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 A preliminary investigation is undertaken to estimate the magnitudes of fundamental 
transport properties associated with the internal thermoacoustic field of a solid rocket 
motor. In light of the estimated magnitudes, the energy equation is simplified. The possibility 
of circumventing chemical reactions while retaining the essential physics of the problem is 
explored. This is accomplished by introducing a distributed heat source above the propellant 
surface that is equivalent to the heat released by chemical reactions. The resulting energy 
equation is solved to zeroth order and the solution to the next order is outlined. The 
analytical solution and corresponding temperature maps are found to be in agreement with 
numerical simulations of the combustion chamber. Specific areas that require further 
exploration are identified in the hope of obtaining a refined model.  

 

Nomenclature  
b   = radial location of the heat source, dimensionless 

pc  = specific heat at constant pressure, J/kg-K 
Ec  = dimensionless parameter 
k   = thermal conductivity, W/m-K 
L  = length of the motor, m 

*p  = dimensional pressure, Pa 
Pe  = Peclet number 
Pr  = Prandtl number 
Q  = normalized heat generation per unit volume 
r   = dimensional radial coordinate, m 
R  = instantaneous inner radius of the motor, m 
Re  = injection Reynolds number 

*T  = dimensional temperature, K 
T  = normalized temperature 
T̂  = normalized temperature at the throat 

*u  = velocity ( *
ru , *

zu ), m/s 
V  = injection velocity at radius R , m/s 

*z  = axial coordinate, m 
z   = normalized axial coordinate, * /z L  
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γ   = ratio of specific heats 
η   = transformed radial coordinate, * /r a  
µ  = dynamic viscosity, kg/m-s 

ρ  = density, 3kg/m  
φ   = ratio of radius to length of the motor 
 
Superscripts 
*   = denotes a dimensional variable 
 
Subscripts 
0   = reference value 
ct  = condition corresponding to the choked throat 
r   = radial component  
s   = stagnation temperature at head end 
w  = at the wall 
z   = axial component or partial derivative 

I. Introduction 
HEORETICAL efforts geared towards 
understanding aeroacoustic instabilities in solid 

rocket motors have spanned four decades. Despite 
important findings realized by several investigators, the 
complete understanding of internal gas dynamics and 
related instabilities has not been fully realized. This is 
due to the multifaceted and interrelated nature of the 
phenomena involved.1 In fact, past efforts to understand 
internal flow instabilities may be naively grouped into 
two categories: (i) those attempting to analyze the 
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details of unsteady combustion without giving due 
attention to the internal flow details;2-7 and (ii) those 
attempting to elucidate the flow details while ignoring 
the role of unsteady combustion.8-14  
  Exceptions to these classifications exist and can be 
illustrated in the computational studies of Apte and 
Yang,15 Roh, Tseng and Yang,16 Roh and Culick,17 and 
Vuillot and co-workers.18,19 By focusing on numerical 
simulations, as opposed to analytical solutions of the 
internal flowfield, these thorough investigators have 
been partly successful in combining the complex 
aeroacoustic interactions with the elements of 
combustion. Aside from these numerical studies, the 
intrinsic coupling between thermal and aeroacoustic 
modes has been largely neglected.  
  In the current study, we attempt to develop a 
mathematical model that can couple the gas dynamics 
with the intense heat generated from propellant 
combustion. The resulting model is expected to allow 
for a thermally sensitive solution of the flowfield that 
incorporates the effects of chemical reactions and 
entropy gradients. At present, the effort will be to 
evaluate the basic temperature gradients that can mimic 
those generated from propellant combustion. These 
gradients need to be later accounted for in the complete 
flow formulation.  
  At first, the basic nature of the equations will be 
examined. This will enable us to identify small 
parameters that can be effectively used to simplify the 
model. The work is directed towards normalizing the 
energy equation by introducing a distributed heat 
source to replace the flame zone above the propellant 
surface. We also ignore, at this stage, nonlinear heat 
radiation. A principal task consists of providing 
accurate estimates for important transport properties 
using modern correlations. To make headway, we thus 
introduce essential simplifications based on empirical 
data. Next, we solve these equations using asymptotic 
expansions to the leading order and compare our results 
with predictions made by other researchers.  

