall.  The latter can be translated into ~ �u u= − , or
u x k xm( , ) sin0 =−i a f . (7.4)

After inserting Eq. (7.4) into Eq. (7.3), the Taylor series
expansion for the Sine function can be written out to get

c x Y
k x
nn n

n

n
m

n

n

nλ

λ
∑ ∑≡−

−
+

+

=

∞

( )
!

0
1
2 1

2 1

0

i
a f a f
a f (7.5)

which is true when

λn n n= + =2 1, 0,1,2,… ,  c
k
nn

n
m

n

= −
−

+

+

i
1
2 1

2 1a f a f
a f!

(7.6)
Yn ( )0 1= , (7.7)

turning Eq. (7.3) into

u x y
k x
n

Y y
n
m

n

n
n

( , )
!

( )= −
−

+

+

=

∞

∑i 1
2 1

2 1

0

a f a f
a f . (7.8)

From Eq. (7.2), the velocity eigenfunction Yn  is left to

be determined from

( )
2

22
d dcos

dd
n nY Yy

yy
πε σ−

( ) ( )[ ]2 2i 1 sin 0n ny Yπ πσ λ+ − + = (7.9)

which must satisfy the two existing boundary
conditions:

Yn 0 1a f= ,      
d

d
Y
y
n ( )1

0=  (7.10)

Due to the variable coefficients in Eq. (7.9), an exact
closed-form solution is not feasible.  The presence of a
small multiplier in the highest derivative suggests,
however, the possibility of a perturbation treatment.
Knowing from Sec. 6 that the solution exhibits an
oscillatory behavior, both WKB and multiple scale
expansion methods may be attempted.  In fact, the latter
technique has been shown by Majdalani [38] to result in
partially valid solutions corresponding to outer, inner,
and intermediate scales.  In the same work, a uniform
two-scale expansion was presented using a hybrid
technique.  The technique was based on the choice of a
composite scale that reproduced the inner, outer, and
intermediate scales in their respective domains.  Instead
of constructing the composite scale from our
foreknowledge of scaling structures, we consider here a
different avenue to determine the necessary scaling
transformation.

7.2 The WKB Approach

The problem set out in Eqs. (7.9)-(7.10) contains two
small perturbation parameters, ε  and σ .  Note that,
since / Rσ ε = , we are interested in cases for which

0ε →  for fixed σ .  As such, two cases may arise
depending on the order of the Strouhal number.

7.2.1 The Outer Expansion
For small Strouhal numbers, σ = O( )1 , and the

leading-order term of the outer solution Yno  can be

obtained from

( )2
d

cos
d

o
nYy
y

πσ−

( ) ( )[ ]2 2i 1 sin 0o
n ny Yπ πσ λ+ − + = (7.11)

Fulfillment of Yn 0 1a f=  gives

( ) ( )[ ]{ }1 2
2 4[cos ] exp i ln tan 1no

nY y S yλπ π
π

+= +
2 2 12(cos ) exp( i gd )n Sπθ θ+ −≡ (7.12)

On one hand, since the cosine factor in Yno  decays

rapidly as y → 1 , the boundary condition at the core is
satisfied by the first derivative.  This eliminates the
need for an inner solution at this order.  On the other
hand, the exponential term in Yno  denotes an oscillatory

behavior that is commensurate with the size of S .
Since S  can be large, the limitation of this regular
perturbation approach becomes apparent when the first
order correction is evaluated.  In fact, the resulting outer
solution, at O( )ε2 , is

2 2 12(cos ) exp( i gd )(1o n
nY S Sπθ θ ε+ −= −

( )2 1 11{ (gd sec tan ) 1 gdS nπ θ θ θ π θ− −+ + +
( )( )121 2 [sec tan ln cosn nπ θ θ θ− + + +

( ) 23
2ln(1 sin )] i 2 tan })S nθ θ− − + + . (7.13)

Due to the O( )εS 3  term in Eq. (7.13), a secular

behavior can be expected at large S .  Since oscillations
often occur at S > 10 , a WKB analysis is certainly
more suitable.

