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Vorticity Dynamics in Isobarically Closed Porous
Channels Part I: Standard Perturbations

J. Majdalani¤

Marquette University, Milwaukee, Wisconsin 53233

When acoustic pressure oscillations are induced in a porous channel of the closed–open type, the linearized
Navier–Stokes equations can be solved analytically to obtain an accurate description of the temporal � ow� eld
corresponding to laminar conditions. The channel considered here has a rectangular cross section, has two equally
permeable walls, and is open at the downstream end.The current methodology parallels the closed–closed boundary
analysis carried out previously for a channel with both ends closed. Limiting our scope to laminar conditions, we
apply standard perturbation tools to present a closed-form solution that becomes asymptotically exact for large
kinetic Reynolds numbers. Veri� cations are materialized by way of numerical simulations and quanti� cation of
the maximum absolute error entailed in the � nal formulations. Note that the error is found to exhibit a clear
asymptotic behavior. Furthermore, the analytical formulation reveals vortical structures and explains the direct
in� uence of acoustic pressure oscillations on the rotational waves generated in the closed–open con� guration.
Finally, the explicit roles of variable injection, viscosity, and oscillation frequency are explained.

Nomenclature
A = dimensional oscillatory pressure amplitude
as = mean stagnation speed of sound,

p
.° ps=½s /

Em = maximum error in the asymptotic solution
h = channel half-height
i = root of complex numbers,

p
¡1

i; j; k = unit vectors in the Cartesian system
K = kinetic Reynolds number, kh2=º
k = dimensional circular frequency, .m ¡ 1

2 /¼as=L
km = wave number, .m ¡ 1

2 /¼h=L D kh=as

L = internal chamber length
l = dimensionless chamber length, L=h
M = injection Mach number, vw=as

m = pressure oscillation mode number
p = normalized pressure, p¤=.° ps/
ps = mean chamber pressure, ½sa2

s =°
p1 = total unsteady pressure term, p1 D Op C Qp
Re = cross� ow Reynolds number, vw h=º D MRe
Re = acoustic Reynolds number, ash=º
Sr = Strouhal number, kh=vw D km =M
t = dimensionless time, t¤as=h
u0 = Taylor’s pro� le normalized by vw; .u0; v0/
u1 = total unsteady velocity term, . Ou C Qu/
Ou; Qu = acoustic and vortical velocities, Ou¤=as ; Qu¤=as

.u; v/ = axial and normal velocity components

.u0; v0/ = [.¼=2/x sin µ; cos µ ]
vw = normal injection speed at the wall
x; y = dimensionless axial and normal coordinates
°; º = ratio of speci� c heats and viscosity
" = reciprocal of the kinetic Reynolds number, K ¡1

N" = pressure wave amplitude, A=.° ps /
µ = characteristic variable, .¼=2/y
» = viscous parameter, hºk2v¡3

w

¾ = reciprocal of the Strouhal number, Sr ¡1

! = dimensionless vorticity, r £ u
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Subscripts

0; 1; : : : = mean and temporal components

Superscripts

Re, Im = real and imaginary parts, respectively
¤ = dimensional quantities

Other symbols

N = variables in Euler’s notation
_ = total quantities (mean and temporal)

O = acoustic terms
Q = vortical terms

I. Introduction

T HE main focus of this work is to examine the time-dependent
� ow� eld in a porous channel of the closed–open type. The

goal is to develop analytical expressions for laminar � ow variables
that can help explain the acoustic character established in such a
physical con� guration. The presence of sidewall injection inside
long and slender rectangular channels can lead to strong acous-
tic waves that are decreed by the system geometry. These waves
can, in turn, interact with the channel’s solid boundaries to generate
time-dependent vorticity waves. The inevitable coupling between
acoustic and vortical waves results in complex � ow patterns that
depend on the pressure oscillation mode shapes. The current anal-
ysis will attempt to characterize these � ow patterns and unravel the
main link between pressure oscillation mode shapes and vorticity
production. In the process, the roles of variable injection, oscillation
frequency, and viscosity will be indicated. Closed-form expressions
for the velocity and vorticity � elds will be formulized and veri� ed
numerically.

The work’s technicalmerit lies in reproducing the analyticalequa-
tions that help predict the unsteady � ow motion inside porous chan-
nels that exhibit a closed–open con� guration. The theoretical devel-
opment to be pursued can be useful in increasing our understanding
of unsteady � ows entrained inside enclosures with transpiring walls.
Applications include, but are not limited to, propulsion, surface ab-
lation, � ltration, and gas diffusion processes.

In propulsion related applications, numerous models have been
developed over the years to simulate the internal � ow� eld in-
side solid rocket motors. The reader is referred to, for instance,
Refs. 1 and 2 and the references therein. Some of these models have
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attempted to simulate the ejection of gaseous substances from a pro-
pellant’s burning surface by analyzing the expulsion of inert gases
from transpiring surfaces. The advantages of such cold-� ow models
are twofold: 1) On the theoretical level, they allow for signi� cant
simpli� cations in the governing equations. 2) On the experimen-
tal level, they allow for prolonged data acquisition and reduce the
hazards of experimentation associated with reactive substances.