II. Mathematical Model 
  As shown in Fig. 1, the coordinate system is so 
chosen that the longitudinal axis of the motor 
corresponds to the z-axis. Due to an assumed symmetry 
about this axis, the domain of interest is reduced to 
0 *r R≤ ≤ , 0 *z L≤ ≤ . As usual, the internal radius of 
the cylindrical grain is denoted by R  while the length 
of the grain is labeled L . The case of regressing walls 
has been analyzed in the companion paper by 
Majdalani, Vyas and Flandro.20 Nonetheless, a time-
dependent radius will not be considered here for the 
sake of simplicity. Note that a constant heat flux is 
imposed along the lateral wall in a manner to account 

for the chemical reaction energy released during surface 
combustion. 
  Without rewriting the entire set of Navier-Stokes 
equations, we shall first consider the energy equation 
during steady state conditions. We shall then normalize 
the result and compare its constitutive terms based on 
their orders of magnitude. This will enable us to 
recognize small quantities that can be ignored at first 
approximation. In fact, this will enable us to decouple, 
at leading order, the energy equation from the 
momentum equations. 

A. Basic Assumptions 
  Following classic idealizations, the energy 
equation is written under the implicit assumptions that: 
• The bulk flow is incompressible and steady. 
• Body forces and turbulence effects are absent. 
• Transport properties are constant. 
• The fluid enters the tube at a uniform velocity V . 
• Azimuthal variations in pressure, temperature or 

velocity are negligible. 
• Chemical reactions are confined to a thin sheet at the 

burning surface. 
• The flame can be replaced by a heat source. 
• Heat transport by radiation inside the motor can been 

ignored for simplicity. 
  Further assumptions will be later introduced whenever 
necessary. 
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Fig. 1. Idealized motor chamber and system of 
coordinates illustrating the thin sheet approximation 
of the heat source. 
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B. Governing Equation and Boundary Conditions 
  The energy equation under the stated assumptions 
can be expressed by 

* * * ** * * *
* * * *p r z r z

T T p pc u u u u
r z r z

ρ ∂ ∂ ∂ ∂   + − +   ∂ ∂ ∂ ∂   
 

 
2

2
* **

* * * *
k T Tr k
r r r z

∂ ∂ ∂ = + ∂ ∂ ∂ 
 

 
2 22 2* * *

1
22* 2

* **
r r z zu u u uQ

r z rr
µ

    ∂ ∂ ∂  + + + + +     ∂ ∂ ∂      
 (1) 

The temperature boundary conditions used in our 
physical setting correspond to 

  ** 0,  0
*

Tr
r

∂
= =

∂
, w* ,  *r R T T= =  (2) 

  s* 0,  *z T T= = , ct* ,  *z L T T= =  (3) 
where wT  is the adiabatic flame temperature at the wall, 

sT  is the stagnation temperature at the head end, and 

ctT  refers to the throat condition at the downstream end. 
  At this stage, it is expedient to normalize Eqs. (1)–
(3) using the following definitions: 

   
* ** *;  ;  ;  ;r z

r z
u ur zz u u

R L V V
η ≡ ≡ ≡ ≡ 2

*pp
Vρ

≡  (4) 

  
( )s w

*

p

Q RQ
c T T Vρ

≡
−

; and w

s w

*T T
T

T T
−

≡
−

 (5) 

Following backward substitution, the energy equation 
reduces to 

Ecr z r z
T T p pu u u u

z z
φ φ

η η
 ∂ ∂ ∂ ∂

+ − + ∂ ∂ ∂ ∂ 
 

 
2

2
2

1 1
Pe

T T Q
z

η φ
η η η

  ∂ ∂ ∂
= + +  ∂ ∂ ∂  

 