7.2.2 The WKB Expansion
For large Strouhal numbers, σ << 1 , and rapid

oscillations occur on a short scale while a slow drift
takes place on the scale x = O( )1 .  The WKB ansatz

can be formulated from

− ′ + =cos π
2 0yY SYn na f i , Y Sn = −exp( )2 1

π θi gd (7.14)

Setting Y g y Sn = −( )exp( )2 1
π θi gd  and substituting back

into Eq. (7.9) gives
′+ + +( ) =−g S n g Sε θ π θ ε3 3 21cos tan ( )O (7.15)

The leading-order WKB formulation, at O( )εS 2 , can

be obtained therefrom: Yn n0 2 2
0 0= −+(cos ) exp( )θ ζ iΦ ,

ζ ξ θ θ θπ0
1 1=− +−( sec tan )gd , Φ0

2 1=− −
π θSgd

(7.16)
where ξ ε ν= = −S k hvw3 2 3  controls the exponential

rate of decay as y → 1 .  The superscript in Yn0  refers

to the zero order WKB expansion.
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7.3 The Multiple Scale Approach

Following the approach described by Majdalani [38],
we introduce two independent virtual coordinates,
y y0 = , and y s y1 = ε ( ) , where ‘s ’ is an undetermined

scale function that we propose to find.  Note that the
proposed transformation represents a slight departure
from conventional linear transformations bearing the
form y y1 = δ ε( ) .  The current stipulation of y1  offers

the necessary freedom that leads to a uniformly valid
solution.  Subsequently, functions and derivatives are
expanded via
Y y y Y y y Y y yn ( , ) ( , ) ( , ) ( )0 1 0 0 1 1 0 1

2= + +ε εO ,

d
d

d
dy y
s
y y

= +∂
∂

ε ∂
∂0 0 1

, 
d
d

2

2

2

0
2y y

= +∂
∂

εO( ) (7.17)

After substitution into Eq. (7.9), terms of the same
order can be segregated to arrive at the following set of
coupled, partial differential equations

∂
∂

π λ π πY
y

y S y Yn
0

0
2 0 2 0 02

1 0+ + −L
NM

O
QP =a f a f a ftan seci

(7.18)

( ) ( ) ( )1
0 02 2 1

0
1 tan i sec

2 n
Y

y S y Y
y

π π∂ π λ
∂

 + + −  

( )
2

0 0
02 2

0 01

d sec
d

Y Ys S y
y y y

π∂ ∂
∂ ∂

= − + (7.19)

In much the same way, boundary conditions given by
Eq. (7.10) can be converted into

Y0 0 1a f = ,  
∂
∂
Y
y

0

0

1 0a f= . (7.20)

Next, Eq. (5.2) can be integrated to produce

( ) ( ) ( ){0 01 1 exp 1 ln cos
2nY C y y
πλ= +

( ) } ( ) ( )0 01 1
2i ln tan 1

4
S y C y yπ χ

π
 + + ≡  

(7.21)

where C1  is an integration function that must be

determined in a manner to ensure a converging series
expansion in Yn .  Differentiating Eq. (7.21), and

substituting the results back into Eq. (7.19) gives
∂
∂

π λ θ θY
y

S Yn
1

0
0 0 12

1+ + −L
NM

O
QPa f tan seci

( ) ( )1 1
01 1

0 1

dd sec
d d

C ys C y
y y

θ
= − +

( )(
2

3 2 2
0 0sec 1 tan

4 n nS πθ λ λ θ

× − + +

) ( ) } ( )2
0 0 0

11 i sec tan
2 nS S yπ λ θ θ χ− − + 


(7.22)

where θ π
0 2 0≡ y .  Removing secular-producing terms

requires that the right-hand side of Eq. (7.22) be zero.

The resulting equation in C1  can be easily integrated.

In addition, satisfaction of Eq. (7.20) gives
( ) ( ) ( )[ ]{ 3

1 exp sec 0C y yξ η θ η= − −

( ) ( )( )[
2

2 21 sec tan 1
4 n nyπξσ λ θη λ θ+ + −

( )] ( ) ( ) }210 i sec tan
2 n yη πξσ λ η θ θ+ − +

(7.23)
where the viscous parameter ξ ε= S 3  makes its

appearance here along with the effective scale
functional η( )y .  The latter is defined by

η y s y s ya f a f≡ ′/ ( ) . (7.24)

The leading-order term can now be constructed from
Eqs. (7.23) and (7.21).  In like fashion, further terms in
the series of O( )ε2  can be obtained, but they become

increasingly complicated.  Since the overall solution is
sought at O( )M , and M > ε , there is no justification

for retaining other than Y0 .  Thus the expansion in Eq.