In relation to the closed–open con� guration, and in the spirit
of modeling the oscillatory � ow� eld in rectangular channels with
porous walls, recent experiments were conducted by Ma et al.,3;4

Barron et al.,5 Avalon et al.,6 and Casalis et al.7 Both Ma et al.3;4

and Barron et al.5 used sublimating carbon dioxide to simulate the
ejected gases from rectangular slabs of dry ice. They also borrowed
the concept of producing an oscillatory � ow from Richardson and
Tyler,8 who used electric motors to control the motion of a piston
reciprocating at the end of a crank. The main disparity between the
Ma et al.3;4 apparatus and that of Barron et al.5 is that the latter used
a Scotch-yoke to drive the piston, a condition that resulted in purer
sinusoidal piston displacements.

More recently, Avalon et al.6 and Casalis et al.7 produced self-
induced harmonic oscillations in their Veine d’Etude de la Couche
Limite Acoustique facility. Theirs comprised a long channel with
two counterfacing permeable and impermeable walls. Despite the
meticulous effort of injecting air as uniformly as possible through
the plane porous sections of their apparatus, small unavoidable � uc-
tuations in the injectant rate led decidedly to the onset of a strong
acoustic environment. In the aforementionedexperiments, the place-
ment of a choked ori� ce or nozzle at the downstream end determined
whether the oscillation mode character was of the closed–closed or
closed–open type. In the forthcoming analysis, we shall undertake
the theoretical study of the laminar � ow model stemming from pres-
sure oscillations of the closed–open type.

The mathematical treatment unfolds in the following stages. Sec-
tion II de� nes the geometry and mean � ow stream function. It also
provides the list of pertinent assumptions. The Navier–Stokes equa-
tions are subsequently linearized in Sec. III. The time-dependent
� eld is decomposed in Sec. IV into acoustic and vortical compo-
nents. Although the acoustic solution can be immediately character-
ized, the vortical solution requires a careful treatmentand is deferred
to Sec. V. Section V represents the essence of this paper, where a
standard perturbation scheme will be applied to arrive at the desired
solution. A companion paper will be devoted to two alternative tech-
niques that apply to the momentum equation instead of the vorticity
transport equation employed here. In Sec. VI, asymptotic results
will be compared to numerical solutions of the linearized Navier–
Stokes equations. In addition, the ensuing vortical structure will be
closely examined. Last, the error associated with the asymptotic
formulas will be quanti� ed. For the reader’s convenience, the pro-
cedure will be described with very few omissions despite its striking
resemblance to Flandro’s approach applied previously to the cylin-
drical tube.9 The reason is that our current procedure contains subtle
variations that lead to a cumulative error that differs from Flandro’s.

II. De� ning the Basic Flow Model
A. Porous Channel

We consider a long and slender rectangular channel of length L
and width w. This channel is bounded by plane porous walls that
are 2h apart. Through these walls, a perfect gas is injected with con-
stant uniform velocity vw . Taking the height of the cross section to
be smaller than the other two dimensions enables us to treat the prob-
lem as a case of two-dimensional � ow. In fact, Terrill10 (cf. pages
309 and 310) has shown that when the ratio of the width to the height
of the channel is w=h ¸ 4, one can justify ignoring the in� uence of
passive side walls. For equal wall permeability, symmetry can be
assumed about the meridian plane. As usual, symmetry reduces the
solution domain by half. The preferred coordinate system is shown
schematically in Fig. 1 with the origin at the porous wall. When
spatial coordinates are normalized by h, the streamwise, transverse,
and spanwise coordinates can be denoted by x; y, and z. Disregard-
ing the in� uence of rigid boundaries, we assume no variations in z
and con� ne our solution to 0 · x · l and 0 · y · 1, where l D L=h.

Fig. 1 System geometry showing select mean � ow streamlines and ve-
locity vector scales.

When the channel is closed at the fore end and open at the down-
stream end, small � uctuations in the injectant rate can give rise to
acousticpressureoscillations.These small pressure � uctuations can,
in turn, couple with the mean � ow and produce a time-dependent
� eld that we wish to investigate. The streamlines shown in Fig. 1
correspond to typical � ow patterns pertaining to the undisturbed
state. The overlaying vector plot illustrates the spatial evolution of
the mean velocity � eld.

B. Limiting Conditions

For the mean � ow, we consider a laminar, rotational, and in-
compressible regime where neither swirling nor mixing between
incoming streams can take place. Additionally, a constant normal
velocity is prescribed at the wall. For appreciable injection at the
wall, we limit our scope to cross� ow Reynolds numbers satisfying
R D vwh=º > 20, where º is the kinematic viscosity. The upper limit
imposed on R is decreed by the need to maintain an injection Mach
number M D vw=as of order 10¡3.