 
2 222

2
Ec 2
Re

r r z zu u u u
zη ηη

     ∂ ∂ ∂   + + + +     ∂ ∂ ∂       
 (6) 

where /R Lφ =  is the motor’s aspect ratio and Re , 
Pr , Pe , and Ec  symbolize the Reynolds, Prandtl, 
Peclet, and Eckert numbers. These are given by 

Re ;  Pr ;  Pe Re Pr;pcVR
k

µ
ν

= = =
2

s w

 Ec
( )p

V
c T T

=
−

 (7) 

  Boundary conditions in normalized form become 

 (0, ) ˆ(1, ) 0;  0;  ( ,0) 1;  ( ,1)T zT z T T Tη η
η

∂
= = = =

∂
 (8) 

where 

   ct w

s w

ˆ T T
T

T T
−

=
−

; ( )1
s ct2 1 ; 1.4T T γ γ= + =  (9) 

The last relation is due to the fundamental dependence 
of the static temperature on the stagnation temperature 

for choked conditions at the downstream end. It can be 
developed from 21

s 21 ( 1)T T Mγ = + −   for 1M = .  

C. Estimation of Transport Properties  
  Before proceeding further, we find it necessary to 
evaluate the transport properties and related parameters 
that appear in Eq. (6). We first start by determining the 
average viscosity and thermal conductivity for a gas 
mixture using modern empirical or semi-empirical 
correlations.21  
  To approximate the viscosity for a mixture of gases 
at high pressures and temperatures, we find the models 
of Lucas22 and Chung21 to be quite resourceful. The 
correlations due to Lucas necessitate the temperature, 
pressure, and composition as input variables while 
Chung’s relations only require the temperature, density, 
and composition. As we prefer to work with pressure, 
temperature, velocity, and mixture composition, we opt 
for the Lucas expressions over Chung’s. The mixture 
composition is utilized as suggested by Lengellé.23 On 
that account, the dynamic viscosity for a gas mixture at 
1000 3500K−  and 10-100 bar is calculated to be 

approximately 5 4 210 10  N-s/m− −−  (100 1000 Pµ− ). 
The reader is cautioned that the routinely used formula 
by Sutherland,24 namely, 

   

3
2

0

0 0

110K* *
* 110K

TT
T T

µ
µ

  +
≈   + 

 (10) 

underestimates the viscosity by omitting pressure 
effects. Nonetheless, Sutherland’s law can be used in 
the asymptotic analysis due to its simplicity, especially 
when compared to those obtained by Lucas or Chung. It 
must be noted that the latter are quite accurate and 
deviate from experimental observations by a maximum 
of 9 percent. In the companion article by Majdalani, 
Vyas and Flandro,20 key parameters including the 
injection Reynolds number are calculated based, in part, 
on this data.  

D. Dynamic Similarity Parameters  
  Using Chung’s method, the thermal conductivity is 
found to be 2.0 W/m-K≈ . This is roughly equal to the 
thermal conductivity of water at room temperature and 
pressure. For the range of temperatures and pressures 
stated above, one obtains a Prandtl number to the order 
of 210 .−  Consequently, the Peclet number varies from a 
small to a very large value, –being the product of Re  
and Pr .  As the injection Reynolds number is varied 
from 10  to 610 , the Peclet number changes from 110−  
to 410 .  In this paper, we shall first consider the case of 
small Peclet numbers that corresponds to the lower end 
of the injection range.  
  In addition to the reciprocal of the Reynolds 
number that can always be used as a small perturbation 
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quantity, the problem exhibits an even smaller 
parameter that can be used in the asymptotic work. 
Using average values of 5m/sV ≈ , s 3500KT ≈ , 

