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 In this study an asymptotic technique is presented for calculating the equivalent thermal 
conductivity of a compact heat sink model. The method uses the known Nusselt number 
correlation given by Churchill and Chu for both laminar and turbulent regimes. This 
correlation is valid for airflow over a vertical flat plate and is applicable over the entire 
range of Rayleigh and Prandtl numbers. The resulting asymptotic solution presented here is 
applicable for overall heat transfer coefficients ranging from 0 to 100,000 2 1Wm K− − . The 
closed-form analytical solution is compared to an iterative numerical solution and found to 
exhibit a very small error over a wide range of flow conditions. Being practically equivalent 
to the numerical solution, the asymptotic correlation obviates the need for guesswork and 
iteration in a compact heat sink simulation. It enables the implementation of a self-contained 
numerical scheme that does not require user intervention. 

 

Nomenclature  
A  = ( ) ( )1/ 61/ 6 3 2Gr /µ β ρ µ= ∆L P pC g TL C  

pC  = constant pressure specific heat 
g    = acceleration due to gravity 
GrL = Grashof number, 3 2 2β ρ µ −∆g TL  

eh    = effective heat transfer coefficient 
ek    = effective thermal conductivity 

L    = characteristic length 
Pr  = Prandtl number, /µ p eC k  
Ra  = Rayleigh number, 3 2 2Prβ ρ µ −∆g TL  

sT    = maximum surface temperature 
∞T   = ambient air temperature 
fT  = film temperature, ( ) / 2∞+sT T  

U  = overall heat transfer coefficient, ( )/ ∆�Q A T  
 
β  = thermal expansion coefficient, 1/ fT  
∆T  = ∞−ST T  
µ  = viscosity of air at fT  
ρ  = density of air at fT  
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I. Introduction 
HE electronic devices of today and possibly of the 
near future are bound to rely on integrated circuit 

chips and printed circuit boards. The increasingly more 
stringent demand for these components to be both 
smaller and faster is not without pitfall. Clearly, the 
compounding effects of size reduction and increased 
power lead to higher heat generation per unit area. So 
far one of the most popular methods for dissipating the 
constantly escalating heat fluxes has been accomplished 
through the use of heat sinks.  
 The current literature is filled with examples of 
where heat sinks have been effectively used. In Azar et 
al.,1 design optimization of ducted heat sinks is 
considered. This optimization is based on correlations 
that relate fin thickness and duct spacing. In Knight et 
al.2,3 a method to optimize heat sinks is proposed 
whereby the number of closed-finned ducts is varied 
under force convection conditions. In Sasaki and 
Kishimoto,4 a method is suggested to determine the 
optimal heat sink dimensions of water-cooled heat sinks 
given a specified pressure drop. A more detailed 
account of studies concerned with design optimization 
and selection can be found in Lee5 and Patel and 
Belady.6 These studies have several aspects in common, 
including their reliance on standard heat transfer 
correlations6 for calculating thermal characteristics. 

T
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 Although this method of heat removal is highly 
effective in practice, it can be computationally 
demanding during layout design stages. The main 
problem is not as much with the modeling of one heat 
sink as it is with coupled arrays of multiple cooling 
elements. Since the performance of each sink is 
dependent on the temperature difference between the 
surrounding fluid and its surface temperature, analyzing 
several adjacent sinks independently of their 
surrounding thermofluid conditions is both impractical 
and prone to error. Moreover, numerical models of 
coupled heat sinks often lead to a computationally 
intensive problem requiring large memory resources 
and CPU time. In many applications, the computational 
cost poses unrealistic barriers between board design and 
thermal analysis. This is especially true during the 
design and construction of arrays comprising multiple 
heat sinks separated by small characteristic distances. 
Although the possibility exists for discretizing the 
multi-component layout with sufficiently fine grids, the 
iterative solution of resulting meshes can lead to 
significant delays during the integrated design and 
verification stages. For this reason, conventional 
methods based on large-scale discretization of actual 
heat sinks are often viewed as inadequate in handling 
large numbers of cooling components. The search for a 
feasible alternative has led many researchers to employ 
a lumped approach in representing a given heat sink. 
This is exemplified by the use of compact heat sink 
models that have become ever so popular in the 
electronic cooling community. Their popularity, one 
can argue, may be attributed to their ability to cut down 
feedback time between designers and thermal analysts 
while providing fast and reliable predictions. 
 The compact heat sink idea is based on the principle 
that a heat sink may be replaced by a ‘volumetric fluid 
block’ exhibiting the same effective thermal 
conductivity and flow resistance as those of the actual 
cooling element. The idea of using a fluid block as a 
substitute for the actual heat sink has been successfully 
introduced in forced convection applications by Patel 
and Belady.6 In natural convection studies, it has been 
recently applied by Narasimhan and Majdalani.7,8  
 It should be noted that Patel and Belady’s expedient 
approach distributes the heat produced by the microchip 
uniformly over the heat sink volume.  This operation 
permits the heating mechanism of the airstream to be 
accounted for.  During this process, CFD modeling is 
used to estimate the relevant air temperatures that are 