Regarding the acoustic pressure � eld, we constrain the oscilla-
tory pressure amplitude A to remain small by comparison to the
stagnation pressure ps evaluated at x D 0. This enables us to con-
struct another small parameter that scales with A=ps . Finally, to
break down the analysis into manageable pieces, we assume that
the presence of isentropic oscillations does not affect the bulk � uid
motion. Similar limiting conditions have been routinely used in the
literature and may be traced back to Flandro’s works.11;12

C. Taylor’s Flow� eld

In the absence of small-amplitude disturbances, the steady
Navier–Stokes equations can be solved exactly using a similarity
transformation. As demonstrated by Berman,13 when the steady
stream function 9 varies linearly, namely,

9 D ¡x F.y/ (1)

one can write .u0; v0/ D .¡x F 0; F/, where u0 D .u0; v0/ is the mean
velocity vector normalized by vw . The separable component F must
satisfy Berman’s equation, F iv C R.F 0 F 00 ¡ F F 000/ D 0, which de-
pends on R and four boundary conditions: F 0.0/ D F.1/ D F 00.1/ D
0 and F .0/ D 1. Although it may be possible to manage a time-
dependent formulation for arbitrary F , we have decided to start
by using a simple and practical solution corresponding to F D
cos[.¼=2/y]. More sophisticated Berman functions can give rise
to technical issues that tend to complicate and slightly obscure
the forthcoming analysis. This solution, attributed to Taylor14 or
Yuan15 has been thoroughly veri� ed both numerically and experi-
mentally to be a reasonable approximation for R > 20. In this range,
Varapaevand Yagodkin16 note minimal solution changes and almost
no changes for R > 100. With this choice of F , the mean velocity
and vorticity � elds, namely,

u0 D f.¼=2/x sin[.¼=2/y]; cos[.¼=2/y]g

!0 D ¡.¼ 2=4/x cos[.¼=2/y] (2)

satisfy all four boundary conditions. After normalizing the mean
pressure by ° ps , one integrates the momentum equation (given by
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M2u0 ¢ ru0 D ¡r p0 C r2u0=R) to get
p0.x; y/ D 1=° ¡ .M2=2/...¼ 2=4/x2f1 C .¼=2R/ sin[.¼=2/y]g

C cos2[.¼=2/y]// (3)

Because the mean pressure depreciates in the streamwise direction,
the channel length is limited to l < 100, for consistency in perturba-
tion levels.

III. Governing Equations
A. Normalized Navier–Stokes

Assuming constant kinematic viscosity and negligible bulk vis-
cosity, the differential conservation of mass and momentum can be
cast into the familiar nondimensional form

@_½

@t
C r ¢ . _½ _u/ D 0 (4)

_½

µ
@ _u
@t

C ._u ¢ r/_u

¶
D ¡r _p C Re¡1

µ
4r.r ¢ _u/

3
¡ r £ .r £ _u/

¶

(5)

where the total instantaneous velocity _u is normalized by the speed
of sound as and the spatial coordinates by h, and where time is made
dimensionless by reference to h=as , the average time it takes for a
pressure disturbance to travel from the wall to the core. Using aster-
isks for dimensional variables, the instantaneous pressure and den-
sitycanbe referencedto stagnationconditions. Setting _p ´ _p¤=.° ps /
and _½ ´ _½ ¤=½s , the acoustic Reynolds number Re in Eq. (5) will be
ash=º.

B. Perturbed Variables

When periodic oscillations are introduced at a radian frequency
k, the instantaneous pressure can be written as a sum of its steady
and acoustic components. Using subscripts for perturbation orders,
the total pressure can be expanded into

_p¤ D p¤
0.x¤; y¤/ C p¤

1.x¤; y¤; t¤/ D p¤
0 C AP.x¤; y¤/ exp.¡ikt¤/

(6)

where P is a spatial function of O.1/ that will be determined in
Sec. IV.D. Normalizing and using p¤

0 D ps , one gets
_p.x; y; t/ D 1=° C N"P.x; y/ exp.¡ikm t/ C O.M2x2/

»D 1=° C N" p1.x; y; t/ (7)

where km D kh=as is the nondimensional frequency and N" D A=
.° ps/ is the wave amplitude. Other � uctuating variables can be
expanded in a similar fashion:

_½.x; y; t/ D
¡
½s C ½¤

1

¢¯
½s D 1 C N"½1.x; y; t/ (8)

In much the same way, velocity lends itself to decomposition.
Knowing the mean solution from Eqs. (2) and (3), we may fol-
low Lighthill17 by considering small velocity oscillations about the
mean and write

_u ¤.x¤; y¤; t¤/ D vwu0.x
¤; y¤/ C u¤

1.x¤; y¤; t¤/ (9)

Normalizing by as begets, for the velocity and vorticity companion,

_u.x; y; t/ D Mu0.x; y/ C N"u1.x; y; t/

_!.x; y; t/ D M!0.x; y/ C N"!1.x; y; t/ (10)

C. Total Field Decomposition

Inserting Eqs. (7–10) back into Eqs. (4) and (5) precipitates the
zero-order expansion in the wave amplitude. Collecting terms of
O. N"/, the � rst-order linearized expansion of the fundamental equa-
tions is obtained:

@½1

@t
C r ¢ u1 D ¡Mr ¢ .½1u0/ (11)

@u1

@t
D ¡M[r.u0 ¢ u1/ ¡ u1 £ .r £ u0/ ¡ u0 £ .r £ u1/]

¡ r p1 C Re¡1

µ
4r.r ¢ u1/

3
¡ r £ .r £ u1/

¶
(12)