(7.17) reduces to
( ) ( )[ ]{1 3( ) cos exp sec 0n

nY y λθ ξ η θ η+= − −

( ) ( ) ( )[ ]
2

2
2 1 sec tan 1 0

4 n nS
π ξ λ η θ λ θ η+ + − +

}22i 1
ln tan i sec tan

4 2 2 nS
S

π θ ξπ λ η θ θ
π

     + + − +       
(7.25)

The undetermined scale function remains, at present,
unspecified.  However, one can verify that, near the
wall, an asymptotic solution exists for s y y( )= , as

shown in detail by Majdalani [38].  Mathematically, this
translates into

lim ( ) ( )
y

y y
→

= ⇒ =
0

0 0η η , (7.26)

which can be used to simplify Eq. (7.25) before
substitution into Eq. (7.8).  At the outset, one gets

~( , , ) cos
cos

!
u x y t

k x
n

n
m

n

n

=−
−

+

+

=

∞

∑i θ
θ1

2 1

2 1

0

a f a f
a f
( )({ 23 2

4exp sec 1 2 2 cos2nπξη θ σ θ− + +
)] ( )2 2

2 42 sin i ln tan in S θ π
πθ πξ+ + + −

( ) } O23
22 sec tan i ( )mn k tσ η θ θ ε+ − +

(7.27)
which is a rapidly converging series that displays
distinctly terms of O( )σ2 .  In fact, the error associated

with n ≥ 1  terms are much smaller than the O( )ε
entailed in the n = 0  term.

7.4 Closed-form Solution

Careful examination of Eq. (7.27) indicates that a
closed-form equivalent is possible when terms that do
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not affect the reported precision are neglected.  This can
be accomplished by ignoring the O( )σ2  quantities

arising in the n ≥ 1  terms.  The equivalent expression
becomes

( )( , , ) i cos sin cosmu x y t k xθ θ= −�
( )[ ]exp exp i ( )mk tζ ε× − + Φ + O (7.28)

where

ζ ζ ζ ξη θ ξσ η θ θπ= + =− −0 1
3

2
2 32 2sec sec cos (7.29)

and

( )2
2 4ln tanS θ π

πΦ = − + 23
2 sec tanπ ξση θ θ+ (7.30)

Clearly, each of the spatial damping function ζ  and

spatial phase angle Φ  is comprised of a leading-order
term and a small correction of O( )σ2 .

7.5 Other Vortical Components

Having obtained an accurate expression for ~u , the
transverse component ~v  can be derived from mass
conservation. Setting an ansatz of the form

( )( , , ) ( )cos cos expmv x y t G y k x θ=�
( )[ ]exp i mk tζ× − + Φ (7.31)

G y( )  is a subsidiary function that must be determined

in a manner to satisfy ∂ ∂ + ∂ ∂ =~ / ~/u x v y 0 .  After

some manipulations, continuity is satisfied in leading-
order quantities when G Mv= 0

3 .  Henceforth,

( )3( , , ) cos cos cos expmv x y t M k xθ θ=�
( )[ ]exp i mk tζ× − + Φ (7.32)

indicating that the initial claim of ~/ ~ ( )v u M= O  was

legitimate.  This conclusion can be verified numerically
as well.  In a similar fashion, temporal vorticity can be
derived:
~( , , ) sin expω ζx y t S k xv k tm m= − − +0a f a fi Φ (7.33)

7.6 Specifying the Undetermined Scale

7.6.1 Velocity Consideration
One may proceed by contending that the multiple

scale formula should match, in leading order, the
uniformly valid WKB expansion.  This can be achieved
by suppressing terms of O( )σ2  in Eq. (7.25) and

equating the resulting expression to Eq. (7.16).  At the
outset, one finds

η θ θ θ θπ= +−1 1 2(cos tan )cosgd (7.34)

From Eq. (7.24), the appropriate scale function can be
solved for via ′ − =−s sη 1 0 .  Recalling that s( )0 0= ,

direct integration yields
1

0
( ) exp ( )d

y
s y η τ τ−= ∫

( ) ( ) ( )2 2 4sec tan ln tan 1y y yπ π π= + + (7.35)

With this choice of s , the multiple scale solution given
by Eq. (7.28) will coincide with the corresponding
WKB formulation when ζ1 1 0= =Φ .  Retention of the

first order corrections ζ1  and Φ1  in Eq. (7.28) slightly

increases the accuracy of the multiple scale formulation
beyond its WKB counterpart.