w 700KT ≈ , and 1500J/kg-Kpc ≈ , it can be seen that 

the Eckert number in Eq. (7) is of the order of 66 10−× . 
Being a measure of kinetic per sensitive energy, a small 
Eckert number is reflective of the dominant role of 
thermal energy compared with mean kinetic energy. 
This result is generally true inside a solid rocket motor 
except for a small region near the nozzle throat. The 
assumption of Ec  being very small enables us to 
uncouple the energy equation from the momentum 
equation. As evident from Eq. (6), both velocity and 
pressure become very weak functions of temperature. 
We conclude that, whereas the temperature distribution 
is dependent on the velocity field, the converse is not 
true. This important realization justifies the decoupling 
of thermal effects, pioneered by Culick,25 Flandro,26 and 
co-workers, when analyzing the bulk gas motion in 
solid rocket motors.  

E. Geometric Similarity Parameter  
  In the interest of algebraic clarity, the current 
analysis is carried out for 2 1φ = . This assumption will 
facilitate the algebraic effort and typifies aspect ratios 
used in upper stage rocket motors. Although these 
motors can sometimes exhibit spherical grains, a 
cylindrical grain is used in our analysis. A similar 
analysis using spherical coordinates is also possible. 
The use of a sensibly fictitious motor is important for 
the sake of simplicity. We expect the same approach to 
be repeatable for 2 1φ . Evidently, as φ  is modified, 

the solution is expected to change slowly. The 2 1φ =  
case can thus capture the bulk features on a qualitative 
level. 

III. Small Peclet Number Solution 
  While the Eckert number remains the smallest 
perturbation quantity in Eq. (6), the Peclet number can 
be used either as a small, or a large perturbation 
parameter depending on the size of Re . In rocket 
motors, the large Pe and large injection combination is 
the more likely scenario. In this section, however, the 
small Peclet, moderate injection case will be considered 
first. This academic solution applies for Re ~ [10 100]−  
and paves the way for the more elaborate treatment 
demanded by the large Pe case.  

A. Double Perturbation Expansions 
  Forthwith, one can multiply Eq. (6) by Pe  and 
expand each variable in the two perturbation 
parameters, 1/ Re  and Pe . Next, terms of zeroth order 

in both perturbation parameters can be collected. One 
obtains the energy equation at zeroth order, 

   
(0,0) 2 (0,0)

2
1 T T Q

z
η

η η η
 ∂ ∂ ∂

+ = − ∂ ∂ ∂ 
 (11) 

where the first and second superscripts denote the order 
in 1/ Re  and Pe , respectively. Equation (11) is subject 
to the same boundary conditions given by Eq. (8).  
  Under the auspices of a small Pe, one can 
obviously study convective effects at the zeroth order in 
( )1/ Re  and the first order in Pe . In practice, one is 
able to evaluate the results by integrating nearly four 
hundred terms numerically. This is partly due to the 
failure of most symbolic packages in evaluating the 
resulting equations in a closed form. Since the scope of 
this study is to obtain a tangible formulation, we shall 
focus on the zeroth order solution in both ( )1/ Re  and 
Pe . Using the same steps outlined in the leading-order 
solution, the asymptotic analysis developed here may 
be later repeated to obtain a higher-order 
approximation.  
  On inspecting Eq. (11), it can be concluded that the 
equation is linear and amenable to separation of 
variables. Using the method of superposition, a solution 
can be produced that is expressible in terms of 
eigenfunction expansions. Subsequent work is standard 
treatment for partial differential equations,27 especially 
those encountered in heat transfer theory and 
applications.28  

B. Eigenfunction Expansions 
  Using the concept of superposition, one can define 
   (0,0) (0,0) (0,0)(0,0)

1 2 3T T T T= + +  (12) 
  Due to the linearity of Eq. (11), one obtains a 
combination of two Laplace equations (with one 
nonhomogenous boundary condition) and one Poisson 
equation (with homogenous boundary conditions). 
These are 