This set incorporates the in� uence of bulk � uid motion on the time-
dependent � eld. The same set was obtained previously, using a dif-
ferent notation, in the treatment of oscillatory � ows in cylindrical
tubes of the closed–closed type.1;12;18

IV. Temporal Field Decomposition
A. Irrotational and Solenoidal Vectors

At this juncture, it is useful to decompose the time-dependent
vector into an irrotational and a solenoidal component. As usual,
using a circum� ex to designate acoustic parts and a tilde for vortical
parts, the time-dependent velocity component can be expressed as

u1 D Ou C Qu (13)

Similar decomposition has been successfully employed by
Flandro.12 Thus,

!1 ´ r £ u1 D Q! ´ r £ Qu; p1 D Op; ½1 D O½ (14)

B. Linearized Navier–Stokes Equations

When Eqs. (13) and (14) are substituted back into Eqs. (11) and
(12), two independent sets of formulas ensue. These are coupled
through existing boundary conditions and are given by the follow-
ing:

1) Acoustic set:

@ O½
@t

C r ¢ Ou D ¡Mr ¢ . O½u0/ (15)

@ Ou
@t

D ¡r Op C
4Re¡1r.r ¢ Ou/

3
¡ M[r. Ou ¢ u0/ ¡ Ou £ .r £ u0/]

(16)

2) Vortical set:

r ¢ Qu D 0 (17)

@ Qu
@t

D ¡Re
¡1r £ .r £ Qu/ ¡ M[r. Qu ¢ u0/

¡ Qu £ .r £ u0/ ¡ u0 £ .r £ Qu/] (18)

C. Boundary Conditions

In � nding u1 , both Ou and Qu must be � rst determined and then
superposed in a manner that correctly satis� es the auxiliary con-
ditions. These comprise both the no-slip condition at the wall
and symmetry about the core. No-slip requires that u1.x; 0/ D
0, or Ou.x; 0/ C Qu.x; 0/ D 0. However, symmetry requires that
@u1.x; 1/=@y D 0.

D. Acoustic Solution

When Op D O½ is utilized, standard manipulation of Eqs. (15) and
(16) condenses the set into a single hyperbolic partial differential
equation,

@2 Op
@t 2

¡ r2 Op D ¡
4Re¡1r.r ¢ Ou/

3
¡ M

»
r ¢

³
u0

@ Op
@ t

´

¡ r2. Ou ¢ u0/ C r ¢ [ Ou £ .r £ u0/]
¼

(19)

At this juncture, a solution can be managed to O.M/ by applying
separationof variables and the closed–open end conditions. Because
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m = 1

m = 2

m = 3

Fig. 2 Acoustic velocity Ãu is pro� led along the channel length at con-
stant time intervals.

l À 1, a solution to Eq. (19) can be retrievedfrom textbooks on wave
propagation. Expressed in Euler’s notation, the acoustic pressure is

Op.x; t/ D cos.km x/ exp.¡ikm t/ C O.M/ (20)

where the dimensionless wave number is given by km D kh=as D
.m ¡ 1

2 /¼= l where m D 1; 2; : : : ; 1. The corresponding frequency
is f D .2m ¡ 1/as=.4L/. The velocity companion can be integrated
from Eq. (16) to render

Ou.x; t/ D i sin.km x/ exp.¡ikm t/i C O.M/ (21)

Acoustic amplitudes stemming from Eq. (21) are shown in Fig. 2
for the � rst three oscillation mode shapes.

E. Vortical Equations

Letting Nu.x; y/ ´ . Nu; Nv/; and N! ´ r £ Nu D N!k, we use Euler’s
notation and write the vortical � uctuations as

Qu.x; y; t/ D Nu.x; y/ exp.¡ikm t/

Q!.x; y; t/ D N!.x; y/ exp.¡ikm t/ (22)

In lieu of Eqs. (17) and (18), we now have

r ¢ Nu D 0 (23)

i Nu D [r. Nu ¢ u0/ ¡ Nu £ !0 ¡ u0 £ N!]=Sr C r £ N!=K (24)

where

Sr D kh=vw D
¡
m ¡ 1

2

¢
.¼has=vw L/ (25)

K D kh2=º D
¡
m ¡ 1

2

¢
.¼h2as=ºL/ (26)

The two emerging similarity parameters are the Strouhal number
Sr , and the kinetic Reynolds number K . Practically, because the
kinematic viscosity of most gases happens to be very small, the
parametric variation in K reported by many researchers has fallen
into the range 104 < K < 108. Therefore, we de� ne " ´ K ¡1 to be
a primary perturbation parameter. For similar reasons, because un-
steady � ows are characterizedby appreciable Strouhal numbers, we
de� ne ¾ D 1=Sr . Note that " is always smaller than ¾ because the
ratio ¾=" D vwh=º is the cross� ow Reynolds number R, which is
large irrespective of frequency.

Subject to con� rmationat the conclusion of the forthcoming anal-
ysis, we now make the conditional stipulation that Nv= Nu D O.M/.

Being a smaller quantity, Nv can be omitted at the � rst perturbation
level with no effect on the solution desired at O.M /. Therefore,
Eq. (24) collapses at O.M/ into

i Nu D ¾

µ
@

@x
. Nuu0/ C v0

@ Nu
@y

¶
¡ "

@2 Nu
@y2

or

i Nu D ¾

µ
@

@x
. Nuu0/ ¡ v0 N!