needed to calculate the base temperature of the heat 
sink. The technique becomes iterative only when 
considering a different heat sink design. 
 An alternative procedure based on the ‘extended flat 
plate model’ has also been employed by Culham, Lee 
and Yovanovich.9 Culham’s flat plate boundary layer 
model offers a simple and straightforward method for 
calculating the equivalent thermal performance of 
rectangular heat sinks. This is accomplished through the 
use of an extended surface area exhibiting a lower 
thermal resistance between the base plate and cooling 
fluid. Despite their dissimilarities, the two approaches 
lead to simpler thermal representations.  
 In the fluidic block model, the enhanced thermal 
character is not assigned to the base plate but, rather, to 
the volume of fluid representing the actual heat sink. 
Instead of increasing the base plate’s convection heat 
transfer coefficient (to account for the absence of fin 
area), the thermal conductivity of the volumetric block 
above the base plate is increased. This is done in an 
effort to reproduce a temperature map that is closer to 
reality. This approach can be advantageous since the 
temperature field produced in microelectronic packages 
can be extremely complex due to the conjugate 
interaction between the cooling fluid and the various 
components of PCB packages. In essence, this is 
implemented by increasing the overall heat transfer 
coefficient between the base plate and the cooling fluid. 
To do so one must change the thermal property of the 
fluidic block above the base plate in a manner to 
reproduce the same overall thermal resistance 
associated with the actual heat sink. Using the same 
cooling fluid (say air), the problem becomes that of 
finding the specific thermal conductivity that must be 
assigned to the modified fluid in order to ensure the 
equivalence of actual and compact systems. 
 The validity of using standard Nusselt number 
correlations to evaluate the effective thermal 
conductivity is discussed at length by Narasimhan and 
Majdalani.7,8 In these studies, a less than 5% error is 
incurred between detailed and compact models of 
numerically simulated extruded and pin-fin heat sinks. 
The small error in the compact models is absorbed at 
the benefit of cutting down time-to-convergence by a 
factor of 10. This example confirms the usefulness of 
compact models in providing significant time savings in 
comparison to direct simulations. Nonetheless, these 
compact models are by no means fully optimized 
themselves. As indicated by Narasimhan and 
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Majdalani,7,8 one of the challenges in devising a 
compact model stands in the need for the iterative 
determination of the equivalent thermal conductivity 
from transcendental Nusselt number correlations.  
 Consider, for example, one of the most widely used 
correlations that is applicable over the entire range of 
Grashof numbers. As proposed by Churchill and Chu,10 
this correlation has the known form 

 Nu / /= = =L e e eUL k h L k  

   { }28 / 271/6 9/16
0 1 3+ Ra 1+( /Pr)

−
  a a a  (1) 

where 0 0.825=a , 1 0.387=a  and 2 0.492=a . Note 
that U  is used here instead of the effective heat transfer 
coefficient of the actual heat sink eh  to reflect the fact 
that radiation is often accounted for while determining 
the overall thermal resistance of a given heat sink.7,8 
According to Bejan,11 Eq. (1) is expected to hold for 