(0,0) (0,0)2
1 1

2
1 0T T

z
η

η η η
 ∂ ∂∂

+ =  ∂ ∂ ∂ 
 (13) 

  (0,0) (0,0)
1 1( ,0) 1;  ( ,1) 0T Tη η= =  (14) 

  
(0,0)

(0,0) 1
1

(0, )(1, ) 0;  0T zT z
η

∂
= =

∂
 (15) 

 
(0,0) (0,0)2

2 2
2

1 0T T
z

η
η η η

 ∂ ∂∂
+ =  ∂ ∂ ∂ 

 (16) 

  
(0,0)

(0,0) 2
2

(0, )(1, ) 0;  0T zT z
η

∂
= =

∂
 (17) 

  (0,0) (0,0)
2 2

ˆ( ,0) 0;  ( ,1)T T Tη η= =  (18) 
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(0,0) (0,0)2
3 3

2
1 T T

Q
z

η
η η η

 ∂ ∂∂
+ = −  ∂ ∂ ∂ 

 (19) 

  
(0,0)

(0,0) 3
3

(0, )
(1, ) 0;  0

T z
T z

η
∂

= =
∂

 (20) 

  (0,0) (0,0)
3 3( ,0) 0;  ( ,1) 0T Tη η= =  (21) 

C. Adding the Heat Source 
  So far, we have only been concerned with the 
simplifications affecting the energy equation. The 
reaction energy released inside a combustion chamber 
is another ingredient that needs to be appropriated. A 
heat source that closely mimics the energy released by 
propellant combustion is clearly necessary. Since 
chemistry is not taken into consideration here, the mass 
diffusion is ruled out. This leaves us with the option of 
distributing the thermal energy release in the same 
manner it is accounted for in basic two-dimensional 
models of premixed laminar flames. In that vein, the 
heat is produced in a thin sheet above the propellant 
surface. The corresponding thin-sheet approximation is 
conveniently modeled using the Dirac delta function 
(see Fig. 1 for the tentative positioning of the heat 
source). Mathematically, this may be expressed by  
   ( ) ( )Q q z bδ η= −  (22) 
where ( )q z  is the rate of heat generation that may be 
allowed to vary along the chamber axis. The Dirac delta 
function and its properties are clearly described in 
Barton.29  

D. Leading-order Solution 
  Equations (13) and (16) can be solved separately 
using separation of variables and eigenfunction 
expansions. They are then superimposed using Eq. (12) 
to construct the total solution at zeroth order in both 
perturbation variables. 
  To start, let us separate the variables using 
   (0,0)

1 ( , ) ( ) ( )T z zη η= Φ Ψ  (23) 
Substituting this into Eq. (13), one gets 

   
2 2

2 2
1 d 1 1 d 1 d 0

dd dzη ηη
Φ Φ Ψ

+ + =
Φ Φ Ψ

 (24) 

This must be subjected to 

  d (0) 0,  (1) 0,  (1) 0,  (0) 1
dη
Φ

= Φ = Ψ = Ψ =  (25) 

  While the first two terms in Eq. (24) are function of 
η  only, the last term is a function of z . They can differ 

only by a constant, say 2λ . We hence write 

   
2 2

2
2 2

1 d 1 1 d 1 d
dd dz

λ
η ηη

Φ Φ Ψ
+ = − = −

Φ Φ Ψ
 (26) 

  The negative sign preceding the separation 
constant is due to the homogeneity in boundary being in 

the r  direction. The negative sign is hence necessary to 
obtain the eigenfunctions that are consistent with the 
physical characteristics of the problem at hand. From 
Eq. (26) two separate equations with their respective 
boundary conditions can be written. These are 

  
2

2 2 2
2

d d 0
dd

η η λ η
ηη

Φ Φ
+ + Φ =  (27) 

  d (0) 0,  (1) 0
dη
Φ

= Φ =   (28) 

and 

  
2

2
2

d 0
dz

λΨ
− Ψ =   (29) 