¶
C "

@ N!
@y

(27)

V. Time-Dependent Vortical Field

A. Vorticity Transport Equation

At present, we shall employ the vorticity transport equation to
start with. In the companion paper, the solution will be based on
the momentum equation and a unique choice of scaling arguments.
Taking now the curl of Eq. (24) and using Eq. (22), the vorticity
transport equation emerges:

i N! D ¡¾ r £ . Nu £ !0 C u0 £ N!/ ¡ "r2 N! C O.M/ (28)

This can be rearranged in a scalar form that places leading-order
terms on the left-hand side:

@ N!
@y

¡
i N!
¾ v0

C
u0

v0

@ N!
@x

D ¡
Nu

v0

@!0

@x
C

"

¾ v0

³
@2 N!
@x2

C
@2 N!
@y2

´
(29)

The right-hand side quantities representing the steady vorticity
gradient and the viscous diffusion of time-dependent vorticity can
be ignored at the � rst perturbation level. Physically, these terms
symbolize viscous dissipation and axial convection of mean � ow
vorticity by virtue of the time-dependent vortical action. The latter
is insigni� cant because of our original stipulation restricting un-
steady � ow effects on mean � ow parameters to remain marginal.
The third term on the left-hand side is retained, despite its mis-
leading appearance of O.M/, because it represents the downstream
convection of vorticity. This phenomenon is vital to preserve the
problem’s physicality by providing an outlet to incoming vorticity.
The base solution can now be achieved by expanding N! in powers of
M , namely, N! D $0 C M$1 C O.M2/. Following substitution into
Eq. (29), the leading-order term can be retrieved, by separation of
variables, from

@$0

@y
¡

i$0

¾v0
C

u0

v0

@$0

@ x
D 0 (30)

This, of course, must be contingent on satisfaction of both the no-
slip condition at the wall and the no-� ow restrictionat the head end.
Letting $0 D X .x/Y .y/, Eq. (30) becomes

x

X

dX

dx
D ¡

2

¼
cot

³
¼

2
y

´
1

Y

dY

dy
C

2i

¼¾
csc

³
¼

2
y

´
D ¸n ; ¸n > 0

(31)

When we integrate and linearly sum over all possible solutions, the
result is

$0 D
X

¸n

cn

µ
x cos

³
¼

2
y

¶́¸n

exp

»
2i

¼¾
tan

µ
¼

4
.1 C y/

¶¼
(32)

where $0 contains a denumerable set of arbitrary constants cn asso-
ciated with each ¸n . These must be speci� ed in a manner to satisfy
the no-slip condition at the wall, written for vorticity. The latter
requires a delicate treatment and is covered next.

B. Vorticity Boundary Condition

It is instructive to reduce Eq. (12), at O.M /, into

@u1

@t
D ¡M[r.u1 ¢ u0/¡u1 £!0 ¡u0 £!1]¡r p1 ¡ Re

¡1r £!1

(33)
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whose projection along x reads

@u1

@t
D ¡M

µ
@

@x
.u0u1 C v0v1/ ¡ v1!0 ¡ v0!1

¶
¡

@p1

@x
¡

1

Re

@!1

@y

(34)

Recalling that !1 D Q!; v1 D Qv; p1 D Op, and that u1.x; 0; t/ must van-
ish to prevent slippage, Eq. (34) collapses, at the wall, into

0 D ¡M

µ
@

@x
. Qvv0/ ¡ Qv!0 ¡ v0 Q!

¶
¡

@ Op
@x

¡
1

Re

@ Q!
@y

(35)

Rearranging, and using Op D cos.km x/ exp.¡ikm t/, the no-slip con-
dition translates into

Q! D ¡Sr sin.Km x/ exp.¡ikm t/ C
Sr

K

@ Q!
@y

C O.M / (36)

which can be recast into

N!.x; 0/ D ¡Sr sin.Km x/ C
Sr

K

@ N!
@y

C O.M/ (37)

Equation (37) indicates that vorticity is most intense at wall lo-
cations given by x= l D .2n ¡ 1/=.2m ¡ 1/, where n · m represents
the positive integral number of acoustic velocity maxima (shown
in Fig. 2) for a given oscillation mode m. At these nodes, Ou has
maximum amplitude.

C. Inviscid Vorticity

Equation (37) can now be used in conjunction with Eq. (32) to
specify the separation eigenvalues:

$0.x; 0/ D ¡Sr sin.km x/ ´ ¡Sr
1X

n D 0

.¡1/n.km x/2n C 1

.2n C 1/!
(38)

¸n D 2n C 1; cn D ¡
Sr.¡1/n.km/2n C 1

.2n C 1/!
(39)

whence

$0.x; y/ D Sr

(
1X

n D 0

.¡1/n

.2n C 1/!