1 1210 Gr 10− < <L  and for all Prandtl numbers (cf. pp. 
192-193). The complexity, however, stems from the 
thermal conductivity ek  being simultaneously present 
in the expressions for the Nusselt, Rayleigh, and Prandlt 
numbers. Direct algebraic extraction of ek  is therefore 
impossible due to the several fractional powers. At 
present, this equation is solved iteratively for the 
equivalent thermal conductivity. In fact, the iterative 
scheme used in former studies requires user-
intervention to provide initial guesses and selection of 
the meaningful root emerging from Eq. (1). 
Undoubtedly, a direct solution for ek  would provide 
additional CPU-savings by reducing the total number of 
computational cycles in a full-scale simulation of 
multiple arrays. This is especially true since all 
parameters in Eq. (1) except ek  are known a priori.7,8 
For this reason, it is the purpose of this note to show 
that ek  can be determined explicitly through the use of 
asymptotic perturbation tools. The resulting root will be 
shown to be sufficiently accurate; especially 
considering that Eq. (1) is given with a 25%±  margin 
for error. The advantage of a closed-form solution for 

ek  will be the preclusion of guesswork and user-
intervention in a compact heat sink simulation.  
 Before proceeding with the asymptotic analysis, it 
may be useful to note that the thermal conductivity 
solved for is not that of the cooling fluid. Rather, it is 
the equivalent thermal conductivity of the lumped 
fluidic block that replaces the heat sink above the base 
plate (see Fig. 1). This increased thermal conductivity 
mimics the effect of extended fins in improving the 

overall heat transfer coefficient from the base plate to 
the surroundings.7,8  

II. Direct Solution for Thermal Conductivity 
 The detailed derivation of the solution for the 
equivalent thermal conductivity is based on the theory 
of asymptotic analysis. This process requires expanding 
the transcendental equation for ek  into a binomial-type 
series of progressively diminishing terms. The resulting 
asymptotic series is then truncated by retaining only the 
first few terms needed to achieve a given level of 
precision. Due to the form of the Nusselt number 
correlation, one obtains a series in ek , namely, 

0 1 2
0 1 2

r r r
e e eUL R k R k R k= + + …  where iR  and ir  are pure 

constants. While iR  is related to the fluid properties 
and boundary conditions, ir  is a fractional exponent 
stemming from the binomial expansion. Due to the 
presence of the universal Prandtl number function in 
Eq. (1), two different binomial expansions will be 
possible depending on the size of ek . This will 
generally lead to two separate solutions which become 
increasingly more accurate when ek  is either small or 
large, respectively. Each expansion will hence be valid 
only over a given range of the solution domain. 
Nonetheless, by retaining sufficient terms in each 
series, a uniformly valid solution can be arrived at over 
the entire range of interest. 
 For each of the two possible series expansions in ek , 
the approach for finding a direct solution follows 
fundamental asymptotic guidelines. The term with the 
largest influence is first identified and retained as the 
leading or zeroth-order solution. This involves 
balancing the dominant terms in the resulting 
expansion. The zeroth-order approximation is then 
written as 0ek k≅ . The next step is to substitute 

0 1ek k k≅ + +… ; where 1 0k k� , back into the original 
expansion. Naturally, terms involved in the construction 
of 0k  will cancel so that a direct solution for 1k  may be 

W L W L

H H

 
 
Fig. 1 Schematic of a detailed (flat plate) heat sink 
and the equivalent volumetric block of fluid whose 
increased thermal conductivity ke gives the compact 
model the same thermal resistance as that of the 
detailed heat sink. 
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realized by balancing the second largest term that could 
not be accounted for in 0k . In like fashion, the process 
is repeated until a sufficient degree of precision is 
obtained. The details of these operations are described 
next.  
 Starting with Eq. (1), a binomial expansion is used to 
remove the squared exponent applied to the outer 
braces. This enables us to write 

  
8 / 272 1/6 9/16

0 0 1 2/ = +2 Ra 1+( / Pr)
−

 × ×  eUL k a a a a  

   { }28 / 271/6 9/16
1 2+ Ra 1+( / Pr)

−
  a a  (2) 

For simplicity, we find it convenient to define 

   ( )
1/ 63 2 /s pA g T T L Cβ ρ µ∞ = −   (3) 

and then substitute A  into Eq. (2). Putting 
Pr = /µ p eC k  and multiplying through by ek , the 
following expression is obtained: 

   

8 / 279 /16
2 5/ 6 2

0 0 12 1
µ

−
  
 = + +  
   

e
e e

P

a k
UL a k a a k A

C
 

   

16 / 279 /16
2 2 / 3 2 2

1 1
µ

−
  
 + +  
   

e
e

P

a k
a k A

C
 (4) 

In Eq. (4) a solution for ek  is still complicated by the 
presence of [1 ( )]ef k α+  terms in brackets. Noting that 

( ) 9 /16
2[ /( )]e e pf k a k Cµ= , Eq. (4) can be either 

divergent or convergent depending on the size of ek . 
To ensure convergence, two solutions will have to be 
constructed for small and large ek . In what follows, 
these solutions will be labeled type I and II, 
respectively. 