  (1) 0,  (0) 1Ψ = Ψ =   (30) 
  Evidently, Eq. (27) is of the Bessel type with order 
zero. The general solution to this involves  
   1 0 2 0( ) J ( ) Y ( )C Cη λη ληΦ = +  (31) 
  The boundary condition at the core dictates that 2C  
be zero, while the boundary condition at the walls yield 
the eigenvalues. Eigenvalues are those values of λ  that 
cause the function 0J ( )λ  to vanish at the specified 
boundaries. Of course, there can be an infinite number 
of eigenfunctions that need to be linearly superimposed 
in order to obtain the final solution in the radial 
direction. Each has the form 
   1 0( ) J ( )n n nCη λ ηΦ =  (32) 
  From Eq. (29), it is clear that the solution can be 
expressed in terms of hyperbolic functions such that 
   3 4( ) cosh sinhn n nz C z C zλ λΨ = +  (33) 
  On one hand, the boundary condition at 1z =  
eliminates one constant and gives 

   3 4
sinh
cosh

n

n

C C
λ
λ

= −  (34) 

On the other hand, the boundary condition at 0z =  can 
be used to determine the constants in both radial and 
axial directions. Rewriting the solution in the z -
direction, one has 
   5( ) sinh (1 )n nz C zλΨ = −  (35) 
Using the definition of Eq. (23) and superimposing all 
eigenfunctions, one obtains 

   (0,0)
1 0

1
( , ) sinh (1 ) J ( )n n n

n
T z K zη λ λ η

∞

=

= −∑  (36) 

The non-homogeneous boundary condition at 0z =  
can now be used to determine nK  using the 
orthogonality property. As such, nK  is determined via 

   

1
00

1 2
00

J ( )d1
sinh J ( )d

n
n

n n

K
η λ η η

λ η λ η η
= ∫

∫
 (37) 

This can be further evaluated to yield 
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1

2 1
J ( )sinhn

n n n

K
λ λ η λ

=  (38) 

Likewise, Eq. (16) can be solved to get 

   
1

ˆ2
J ( )sinhn

n n n

TK
λ λ η λ

=  (39) 

Solutions of Eqs. (13) and (16) can be added to get the 
following: 

0(0,0) (0,0)
1 2

1 1

ˆ2J ( ) sinh (1 ) sinh

sinh  J ( )
n n n

n n n n

z T z
T T

λ η λ λ

λ λ λ η

∞

=

 − + + = ∑
    (40) 
  Having derived a partial solution, we now proceed 
to solve the remaining Eq. (19). In the process, we 
exploit the presence of homogeneous boundary 
conditions and a heat source. From the homogeneous 
boundary conditions, one uses separation of variables to 
determine the eigenfunctions and eigenvalues arising in 
the r  and z  directions. Thus, from inspection of 
boundary conditions or by using separation of variables, 
it can be seen that the solution must have the double 
eigenfunction expansion form, namely, 

   (0,0)
3 0

1 1
sin  J ( )mn n

n m
T B m zπ λ η

∞ ∞

= =

= ∑∑  (41) 

Expanding Eq. (22) and using the property of 
orthogonality of eigenfunctions, one can determine the 
double eigenfunction expansion coefficients. These are 

 0
1 1

( ) ( ) sin  J ( )mn n
n m

q z b A m zδ η π λ η
∞ ∞

= =

− = ∑∑  (42) 

 

1 1
00 0

1 1 22
00 0

( ) ( )sin  J ( ) d d

sin  J ( ) d d

n
mn

n

q z b m z z
A

m z z

δ η π λ η η η

π λ η η η

−
= ∫ ∫

∫ ∫
 (43) 

 
1 10

2 0 0
1

4J ( )
( )sin  d

J ( )
n

mn
n

b
A q z m z z

λ
π

λ
= ∫ ∫  (44) 