µ
¡km x cos

³
¼

2
y

´¶2n C 1
)

£ exp

»
2
¼

i Sr tan

µ
¼

4
.1 C y/

¶¼
(40)

Recalling Taylor’s mean � ow stream function from Sec. II.C, we
recognize that the in� nite series between braces is a sine function of
9 . At the outset, we let Z .x; y/ ´ km9.x; y/, and simplify Eq. (40)
into

$0.x; y/ D Sr sin.Z / exp.¡i80/ (41)

where the temporal phase leadof the vorticalwave is found todepend
on

80.y/ D ¡.2=¼/Sr tan[.¼=4/.1 C y/] (42)

D. Ideal Stream Function

We now resort to the time-dependent stream function Ns D Ãk,
where Nu ´ r £ Ns, to replace the velocity components via Nu D @Ã=@y
and Nv D ¡@Ã=@x . Starting with the vorticity equation,

N! D
@ Nv
@x

¡
@ Nu
@y

D ¡
@2Ã

@ x2
¡

@2Ã

@y2
(43)

we then proceed heuristically by posing that Ã must possess the
same axial dependence as N!. Because we shall be using successive
approximations, we set Ã0 D Ãc$0 and substitute into Eq. (43).

Balancing leading-order terms implies that Ãc D ¾ 2 cos2[.¼=2/y]
or

Ã0 D ¾ cos2[.¼=2/y] sinf¡km x cos[.¼=2/y]g exp.¡i80/ (44)

Having determined the inviscid � ow streamfunction, it follows that
the companion velocity is

Nu D fi cos[.¼=2/y] sin.Z /i C M cos3[.¼=2/y] cos.Z/ jg exp.¡i80/
(45)

E. Viscous Multipliers

Subject to veri� cation at the conclusion of this section, we state
without proof that both Nu and N! must possess the same axial depen-
dence as their inviscid counterparts. This statement is materialized
by setting

Nu.x; y/ D uc.y/ sin.Z / exp.¡i80/

N!.x; y/ D $c.y/ sin.Z / exp.¡i80/ (46)

where viscous correction multipliers uc and $c must be evaluated.
After substitution into the full vorticity transport equation, given by
Eq. (29), several terms cancel out except for lower-order terms and
terms of O.Sr 2/. Balancing leading-order terms demands that

d$c

dy
C » sec3

³
¼

2
y

´
$c ¡

¼ 2

4
uc D 0 (47)

where » D k2
m=.M 3Re/ appears as a dynamic similarity parameter,

chie� y in control of the viscous correction multiplier. In seeking a
relationship between uc and $c, we resort to Eq. (27) and � nd

uc D fi¾ cos[.¼=2/y] C »¾ 2 sec[.¼=2/y]g$c (48)

Inserting this formula into Eq. (47) leads to an ordinary differential
equation in $c:

d$c

dy
C

µ
» sec3

³
¼

2
y

´
¡ i¾

¼ 2

4
cos

³
¼

2
y

´¶
$c D 0 (49)

which, after some algebra, gives

$c.y/ D C exp ³ (50)

where, by omitting the imaginary argument in ³ of effective O.¾ 2/,
we � nd

³ D ¡»

Z y

0

v¡3
0 .¿ / d¿ D ¡»

Z y

0

F ¡3.¿/ d¿

D ¡
1
¼

»

µ
tan

¼

4
.1 C y/ C sec

³
¼

2
y

´
tan

³
¼

2
y

´¶
(51)

F. Corrected Vorticity

The complex constant of integration C can be evaluated from the
vorticity boundary condition at the wall as speci� ed by Eq. (37).
Updating $c gives, at O.M; ¾ 2/

C
©
1 ¡ »¾ 2[³ 0.0/ ¡ i80

0.0/]
ª

sin[Z.x; 0/] exp[³.0/ ¡ i80.0/]

D ¡Sr sin.km x/ (52)

where

³ 0.0/ D ¡»; 80
0.0/ D ¡Sr; ³.0/ D 80.0/ D 0 (53)

Direct substitution gives C.1 ¡ i»¾ / D Sr C O.¾ 2/. Hence,

CRe D
Sr 3

Sr 2 C » 2
; C Im D

» Sr 2

Sr 2 C » 2
(54)

Backward substitution into Eqs. (50), (46), and (22) yields, at last,

Q!.x; y; t/ D C sin.Z / exp.³ ¡ i80 ¡ ikm t/ (55)
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G. Axial Velocity with Viscous Corrections

In much the same way, the velocity corrective multiplier can be
deduced from Eq. (48), namely,

uc D fi¾ cos[.¼=2/y] C »¾ 2 sec[.¼=2/y]gC exp ³ ´ i B exp ³

(56)

where

BRe D ¾
¡
CRev0 C »¾ C Im

¯
v0

¢
; B Im D ¾

¡
C Imv0 ¡ »¾ CRe

¯
v0

¢

(57)

so that Qu is soluble by backward substitution into Eqs. (46) and (22).
At length, we � nd that

Qu.x; y; t/ D i B sin.Z/ exp.³ ¡ i80 ¡ ikm t/ (58)

H. Transverse Velocity

In principle, the normal component Qv can be derived from conti-
nuity. In practice, this may prove dif� cult unless we proceed heuris-
tically by � rst proposing an ansatz of the form

Qv D g.y/ cosf¡km x cos[.¼=2/y]g exp.³ ¡ i80 ¡ ikm t/ (59)

Later substitution into Eq. (17) furnishes g.y/. Setting @ Qv=@y ´
¡@ Qu=@x , we � nd, to leading order, g D M Bv2

0 . Therefore,

Qv.x; y; t/ D M Bv2
0 cos.Z / exp.³ ¡ i80 ¡ ikm t/ (60)

which lends support to the former stipulation contending that
Qv= Qu D O.M/.