7.6.2 Vorticity Consideration
The current expression for vorticity can be compared

to its counterpart in Sec 5.  Knowing that the
exponential decay of time-dependent vorticity must be
affected by the same physical mechanisms irrespective
of the perturbation technique, the spatial damping
function ζ  must be the same as that obtained

previously.  This implies that, in Eq. (7.29), we must
have

( ) ( )[3 1
2 4sec ln tan 1y yπ π

πξη ξ− = − +

( ) ( )2 2sec tany yπ π+ (7.36)

which leads to the same expressions obtained from
velocity consideration.

7.6.3 Comparison with Previous Work
Fortuitously, we are able to obtain, this time, an exact

expression for the nonlinear transformation,
y s y1 = ε ( ) , that leads to a uniformly valid, multiple

scale solution.  The complexity of formula Eq. (7.35)
precludes the possibility of guessing this coordinate
transformation beforehand, as demanded by
conventional multiple scale procedures.  It also justifies
the need to employ the ‘reverse engineering’ process in
determining the scales.  The most striking result is,
perhaps, the agreement with the ad hoc formulation
obtained by Majdalani [38].  In the previous analysis, a

composite scale s y y y y( ) ( ) / /2= − −1 3 3 2
 was constructed

in a manner to reproduce asymptotically the inner,
outer, and intermediate scales that appeared in the
problem.  As a result, usage of the composite scale
reduced the number of spatial scales to two, which was
necessary for the success of the multiple scale
expansion.  At the outset, the effective scale functional
η  was derived and then substituted into the solution.

In the current analysis, η  is determined first, and only

at the conclusion of the analysis that one may verify
that the space-reductive coordinate does indeed reduce
to the proper spatial scales in their regions of
applicability.  For instance, in the vicinity of the
transpiring wall and core, one can recover the scales
found by Majdalani [38].  Thus,

( ) ( ) ( )[ ]1 2 2 4sec tan ln tan 1y y y yπ π πε= + +

2

,         0

(1 ) , 1

y y

y y

ε

ε −

→→  − →
(7.37)
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For the sake of illustration, η  and s  obtained herein

are compared in Fig. 7 with their counterparts from
Majdalani [38]. Clearly, predictions from the multiple
scale solution agree with those obtained previously
using the composite scale technique.

8 RESULTS AND DISCUSSION

8.1 The Oscillatory Velocity Profile

Since ~/ ~ ( )v u M= O , ~u  dominates the rotational

field, and the temporal velocity can be obtained by
adding both irrotational and rotational contributions.
The result, from Eq. (7.28), is

( ) ( ){1( , , ) i sin exp i cosm mu x y t k x k t θ= − −
( ) ( )[ ]}sin cos exp im mk x k tθ ζ − + Φ (8.1)

As Euler’s notation is no longer needed, it is more
convenient to focus on the real part of Eq. (8.1):

( ) ( )1

irrotational part
( , , ) sin sinm mu x y t k x k t=


��������������������

( ) ( )
rotational part

wave propagationwave amplitude
cos sin cos exp sinm mk x k tθ θ ζ− + Φ

��������������������������������������������

�������	������
�������������	������������
 (8.2)

The first term in Eq. (8.2) denotes the pressure-driven,
inviscid response, and the second term represents the
vorticity-driven, viscous response.  In concurrence with
conventional theory, formula Eq. (8.2) assumes a
traditional form encountered in studies of periodic
flows of the Stokes type, reminiscent of equation Eq.
(10.3) in Rott [37].  As such, it displays the vortical
wave characteristics that permit obtaining explicit
formulations for the vortical depth of penetration,
velocity overshoot, and surfaces of constant phase.
Unlike theoretical studies that are concerned with
infinitely long channels with oscillatory motions
induced by pistons at infinity, a dependence on the axial
coordinate x  is caused here by the body’s finite length.
Further examination of Eq. (8.2) reveals that the
vortical amplitude is affected by two separate terms: an
exponentially damped function due to viscous
dissipation, and a space-harmonic function due to the
axial mean flow convection of temporal vorticity.
While both terms decrease with increasing distance
from the wall, the latter varies sinusoidally in the
streamwise direction.  Moreover, inspection of the
spatial damping function ζ  reveals that successive

increases in viscosity reduce the rotational strength.