A. Type-I Solution for Small U  
 To ensure convergence to the desired solution, we 
first let 

   
9 /16

2 /( )µ =  e pw a k C  (5) 

and then expand the two [1 ( )]α+ ef k  terms arising in 
Eq. (4). Using the binomial formula, one may put 

28 140
1 27 7291= − + +…T w w , 216 344

2 27 7291T w w= − + +…  (6) 
which, when substituted into Eq. (4), give 

   5 / 6 2 2 2 / 3
0 0 1 1 1 2= 2+ +e e eUL a k a a Ak T a A k T  (7) 

At this point, the powers of ek  need to be exposed by 
inserting Eq. (6) into Eq. (7). One gets 

  ( )2 5 / 6 67 / 48 2 47 / 248 140
0 0 1 27 729= 2+ − +e e e eUL a k a a A k uk u k  

   ( )2 2 2 / 3 59 / 48 2 43/ 2416 344
1 27 729+ − +e e ea A k uk u k  (8) 

where 9 /16
2( / )µ≡ Pu a C . The next step is to determine 

which term has the most impact on the solution. In 
determining which term has the largest impact on the 
solution, all negative terms must be eliminated because 

ek  is strictly positive. Contributions due to negative 
terms must be accounted for at the subsequent 
approximation level. The five terms that are left to be 
considered are: 

   2 5 / 6 2 47 / 24280
0 0 1 0 1729= 2+ +e e eUL a k a a Ak a a Au k  

   2 2 2 / 3 2 2 2 43/ 24344
1 1729+ +e ea A k a A u k  (9) 

The candidates for leading-order terms are obtained by 
equating the left-hand side of Eq. (9) by one of the 
remaining positive terms before solving for ek . These 
quantities are then labeled in the order in which they 
appear and then plotted in Fig. 2 alongside the 
numerical solution for ek . As one may infer from the 
graph, while terms 1 and 2 lead to an over-prediction, 
terms 3 and 5 under-predict ek . Term 4, on the other 
hand, matches the numerical solution very well for 

2 110 Wm K− −<U . Using the superscript to indicate the 
solution type, we thus identify the zeroth-order term of 
the solution to be I 2 2 3/ 2

0 1[ /( )]≡k UL a A , where the 
superscript denotes the solution type. To find the next 
correction in the perturbation series, we then put 

   
3/ 2I 2 2 I

1 1/( ) = + ek UL a A k  (10) 

0 2 4 6 8 20 40 60 80 100
U [W m–2K–1]

0 2 4 6 8 20 40 60 80 100

0

2

4

60.375

0

     ke           term 1
   term 2      term 3
   term 4      term 5

k 
[W

 m
–1

K
–1

]

 
 
Fig. 2 Order of magnitude comparison based on 
different terms arising in the expansion of Churchill 
and Chu’s Nusselt number correlation. Note that 
while term 4 dominates for small U, all three terms 
1, 2, and 3 are needed to find the leading order 
behavior of the large U solution. 
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and substitute back into Eq. (8). After some algebra, we 
get 

 {I 2 I 2 I 11/ 6 I 115/ 483 8
1 0 0 0 1 0 02 27( ) 2 ( ) ( )= − + −k a k a a A k u k  

   2 I 71/ 24 2 2 I 67 / 24140 344
0 1 0729 729( ) ( ) + + u k a A u u k  

   }I 107 / 4816
027 ( ) /( )− k UL  (11) 

To find higher-order correction terms, one may repeat 
the process to generate a recurrence relation. One finds, 
for 2,3,= …n , the following general form:  

 {I I I 2 I 1/ 6 I 19 / 483 5 67
0 1 0 0 1 0 02 3 81( ) ( )−

− = − + −n nk k k a a a A k u k  

  2 I 23/ 24 2 2 I 19 / 241645 1849
0 1 02187 2187( ) ( ) + + u k a A u u k  

   }I 11/ 4859
081 ( ) /( )− k UL  (12) 

Nonetheless, using the characteristic constants of the 
Churchill and Chu correlation, one may verify that a 
two-term approximation is adequate for all practical 
purposes.  