I. Final Time-Dependent Formulation

By the retracing of our steps, the meaningful components of
time-dependent axial and normal velocity are recapitulated here-
after along with their vorticity companion:

u1 D sin.km x/ sin.km t/ ¡ .BRe sin’ ¡ BIm cos ’/

£ exp ³ sin.km x cos µ/ (61)

v1 D ¡Mv2
0.BRe cos ’ C BIm sin ’/ exp ³ cos.km x cos µ/ (62)

!1 D ¡.CRe cos ’ C C Im sin ’/ exp ³ sin.km x cos µ/ (63)

where

µ D .¼=2/y; ’ D km t ¡ .2=¼/Sr tan.¼=4 C µ=2/ (64)

Because the acoustic motion is, in essence, driven by the oscil-
latory pressure � eld, the � rst term in Eq. (61) can be envisaged
as the inviscid response to the � uctuating pressure, and the second
term can be interpreted as the viscous and vortical response that
disappears asymptotically with increasing distance from the wall.

VI. Discussion
A. Numerical Veri� cation

To gain con� dence in the asymptotic formulas based on Eq. (61),
we rely on computer-generated numerics and numerics combined
with physical arguments. To that end, we use a shooting method
to handle the two-point boundary value problem posing itself via
Eq. (27) and the two auxiliary conditions described in Sec. IV.C.
Careful choices of initial guesses and direction of integration across
the channel are often necessary to ensure convergence. Our prefer-
ence is to estimate small nonzero values at the core and integrate
backward using a seventh-order Runge–Kutta scheme until the no-
slip condition at the wall is ful� lled. Uniform steps, albeit very
minute ones, are found to be adequate for the most part. If the spa-
tial grid is too coarse, then a numerical over� ow occurs. Naturally,
the numerical dif� culty arises at large kinetic Reynolds numbers.
This spurious numerical artifact, which can be prevented by grid

Fig. 3 Oscillatory axial velocity u1 vs y is shown at the downstream
end (x = l ) for constant time intervals of ¼/2.

re� nement, is ascribed to the increasing stiffness of the differen-
tial equation with K . Continual spatial grid re� nement is, hence,
necessary at successive increases in K . The number of grid points
needed for convergence varied in our monitored routine from 10,000
to 20,000,000 points, but no effort was made to optimize the num-
ber by employing nonuniform meshes. If this were done, far fewer
grid points would have been necessitated near the wall because the
smaller steps are only required near the core to capture the expo-
nentially depreciating vortical wavelength.

For typical values of the control parameters, the velocity’s numer-
ical solution is compared in Fig. 3 with its asymptotic counterpart
evaluated from Eq. (61). For the � rst three oscillation modes, pro-
� les are shown at four selected times of a complete cycle where
Sr D 25.2m ¡ 1/ and K D 106.2m ¡ 1/: In Fig. 3, asymptotics (full
lines) and numerics (broken lines) are indistinguishable. For the
fundamental mode, u1 starts at zero at the wall, in satisfactionof the
velocity-adherence condition, then undergoes a velocity overshoot
of twice the irrotational core amplitude. It then decays gradually to
its inviscid form. This overshoot near the wall is a well-known fea-
ture of oscillatory � ows that has been � rst reported by Richardson.19

The observed doubling in amplitude takes place when vortical and
acoustic waves happen to be in phase. This virtual 100% ampli� ca-
tion is far more intense than the 13% overshoot described by Rott20

(cf. page 402) and reported in laboratory experiments conducted, in
the absence of wall injection, by Richardson19 and Richardson and
Tyler.8

For higher modes, similar damped waves are observed in the
upstream portion delimited by the � rst internal velocity node. In
the downstream portion, additional structures emerge. Speci� cally,
a premature decay in the rotational wave is noted m ¡ 1 times
downstream of the mth velocity node. Such structures are depicted
in Fig. 3 for m D 2 and 3 at the aft end. This axial station co-
incides with the location of the last pressure node where acous-
tic velocity amplitudes are largest. Beyond these premature rota-
tional velocity nodes, the vortical � eld recuperates some strength
before resuming its normal depreciation. To justify the presence
of such intellectually challenging rotational nodes, a characteri-
zation of the time-dependent vortical structure is carried out. In
the process, the in� uence of varying wall injection and viscosity is
studied.

B. Unsteady Vortical Structure

For m D 1, Eq. (63) can be used to generate contour plots showing
constant vorticity lines in percent of the maximum vorticity ampli-
tude produced at the pressure nodes of the wall. When the frequency
and kinematic viscosity are held constant, corresponding to a typical
K D 106 value, the Strouhal number can be modi� ed by an order of
magnitude by reducing the injectant rate. The corresponding vorti-
cal structures are shown in Fig. 4, for Sr D 10 and 100. In particular,
note in Fig. 4a the deeper vortical penetration with higher injection,
and the downstream convection of vorticity, originating at the wall,
that follows the mean � ow streamlines. When injection is reduced
in Fig. 4b, the irrotational region anchored at the core broadens out,
resulting in a visible reduction in rotational depth.