By substituting Eq. (41) into the left-hand-side of Eq. 
(19), it is possible to determine the mnA  coefficients by 
relating Eq. (41) to the double expansion coefficients of 
Eq. (44). After some effort, one arrives at 

   22 2
mn

mn
n

A
B

m π λ
=

+
 (45) 

This completes our basic leading-order solution in both 
perturbation parameters. We now have 

 
)(0(0,0)

1 1

ˆ2J ( ) sinh (1 ) sinh

sinh  J ( )
n n n

n n n n

z T z
T

λ η λ λ

λ λ λ η

∞

=

− +
= ∑  

   0
1 1

sin  J ( )mn n
n m

B m zπ λ η
∞ ∞

= =

+∑∑  (46) 

  At the next approximation level, convective heat 
transfer effects at zeroth order in (1/ Re)  and first order 
in Pe  can be captured. Convective effects appear to be 
unimportant here because of the large thermal energy 

and the correspondingly small injection-driven flow 
effect. Using the same perturbative treatment, the 
higher-order equation that results from retaining 
temperature terms to the first order in Pe  can be 
gathered into 

(0,1) 2 (0,1)

2
1 T T

z
η

η η η
 ∂ ∂ ∂

+ = ∂ ∂ ∂ 

(0,0) (0,0)

r z
T Tu u

zη
∂ ∂

+
∂ ∂

 

    (47) 
where 21

2(1/ )sinru η πη= −  and 21
2coszu zπ πη=  are 

basic representations of the mean.25,30 Here, the 
boundary conditions are homogeneous on all 
boundaries as was the case with solving Eq. (19). As 
such, the resulting set is amenable, in principle, to a 
solution using double eigenfunction expansions. Our 
experience shows, nonetheless, that in order to insure 
convergence, we need to consider at least the first 25 
eigenfunctions in each direction. So for Eq. (47), we 
would have a minimum of 450 terms to integrate before 
realizing a sufficiently accurate solution. Since 
symbolic packages have failed so far to integrate the 
terms on the right-hand-side of Eq. (47), numerical 
integration was resorted to. In future work, we look 
forward to achieving more progress in this direction. 

IV. Results 
  To better understand the solution behavior, we 
have plotted the constant temperature contour maps 
derived from (0,0)T . In order to mimic the flame 
displacement above the burning surface, the heat source 
has been distributed in a thin sheet located at a radial 
distance of 0.9b = . We have chosen a spatially 
uniform heat generation in accordance with the 
standard thin sheet approximation. This may be 
justifiable insofar as averaging of unsteady flame 
variations over time results in a constant flame profile. 
We have considered three separate cases characterized 
by three orders of magnitude variations in the heat 
generation rate. 

A. Case 1: 0.9b = , ˆ 0.8T =  and 2.5q =  

  For a sufficiently low heat generation rate, we 
observe in Fig. 2a a linear temperature gradient that 
increases away from the wall. Since the maximum 
temperature occurs at the core, the solution with low 
heat input is not a suitable model of the flame zone. The 
reason here can be attributed to the heat generation term 
being of the same order as the diffusion term. Note that 
the temperature variations along the boundaries are due 
to the asymmetric boundary conditions. The small 
fluctuations in those temperatures are due to the finite 
number of eigenvalues used in our code. In this study, 
we have used only 25 eigenvalues in the radial and 
axial directions. By carrying out a sensitivity analysis, 
we have found that further increase in the number of 
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eigenvalues (e.g., to 30) does not affect the solution in 
the interior. The small temperature variations along the 
boundaries, however, must be tolerated. It can be 
verified that the average value of these fluctuations over 
the radial and longitudinal lengths does essentially 
amount to the prescribed boundary condition. The 
justification for ˆ 0.8T =  is derived from Eq. (9). Since 
our analysis has indicated that the values of T̂  vary 
between 0.77 and 0.8, the upper limit has been chosen 
for convenience. The skewness observed in the 
temperature contours as we move in the downstream 
direction can be attributed to the relatively weak heat 
source. The slow variation in the temperature near the 
surface leads to a shallow temperature gradient that 
does not conform to temperature predictions in rocket 
motors. We conclude that the rate of heat release is not 
sufficient to reproduce the desired thermal field.  