B. Type-II Solution for Large U  
 In this case, the two [1 ( )]α+ ef k  terms in Eq. (4) 
must be written as [ ( )] [1 1/ ( )]α α+e ef k f k  and then 
expanded. This turns Eq. (4) into 

  2 8 / 27 2 / 3 2 2 16 / 27 1/ 3
0 0 1 1= 2 − −+ +e e eUL a k a a Au k a A u k  

   2 2 43/ 27 11/ 4816
127

− −− ea A u k  (13) 
Terms that are not shown have an insignificant 
contribution. In fact, we find that the first three terms 
on the right-hand side together dominate the leading-
order behavior. The fourth term is found to be small, 
but not so small that it can be ignored. Being both 
negative and inversely proportional to ek , the fourth 
term cannot be a candidate for a leading-order solution. 
For this reason, only the first three terms are plotted in 
Fig. 2 in the large U  range. As shown in the graph, not 
one single term dominates by itself. In seeking the 
leading-order solution, we therefore include all except 
the last term in Eq. (13). The problem becomes that of 
solving for the real root of the cubic polynomial 
emerging from 

   1/ 3 2 / 3
1 2 3 4 0− + + + =e e ec c k c k c k ;  (14) 

where 

1 =c UL ,   2 2 16 / 27
2 1

−=c a A u , 8 / 27
3 0 12 −=c a a Au , 2

4 0=c a  

    (15) 
The corresponding root may be exacted from 

   ( )II 2
0 1 3 1 2 2 4/= − −k c c p c p c  (16) 

where  
2 3 1/ 31

1 2 3 4 1 4 3 2 46 (36 108 8 ) /≡ + − +p c c c c c c p c  

 2 2 3 1/ 32
2 4 3 4 2 3 4 1 4 3 23 (3 ) /[ (36 108 8 ) ]− − + − +c c c c c c c c c c p  

   1
3 43 ( / )− c c  (17) 

2 2 2 2 3
2 4 1 4 2 3 1 312 3 (27 4≡ − −p c c c c c c c   

   3 1/ 2
2 4 1 2 3 44 18 )+ +c c c c c c  (18) 

 In order to account for the small correction associated 
with the fourth term in Eq. (13), we also try setting 

   II II II
0 1= +ek k k  (19) 

and substitute back into the expanded Churchill and 
Chu correlation. A linear corrective term can then be 
used to estimate the contribution that the additional 

2 2 43/ 27 11/ 4816
127

− −− ea A u k  term would have on the solution. 
One finds 

  ( ) (II 2 2 II 11/ 48 43/ 27 2 2 216 1
1 1 0 0 127 3( ) /− −= − +k a A k u a a A  

   )II 2 / 3 16 / 27 II 1/ 3 8 / 274
0 0 1 03( ) ( )− − − −× +k u a a A k u  (20) 

This two-term approximation is accurate to the point of 
obviating the need for higher-order corrections. 

C. Solution for All U  
 It should be noted that the asymptotic errors in I

ek  
and II

ek  increase as → ∞U  and 0→U , respectively. 
However, there exists a critical point *U  for which the 
relative error is the same in both approximations. This 
critical case occurs at the point for which the 
discrepancies between asymptotics and numerics 
become equal to the maximum error in each 
approximation. Mathematically, the critical condition 
corresponds to 

   I II− = −e e e ek k k k  (21) 

By solving Eq. (21) for *U , one is able to express the 
solution for the effective thermal conductivity over the 
entire physical range, namely, by setting 
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I

II

; 0 *

; *

 ≤ ≤= 
>

e
e

e

k U U
k

k U U
 (22) 

 For clarity, one may insert Churchill and Chu’s 
constants into Eq. (16) and (20) to evaluate the first two 
terms of Eq. (22).  One obtains, for the small U  case,  

I 3 3/ 2 I
117.25 ( )ek A UL k−= +   (23) 