When instead vw and k are held constant, the effect of kinematic
viscosity can be extrapolated in a similar fashion by varying K . We
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a)

b)

Fig. 4 Equispaced isovorticity lines shown in a) Sr = 10 and b) Sr =
100 where m = 1 and K = 106.

a)

b)

Fig. 5 Equispaced isovorticity lines shown in a) K = 105 and b) K = 106

where m = 1 and Sr = 50.

Fig. 6 Equispaced isovorticity lines shown for the � rst three harmonic
modes when Sr = 25(2m ¡ 1) and K = 106(2m ¡ 1).

� nd that, when viscosity is suppressed, as in Fig. 5, a wider and
deeper spread of vorticity ensues. As such, one can envisage vis-
cosity as an attenuation agent whose role is to resist the propagation
of rotational waves. This is contrary to the role it plays in similar
con� gurations with impermeable walls discussed, for example, in a
survey by Rott20 (cf. page 397).

As the oscillation mode evolves to m D 2–4, isovorticity lines be-
gin exhibiting interesting structures. These are shown in Fig. 6 for

Fig. 7 Same as in Fig. 6 except that K = 105(2m ¡ 1); this variation
corresponds to an order of magnitude increase in kinematic viscosity.

typical values of the control parameters. In particular, these struc-
tures feature .m ¡ 1/ lines of zero vorticityamplitude (chaincurves),
stemming from theacousticpressureantinodes at thewall, for m > 1.
These irrotational streaks partition the channel into m zones charac-
terized by alternating directions of particle rotation. When crossing
these delineation lines, vorticity changes sign and, therefore, direc-
tion. If we were to superimpose unsteady velocity pro� les at discrete
axial locations,we would � nd that the rotational nodes inu1 coincide
precisely with the transverse location of the zero vorticity streaks.
Apparently, as zero vorticity streaks drift downstream, they leave
rotational nodes in the velocity � elds that they intersect. Similar ef-
fects are noted in Fig. 7 when viscosity is increased. The result is a
depreciation in both vortical wave propagation depth and amplitude
at higher modes as well. Note, in particular, the broadening in the
irrotational core by comparison to Fig. 6.

C. Error Assessment

In arriving at the � nal asymptotic formulation set out in Eq. (61),
a number of successive approximations were made that introduced
uncertainty in the cumulative error entailed. Fortunately, the ulti-
mate order veri� cation of the error incurred in the derivation can
be realized by applying a technique described by Bosley.21 To that
end, we de� ne the maximum error Em to be the maximum abso-
lute difference between u1 given asymptotically and un

1 computed
numerically. Then for every m; Sr , and ", we can calculate, over a
complete oscillation cycle,

Em .m; Sr; "/ D max
0 · x · l
0 · y · 1

­­un
1 ¡ u1

­­ (65)

Suspecting that the error could be of O."®/, we presuppose a func-
tional variation of the form

Em.m; Sr; "/ D ¯.m; Sr/"® (66)

and then determine the slope ® from the log– log plot of Em vs ".
As in Fig. 8 for the � rst two acoustic oscillation modes, the slope
of the maximum error approaches unity asymptotically. This result
has been con� rmed using the method of least squares in decreas-
ing ranges of ". The consistent asymptotic behavior is gratifying
and, according to Bosley,21 is indicative that our formulation is an
honest and legitimate, uniformly valid expansion. This observation
con� rms that the error is of O."/. We could not have done any
better because " D K ¡1 is the smallest naturally occurring perturba-
tion parameter encountered heretofore. Because K ¡1 < Sr¡1 at any
oscillation frequency, the current procedure shows an improvement
over its predecessor,9 which exhibited an error of O.Sr¡1/ (Refs. 22
and 23).
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Fig. 8 Asymptotic behavior of the maximum absolute error between
numerical and asymptotic results for the � rst two acoustic oscillation
modes; for each Strouhal number case, thicker curves correspond to
m = 2.

VII. Conclusions
This study focusedon elucidating the nature of acoustico–vortical

interactions in the porous channel with permeable walls. The scope
was limited to laminar conditions to manage explicit formulations.
To that end, issues regarding hydrodynamic stability and turbulence
have been speci� cally excluded. The procedure was very similar
to that used in analyzing the closed–closed channel con� guration.
Some of the main results included closed-form expressions for the
time-dependent velocity and vorticity � elds. These compared very
favorably with numerical solutions to the linearized Navier–Stokes
equations. Furthermore, they revealed the problem’s similarity pa-
rametersand explained the relationshipbetweenacousticallyexcited
oscillation modes and vortical production.

In the current paper, the solution was arrived at using successive
approximations that applied to the vorticity transport equation. The
numerical veri� cation also relied on the linearized Navier–Stokes
equations. In the forthcoming work, alternative analytical methods
will be explored using WKB and multiple scale arguments. The
formulations will be derived directly from the momentum equation
and then compared to numerical simulations of the full, nonlinear,
Navier–Stokes equations.
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