8.2 Comparison with Computational Data

In order to ensure the validity of our asymptotics, we
insist on comparisons with computational predictions.
These are obtained from a dual time-stepping code,
developed totally independently by Roh et al. [39].  The
code is devoted to analyzing gas-phase processes based

on the complete conservation equations of mass,
momentum, and energy.  When executed, the algorithm
uses pressure decomposition and preconditioning
techniques to circumvent difficulties encountered in
low-speed compressible flows.  Subsequently, the set of
governing equations with appropriate boundary
conditions is solved numerically by means of a finite-
volume approach.  A fully-coupled implicit formulation
is further used to enhance numerical stability and
efficiency.  The scheme has the advantage of achieving
a high degree of temporal accuracy with only a modest
increase in computational cost.  Moreover, since the
governing equations are solved implicitly, the
numerical method is stable.  As a result, the selection of
the integration time step is dictated by the individual
process, and not by stability constraints.

For the same physical parameters used in our
asymptotic formulae, numerical simulations are
monitored until convergence is ensured.  Results
obtained for a number of test cases are found to be quite
satisfactory.  For illustration purposes, we show in Fig.
8 both asymptotics and numerics at three orders of the
kinetic Reynolds number.  Cases corresponding to
K = 107  and higher become nearly inviscid and bear a
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Figure 7.  Comparing the effective scale functional η
in (a) and corresponding scale function s  in (b) to
existing composite scale results given by Majdalani
[38]. Superscripts refer to ‘multiple’ or ‘composite’
scale solutions.
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striking resemblance to Fig. 8 (c).  In every case, the
velocity profiles, characterized by oscillations that
progressively decay from the wall, are depicted at two
successive times separated by a π / 2  phase difference.

The small disparity between theoretical and
computational data can be attributed to small
discretization errors and nonlinearity effects that elude
our analytic formulation.  This agreement is consistent
at higher modes where an increasing number of cycles
is required.  In the absence of an exact solution to the
case at hand, this comparison to a full Navier-Stokes
solution is pivotal.

8.3 Comparison with both Theoretical and
Numerical Data

In Table 1, we now compare numerical simulations of
the linearized Navier-Stokes equations (described in
Sec. 5) to the asymptotic results, given by Eqs. (5.31)
and (8.2).  We select a test case with flow parameters
that fall in the middle of the physical range under
investigation.  The last two columns give the percentage
deviation of the preceding entries relative to numerical
approximations.  It is very satisfying to note the
agreement, in many cases, to three or more decimal
places, between theoretical and numerical predictions.

8.4 Wave Characteristics

For the purpose of confirming the agreement between
Eqs. (5.31) and (8.2), the maximum velocity overshoot
factor that occurs near the wall is quantified in Fig 9.
Practically, the calculated overshoot is the same, in both
magnitude and location, irrespective of the formulation
used.  As discussed earlier, this phenomenon is a key
feature of periodic flows that appears to be far more

significant in the presence of wall injection.
From Eq. (8.2) , the normal speed of propagation of

rotational waves, d dy t* */ , can be determined

explicitly due to the compact formulation.  The wave
speed is thus found to match the steady flow velocity
(v vw 0 ).  Forthwith, the normalized spatial wavelength

can be determined to be (2 0πv S/ ).  This implies

progressively diminishing vortical wavelengths near the
core, where v0  is small, and at high Strouhal numbers.

This also explains the need to refine the computational
mesh near the core to capture the rotational effects
occurring at increasingly smaller length scales.