 
I I 2 I 11/ 6 I 115/ 48

1 0 0 0[1.021( ) 0.957 ( ) 0.284 ( )k k A k Au k= − + −  

  2 I 71/ 24
00.184 ( )Au k+ 2 I 107 / 48

00.133 ( )A u k−  

   2 2 I 67 / 24
00.106 ( ) ] /( )A u k UL+  (24) 

 
I I I I 1/ 6 I 19 / 48

0 1 0 0[1.021 0.789 ( ) 0.396 ( )n nk k k A k Au k−
−= − + −  

  2 I 23/ 24 2 I 11/ 48
0 00.360 ( ) 0.164 ( )Au k A k u+ −  

   2 2 I 19 / 24
00.189 ( ) ] /( )A u k UL+  (25) 

and, for the large U  case,  
II 1/ 6
0 1.47 1.056k UL Av= −  

1/ 3 1/ 6 2(0.2449 0.1265 / 0.352 )z Av z Av× + −  

2 1/ 3 2 1/ 3 1/ 60.2787 (0.2449 0.1265 / 0.352 )A v z A v z Av− + −

    (26) 
where 

Pv Cµ≡  

1/ 33 1/ 2

3 1/ 2 2 2

0.3712 50.03

6.094 67.4

A v UL
z

ULA v U L

 +
 ≡
 + + 

;  (27) 

and 
II 2 43/ 48 II 11/ 48 2 1/ 3 II 2 / 3

1 0 0( ) /[4.062 0.377 ( )k A v k A v k− −= +  

   1/ 6 II 1/ 3
02.859 ( ) ]Av k −+  (28) 

III. Comparison with Numerics 
 By way of verification, Eq. (22) is compared in Fig. 3 
to the iterative solution for four different sets of flow 
and heat sink configurations. The operating parameters 
used in these test cases are listed in Table 1. Note that 
two of the four cases correspond to actual heat sinks 
described in previous studies.7,8 It can be seen from 
these plots that Eq. (22) leads to a good agreement with 
the numerical solution over a wide range of overall heat 
transfer coefficients. In fact, an examination of the error 
behavior associated with these approximations is 

provided in Fig. 4 where both absolute and relative 
errors are graphed versus U  alongside ek .  
 From Fig. 4, it can be seen that the absolute error is 
very small everywhere. While the absolute error 
increases with U  and the case number (or L ), the 
relative error diminishes with both. However, the 

Table 1 Sample test cases 
 
Case L  ρ  µ  pC  sT  T∞  
 m  -3kgm 1 1kgm s− −  1 1Jkg K− −  K  K  
  1 0.01500 1.078 1.982E-05 1007 361.4 293.15
   2* 0.03048 1.091 1.965E-05 1007 354.0 293.15
   3* 0.07620 1.103 1.949E-05 1007 346.6 293.15
  4 0.15000 1.116 1.932E-05 1007 339.2 293.15
*Commercial heat sinks used by Narasimhan and Majdalani.7,8  
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Fig. 3 Comparison between analytic and numeric 
solutions for the four cases given in Table 1 over the 
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Fig. 4 Absolute and relative errors in the four test 
cases over the range 2 10 100 Wm K− −≤ ≤U . Note that 
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relative error rises in the 5 15< <U  range where ek  is 
small. In this ‘buffer’ region, the maximum relative 
error in each approximation is realized, specifically, at 

*=U U . This critical line along which the error in both 
approximations is largest is plotted in Fig. 5 as a 
function of the surface temperature sT  and the 
characteristic length in the streamwise direction L . 
This plot is important because it provides the 
delineation line separating the small and large U  
approximations. 
 In order to allow for a self-contained algorithm, the 
data in Fig. 5 can be expressed in the form of 

* ( , )sU f T L= .  Although *U  is consulted only once 
for a given application range (i.e., to ensure that the 
type-I or type-II solutions are needed), it is helpful to 
express *U  in closed form.  Using the method of least-
squares for sigmoidal functions, one obtains: 

1 2
2

0

*
1 ( / ) p

A A
U A

L L
−

= +
+

;    

   

/ 57.37
1
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−
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−
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
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

= +
 = +

   (29) 