B. Case 2: 0.9b = , ˆ 0.8T =  and 25q =  

  In order to better simulate rocket motor conditions, 
the heat source is first increased by one order of 
magnitude. As shown in Fig. 2b, it can be seen that, for 
a large heat generation rate, a steeper gradient in 
temperature is obtained that can mimic the temperature 
gradient between the burning surface and the flame 
inside a solid rocket motor. Clearly, the nearly 
symmetric temperature map is the outcome of a 
dominant heat source and a weak convective motion. 
Also, the intense heat generation near 0.9η =  roughly 
approximates the mechanism of heat generation 
associated with a laminar premixed flame. However, by 
comparing the magnitude of the normalized 
temperature distribution to that obtained in a solid 
rocket motor, we realize that the observed distribution 
overestimates the maximum temperature in an actual 
motor. Since our normalized peak temperature of 2.2 
corresponds to about 5000 K, it constitutes a modest 
exaggeration of practical values. In rockets, one would 
expect this temperature to fall in the vicinity of 3500 K. 
Since the imposed heat distribution rate is not derived 
from experimental data, it can be adjusted in a manner 
to produce realistic temperature maps. We thus 
conclude that a more appropriate value for heat 
generation should be used, namely, one that is closer to 
12. When such a level is imposed, the thermal maps 
become a more adequate representation of the 
temperature field in a motor. This case is illustrated in 
Fig. 2c. Therein, the weak temperature variation in the 
axial direction can be attributed to the weak injection-
driven flow effect in relative proportions with the 
thermal heat flow. The rapid temperature variation near 
the wall is also consistent with the steep thermal 
gradients observed in rockets. In fact, our analytical 
results appear to be in qualitative agreement with the 
numerical findings of Roh, Apte and Yang.31 
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Fig. 2. Temperature contours for 0.9b = , ˆ 0.8T =
and a) 2.5q = , b) 25q = , and c) 12.5.q =  
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V. Conclusions 
  A preliminary investigation has been carried out to 
estimate the transport properties and physical quantities 
arising in the energy equation applied to a solid rocket 
motor chamber. The study reveals the presence of three 
contributing parameters. In ascending order, these are 
the Eckert number, the injection Reynolds number, and 
the Peclet number. The Eckert number is found to be so 
small that it leads to the uncoupling of temperature 
effects on the mean flow motion. This confirms the 
classic assumptions used by previous investigators. In 
the current study, the small Peclet, moderate injection 
case is considered. In later studies, the large Peclet, 
large injection case will be addressed. Our simplified 
analytical solution seems to crudely approximate the 
flame behavior and accompanying temperature maps. 
In the process, the usage of the Dirac delta function to 
effectuate the desired heat source displacement appears 
to be a viable artifact. The adequate agreement with 
temperature maps in rocket motors is reassuring. With 
further refinements, the asymptotic approach presented 
here appears to be worthy of consideration. For 
example, the analysis can be extended to a higher order 
by fully incorporating the convective mean flow effects. 
It can also be applied to spherical or rectangular motor 
chambers. The heat source location can be refined by 
relating b  to the flame zone dynamics. In principle, the 
same approach outlined here can be applied to arrive at 
the large injection, large Peclet number solution. One of 
the obstacles that we anticipate stands in integrating the 
convective terms that can be very time consuming. To 
that end, better computer resources are needed to reach 
a solution in a reasonable amount of time. Also, use of 
symmetry methods and special functions need to be 
further explored for the possibility of providing other 
forms of analytical solutions.  
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