Unlike Eq. (5.31), Eq. (8.2) permits defining the
surfaces of constant phase in closed form.  From the
wave propagation term, we consider
cos ( / ) .k t km m+ =Φ const , and derive, by way of the

Table 1.  Oscillatory velocity predictions for 50S = ,
610K = , 2mk t π= , / ½x l = , and 1m =

y numeric
(5.31)

asymptotic
(8.2)

asymptotic
0.00 0.00000 0.00000 0.00000
0.05 1.79517 1.79519 1.79516
0.10 0.70421 0.70418 0.70430
0.15 0.73320 0.73323 0.73298
0.20 1.67981 1.67981 1.68009
0.25 0.14482 0.14480 0.14465
0.30 1.83552 1.83557 1.83541
0.35 0.27291 0.27282 0.27335
0.40 1.62642 1.62655 1.62574
0.45 0.42048 0.42031 0.42118
0.50 1.56396 1.56411 1.56364

0

½

1

-1 0 1a)

 

-1 0 1b)

 

-1 0 1c)

 

Figure 8.  Comparing the asymptotic solution (full curves) to numerical computations of the nonlinear Navier-Stokes
equations (chain curves) at two successive times.  Here S 25= , x l/ ½= , and m 1= .  Using a 40x300 mesh

resolution, simulation results are shown after 9 iteration cycles for (a) K 410= , (b) K 510= , and (c) K 610= .
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Gudermannian function, the equation for the
characteristic surfaces at various c  values,
y M t c= − −4

2 1π
πarctan[ ( )] .

8.5 Penetration Depth

The penetration depth ∆  can be defined to be the
normalized distance from the wall to the point where 99
percent of the rotational wave amplitude in Eq. (8.2)
would have vanished.  As the viscous layer delineates
two essentially inviscid zones, a rotational one near the
wall, and an irrotational one near the core, ∆  may
serve to locate the blown-off layer as well.  If one
defines the point y =∆  above the wall where the
rotational amplitude reduces to α = 1 percent of its
irrotational counterpart, then ∆  is soluble from

( ) ( )[ ]2 2cos sin cos expmk xπ π∆ ∆

( )[ ] ( )3
2( ) sec sin 0mk xπη ξ α− ∆ ∆ − = (8.3)

Despite its transcendental form, Eq. (8.3) indicates that
the exponential decay is a strong function of a
dimensionless penetration number, Λ = −ξ 1 .  This

observation suggests generating curves of ∆  versus Λ ,
for large variations in K  and S .  In fact, Fig. 10 shows
how entire families of asymptotic curves over wide
ranges of K  and S  collapse into single curves per
axial position.  Here too, asymptotics and numerics
concur.  This interesting result reveals that ∆  does not
depend on K  and S  separately, but rather on
Λ = KS−3 .  This parameter resembles, in importance,
the Stokes or Womersley numbers in periodic flows
over hard walls.  Physically, it represents the relative
intensity of time-dependent inertia to viscous diffusion
in the cross-streamwise direction.  This ratio scales with

2
22

(1/ )

( / )

Temporal inertia
Viscous force

w

w

vv
kt
khu
v ky

ρρ
µµ

∂
∂
∂
∂

≈ ≈
3

2
wv
h kν

= ≡ Λ

(8.4)

Figure 10, along with Eq. (8.3), bring into focus the
character of the rotational penetration depth over
permeable walls.  For instance, it is clear that ∆
depends on Λ , m  and, to a lesser degree, on the axial
station, especially within the aft portion of the channel.
For small Λ , the penetration depth ∆  varies linearly
with the penetration number Λ , irrespective of x .
Apparently, the larger the penetration number, the
larger the penetration depth will be.  This dimensionless
group reveals that increasing injection, or decreasing
viscosity, frequency, or channel height broadens the
depth of penetration.  The time-dependent solution thus
represents a strongly damped wave whose penetration
depth into the fluid is inversely proportional to ν .  This
is in sharp contrast to the depth of penetration of
periodic flows over impermeable walls, where the
dependence on the kinematic viscosity is the same as in

boundary layer theory, namely, proportional to ν .
As borne out in the graph, for sufficiently large Λ ,

∆  approaches a maximum fixed value per axial station.
In order to locate this maximum possible depth,
∆ ∆ Λ∞ = → ∞( , ) ( , , )m x m x , we note that, for the

ideal case of zero viscosity, rotational waves face
minimum resistance and, thereby, travel the furthest
distance from the wall.  This asymptotic limit can thus
be evaluated from the inviscid formulation of the
penetration depth —which only depends on the axial
station and pressure oscillation mode.  From Eq. (8.3),
one obtains

cos sin cos sinπ π α2 2 0∆ ∆∞ ∞ − =a f a f a fk x k xm m (8.5)