Equation (29) reproduces the data in Fig. 5 to within 
±2%. 
 Also given in Fig. 5 is the magnitude of the 
maximum relative error. Clearly, the latter appears to be 
less sensitive to the temperature difference between the 
base plate and the cooling fluid. We find that, for 

0.04 m≥L , the maximum relative error is smaller than 
23.6% over the entire range of U  irrespective of sT . 
We conclude that, regardless of L  or sT , our 
asymptotic expressions represent reasonably accurate 
representations of the Churchill and Chu relation, 
especially that the asymptotic error drops very quickly 
when operating away from the critical *=U U  line.  
 Generally, for problems characterized by overall heat 
transfer coefficients in excess of 20, it is safe to use II

ek  
to obtain suitable predictions. Using Case 3 as an 
example, one may fix the length and allow the overall 
heat transfer coefficient to vary. When this is 
accomplished, the relative error starts at 0.45% at 

1=U , increases to 11.4% at 11=U , drops to 3% at 
40=U , then again to 2% at 2 1100Wm K− −=U . 

Further out, the error continues to decrease as → ∞U .  

Thus, although most figures stop at 2 1100Wm K− −=U , 
the mathematical validity of Eq. (22) continues to 
improve with successive increases in U .  
 For the extruded-fin heat sink considered by 
Narasimhan and Majdalani,7,8 the base plate has 
dimensions of 0.0762m 0.0412m×  and dissipates 8 
watts according to the temperature distribution 
prescribed in Table 1 for Case 3. A detailed numerical 
simulation of the entire heat sink yields 

2 147.73 Wm K− −=U , wherefrom an effective thermal 
conductivity of 1 10.712 Wm K− −=ek  is deduced. The 
asymptotic solution given by Eq. (22) yields a close 
value of 1 10.70 Wm K− − . This small error in the analytic 
prediction is easily justifiable, being merely 4.2% in 
disagreement with the experimental value of 

1 10.721Wm K− −  reported by Kusha, Rosenblat, and 
Lee.12 

IV. Practical Implementation 
 Having developed a closed-form solution for the 
effective thermal conductivity, its actual 
implementation can be illustrated through an example 
corresponding to the heat sink analyzed experimentally 
by Kusha, Rosenblat, and Lee.13 The same heat-sink 
configuration has been computationally modeled by 
Narasimhan and Majdalani,7,8 the details of which are 
listed as Case 3 in Table 1.  
 To determine the equivalent thermal conductivity of 
the compact model, one must specify 

, , , , , ,sU L T T gρ µ ∞  and pC . Based on 0.0762 mL =  
and 346.6KsT = , one evaluates the critical 

2 1* 10 Wm KU − −=  (from Fig. 5 or Eq. (29)). Since 
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Fig. 5 Critical lines producing the maximum 
asymptotic error as function of the characteristic 
length in the streamwise direction. Results 
correspond to the cooling fluid being air at 
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2 147.73 Wm KU − −=  exceeds *U , the application at 
hand requires the use of the type-II solution for ek .  
 Based on the Eqs. (3) and (26)-(28), one can 
immediately program and determine:  

   

1 1 1/ 6

1 1

1 1 1/ 3

II 1 1
0
II 1 1

1

5.978(Wm K )

0.0196 Wm K

7.279 (Wm K )

0.6340 Wm K

0.0606 Wm K

A

v

z

k

k

− −

− −

− −

− −

− −

 =


=
 =
 =
 =

,  (30) 

and so,  

   II II 1 1
0 1 0.70 Wm Kek k k − −= + = .  (31) 

 This value is then used to define the thermal 
resistance of the compact model needed in the CFD 
simulation. These steps are illustrated by the flowchart 
of Fig. 6 which pertains to both small and large –U  
applications. 

V. Concluding Remarks 
 In this study, a piecewise solution is obtained for the 
effective thermal conductivity of a compact heat sink 
model over the entire range of Grashof and Prandtl 
numbers ( 1 1210 Gr 10L

− < < , Pr∀ , U∀ , and sT∀ ).  
The lumped thermal approach is particularly relevant to 
the development of simplified models of parallel-plate 
and pin-fin heat sinks. Aside from the technical merit in 
providing quick and direct estimations of ek , the 
asymptotic methodology introduced here can be useful 
in overcoming the transcendental character encountered 
in other heat transfer relations similar to the Churchill 
and Chu correlation. From a practical standpoint, the 
availability of a closed-form expression enables thermal 
designers to calculate the equivalent thermal attribute of 
a compact heat sink without resorting to guesswork, 
experimentation, or trial. Clearly, the preclusion of 
iterative operations can provide substantial CPU 
savings, especially in large-scale heat sink models of 
populated circuit boards that require coupling between 
heat sink modules. In view of the current solution being 
applicable to flat base heat sinks only, the development 
of closed-form expressions for ek  in other geometric 
settings will be needed to model commercial heat sinks 
of diverse shapes.  

References 
 1Azar, K., McLeod, R. S., and Caron, R. E., “Narrow 
Channel Heat Sink for Cooling of High Powered 
Electronic Components,” Eighth IEEE SEMI-THERM 
Symposium Paper, 1992. 
 2Knight, R. W., Goodling, J. S., and Hall, D. J., 
“Optimal Design of Forced Convection Heat Sinks –
Analytical,” ASME Journal of Electronic Packaging, 
Vol. 113, 1991, pp. 313-321. 
 3Knight, R. W., Hall, D. J., Goodling, J. S., and 
Jaeger, R. C., “Heat Sink Optimization with 
Application to Microchannels,” IEEE Transactions on 
Components, Hybrids, and Manufacturing Technology, 
Vol. 15, No. 5, 1992, pp. 832-842. 
 4Sasaki, S., and Kishimoto, T., “Optimal Structure for 
Microgroove Cooling Fin for High Power Lsi Devices,” 
Electronics Letters, Vol. 22, No. 25, 1986, pp. 1332-
1334. 
 5Lee, S., “Optimum Design and Selection of Heat 
Sinks,” Eleventh IEEE SEMI-THERM Symposium, 
1995, pp. 48-54. 
 6Patel, C. D., and Belady, C. L., Modeling and 
Metrology in High Performance Heat Sink Design, 

k0  → (26)
k1  → (28)

ke= k0+k1   (type II)

Use ke in compact
model simulations

No

k0  → (23)
k1  → (24)
kn  → (25)

ke= Σ ki  (type I)

U >U*

U* (L,Ts) → (29)

Yes

Specify U, L, Ts

 
 

Fig. 6 Flowchart describing the simple steps leading 
to the direct determination of ke for a compact 
model simulation of an actual heat sink. 



 
 

–9– 
American Institute of Aeronautics and Astronautics 

Hewlett Packard Laboratories, Palo Alto, California, 
1997. 
 7Narasimhan, S., and Majdalani, J., “Characterization 
of Compact Heat Sink Models in Natural Convection,” 
The ASME International Electronic Packaging 
Conference and Exhibition Paper 2001-15889, July 8-
13, 2001. 
 8Narasimhan, S., and Majdalani, J., “Characterization 
of Compact Heat Sink Models in Natural Convection,” 
IEEE Transactions on Components Packaging & 
Manufacturing Technology –Part A, Vol. 25, No. 1, 
2002, pp. 78-86. 
 9Culham, J. R., Yovanovich, M. M., and Lee, S., 
“Thermal Modeling of Isothermal Cuboids and 
Rectangular Heat Sinks Cooled by Natural 
Convection,” IEEE Transactions on Components 

Packaging & Manufacturing Technology –Part A, Vol. 
18, No. 3, 1995, pp. 559-566. 
 10Churchill, S. W., and Chu, H. H. S., “Correlating 
Equations for Laminar and Turbulent Free Convection 
from a Vertical Plate,” International Journal of Heat 
and Mass Transfer, Vol. 18, No. 11, 1975, pp. 1323-
1329. 
 11Bejan, A., Convection Heat Transfer, 2nd ed., John 
Wiley, New York, 1982. 
 12Narasimhan, S., and Kusha, B., “Characterization 
and Verification of Compact Heat Sink Models,” 
Proceedings of the Heat Transfer and Fluid Mechanics 
Institute, 1998, pp. 43-46. 
 13Kusha, B., Rosenblat, S., and Lee, S., Private 
Communication, Thermal Modeling of Heat Sinks, 
2000. 

 


	ma1:  
	ma2:  
	ma3:  
	s1: 8th AIAA/ASME Joint Thermophysics
	mads1: Based on the Churchill and Chu Correlation