Solving for the inviscid penetration depth from Eq.
(8.5), we get

( ) 1 12( , ) 1 sin m mm x k x k xπ α − −
∞∆ = −

( )O 31 ∞+ −∆ (8.6)
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Figure 9.  For the first oscillation mode, we compare
the Richardson velocity overshoot in both magnitude
and location over a wide spectrum of physical
parameters half way across the channel.  To the
accuracy of the graph, predictions from (5.31) and (8.2)
are indistinguishable.
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which exhibits a maximum absolute error of
262 10 4. × −  when ∆∞ =( , ) .1 0 0 9364 .  In practice, this

expression can be quite useful, being correct to
O( )10 4− .

8.6 Asymptotic Error Behavior

In arriving at the final asymptotic formulation set out
in Eq. (5.31), a number of successive approximations
were made that introduced uncertainty in the total
cumulative error.  In order to remove this uncertainty,
 one may refer to a technique described by Bosley [40].
In fact, Bosley’s technique provides a rigorous
verification for the order of the error incurred in the
derivation.  To that end, the maximum error Em  can be

defined to be the maximum absolute difference between
u1  given asymptotically and un1  computed numerically.

Then for every m , S , and K , one can calculate, over
a complete oscillation cycle,

m 10
0 1

( , , ) max n
x l
y

E m S K u
≤ ≤
≤ ≤

= 1u− (8.7)

Suspecting that the error could be of O( )K−α , one can

assume an error variation of the form
E m S K m S Km( , , ) ( , )( / )= β α1 , (8.8)

and determine the slope α  from the log-log plot of
Em versus 1/K .

Results are shown in Fig. 11 at several values of the
Strouhal number.  The errors associated with Eqs.
(5.31) and (8.2) are compared in Fig 11 (b) and show a
slight improvement in the error associated with the
multiple scale formulation.  As one can infer from the
graph, the slope of the maximum error approaches one
asymptotically irrespective of S .  This result has been
confirmed using the method of least-squares in
decreasing ranges of ε , but is omitted here for brevity.
The consistent asymptotic behavior is gratifying and,
according to Bosley [40], indicates that both asymptotic
formulations are legitimate, uniformly valid expansions.
Overall, both remain at O( )ε .  It is reassuring to note

that Mε <  is the smallest naturally occurring
perturbation parameter encountered heretofore.
Overall, it must not be forgotten that the error
associated with the governing differential equation is
only correct to O( )M , and so will the final

formulations.

9 CONCLUDING REMARKS
In the current article, we have considered the effects of
unsteadiness caused by small amplitude pressure
oscillations about the classic Taylor flow in a porous
channel.  We have specifically excluded questions
regarding hydrodynamic stability or turbulence in order
to manage a basic, laminar solution for large wall

injection.  We have exploited a popular method that
breaks down the analysis into a steady, fundamentally
nonlinear solution, and a superimposed, linearized,
time-dependent part.  Expressions were derived from
both the vorticity and momentum transport equations.
The accurate analytic formulae obtained were
instrumental in revealing rich vortical structures that are
by-products of mean and time-dependent flow
interactions.  They also revealed dimensionless
parameters that control the flow character.  By way of
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Figure 11.  Asymptotic behavior of the maximum
absolute error between numerical and asymptotic
predictions for the fundamental oscillation mode.  The
error curves shown correspond to (a) the multiple scale
solution, and (b) both asymptotic solutions.
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validation, comparisons to numerical solutions of the
Navier-Stokes equations were reassuring.  Comparisons
with the exact solution arising in the analogous setting
with impermeable walls were also favorable.  A formal
assessment of the maximum error entailed at the
conclusion of the asymptotic analysis revealed an
unexpected bonus.  The error was found to be very
small as it varied with the reciprocal of the kinetic
Reynolds number.  The interesting mathematical aspect
of this investigation, that could possibly be extended to
other practical problems, is the way in which the
inclusion of an undetermined scale can lead to the
nonlinear scaling transformation.
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