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In this article a numerical model is developed to investigate the thermoacoustic conversion
of heat into sound in a Rijke tube. This study is carried out in an attempt to better un-
derstand the internal coupling among heat addition, pressure, and velocity oscillations in-
side a Rijke-type pulse combustor. In fact, similar coupling is believed to exist in other
combustion devices including rocket motors at the verge of instability. In light of the recent
progress in computational � uid dynamics (CFD), we are now able to incorporate the
compressibility and acoustic wave effects bridging the gap between thermal and pressure
oscillations. When acoustic velocity and pressure have favorable time phases in the lower
tube section, their synchronously alternating motions in the upward or downward directions
give rise to acoustic excitation. As a result, an optimal conversion occurs whereby thermal
energy is converted into mechanical energy. The latter is manifested in the form of acoustic
intensity, a by-product of acoustic velocity and pressure. Below a threshold value in power
input to the internal heat source, no self-sustained acoustic oscillations are observed.
Conversely, when a critical power input to the heater is exceeded, resonance is triggered in
the form of pronounced acoustic ampli� cation. Self-sustained thermal oscillations near the
heat source are found to be responsible for driving the acoustic pressure excitation. The
acoustic pressure and velocity mode shapes along the centerline concur with one-
dimensional acoustic theory except near the heater source where a local increase in the
velocity amplitude is noted. Our two-dimensional CFD results agree with experimental
observations reported in other studies. During limit-cycle oscillations, the acoustic pressure
is found to lead thermal � uctuations by a 45-degree angle. This result may be used to specify
the phase angle in Carvalho’s analytical formulation, which predicted a value smaller than
90 degrees. Overall, numerical results indicate a strong pressure dependence on heat
� uctuations. In fact, the modulus of thermal oscillations is found to be directly proportional
to the modular product of acoustic velocity and pressure. In relation to solid and hybrid
rocket motors, our � ndings can be extrapolated to predict a strong thermoacoustic, noise
generating coupling in the forward half of the motor.
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INTRODUCTION

Consider an open-ended circular tube held vertically. Inserting a steady heat
source some short distance from the bottom of the tube produces large sound
pressure levels that can be heard from a far distance. This phenomenon occurs inside
the thermoacoustic pipe known as the Rijke tube. The mechanisms inside this device
leading to the implicit conversion of heat ¯ uctuations into acoustic energy has fas-
cinated scientists for many years now. Due to their relevance to a number of prac-
tical applications, Rijke tube studies have received much scrutiny [1± 14]. To
supplement previous investigations that primarily have concentrated on theoretical
and experimental studies, we undertake a computational veri® cation of the Rijke
tube’ s thermo¯ uid character. To that end, we use the improved computational tools
available today to develop a two-dimensional compressible ¯ ow model that is cap-
able of pairing both thermal and ¯ uid ¯ ow components of the problem. Our main
interest is to determine how accurate numerical simulations can be, if possible at all,
in reproducing the phenomena observed in the Rijke tube. In similar applications of
oscillatory motions in thermoacoustic stacks, two-dimensional simulations that in-
corporate compressibility e� ects have been proven to be successful by Worlikar et al.
[15, 16]. Another goal here is to help verify or establish missing terms in the
mathematical equations that may be used later to obtain a complete closed-form
solution. Aside from the scienti® c merit associated with achieving a numerical ver-
i® cation using modern computational tools, the results are hoped to help, in small
part, further the development of a self-contained mathematical model. In this nu-
merical study, no attempts will be made to obtain an analytical solution for the
resulting model.

Another motivation for this study is the increased freedom and ¯ exibility in
varying the problem’s physical parameters. In view of wider-range numerical ex-
periments that are now possible, we hope to gain some insight into the physics
underlying the thermoacoustic phenomena in pulse combustors in general.

To set the stage, we begin with a brief classi® cation of three types of pulse
combustors. This is followed by a description of the self-excited oscillator that de-
® nes the character of the Rijke tube. Next, the main features of the computational
model are explained. Forthwith, results are presented and shown to concur with

NOMENCLATURE

A oscillatory pressure amplitude
a0 mean speed of sound inside the

Rijke tube
Cp constant pressure speci® c heat
l internal tube length
m longitudinal oscillation mode,

m = 1; 2; 3; . . . ; 1
p0 oscillatory pressure component
q heat transfer rate, dQ=dt
q0 oscillatory heat transfer rate
Q heat energy
t time

T temperature
u0 oscillatory velocity component
x axial distance measured from the bottom
g mean ratio of speci® c heats
r air density
o circular frequency, mpa0=l

Subscripts

0 mean value
obs obstacle or heat source
1 surrounding mean ¯ ow condition
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existing experimental and theoretical predictions. In addition to providing an in-
dependent veri® cation of the Rijke character, results will be used to help clarify some
existing speculations. As a windfall, they seem to provide solutions to some un-
resolved terms arising in former analytical models.

CLASSIFICATION

The classic pulse combustors [17, 18] can be subdivided into three categories,
depending on their acoustic mode shape con® guration: (a) the closed± open, quarter-
wave instrument known as the Schmidt tube; (b) the closed± open or open± open
system known as the Helmholtz resonator; and (c) the open± open, half-wave system
known as the Rijke tube. The latter denotes a vertical tube that comprises a single
heat source and two isobaric ends.

The Rijke Tube

The earliest accounts of thermoacoustic oscillations can be traced to Rijke [19]
in 1859. In his work, Rijke reported that strong oscillations could occur when a
heated wire screen was placed in the lower half of an open-ended vertical pipe (see
Figure 1a). These acoustic oscillations were found to stop altogether when the top
end of the pipe was sealed. This indicated that upward convective air currents inside
the pipe were essential for thermoacoustically driven oscillations to take place. As we
can infer from Figure 1a, the Rijke tube is a half wave pulse combustor with an
acoustic wavelength that is actually twice the length of the tube. Based on laboratory
observations, we ® nd that oscillations reach maximum ampli® cation when the heater
is centered in the bottom half. At that location, the pumping-like motions of acoustic
pressure and velocity occur in the same direction. This favorable coupling gives rise
to acoustic growth. For heater positions in the upper half of the pipe, the converse is
true, and damping instead of driving occurs. Rijke believed that rising convection
currents expanded in the region of the heated screen and were compressed down-
stream of the heater due to cooling at the pipe walls. These successive expansions and
contractions were believed to be the cause for the intense production of sound. The
reason is this: In the Rijke tube, the obstacle grid (gauze, screen, or heat source)
heats the surrounding air and causes it to rise. Acoustically induced particle dis-
placements are superimposed on the naturally convected steady ¯ ow. When acoustic
particle displacements are positive upward, fresh cold air crosses the heated grid, but
when negative, hot air from above is ® ltered through. During the upward motion,
maximum heat transfer occurs between the heat source and the air due to the large
temperature di� erence between the source and the cooler air. Since the timing in the
acoustic cycle is such that maximum heat transfer corresponds to a positive particle
displacement (with favorable upward motion), an ideal situation is created to pro-
mote acoustic wave growth according to Rayleigh’s criterion [19]. In fact, the latter
predicts acoustic excitation when heat is added to an acoustic wave at the high
temperature phase of its cycle.

If the grid is now placed in the upper half of the pipe, acoustic velocity and
pressure exhibit unfavorable phases. Pressure acts adversely, in a direction that
opposes particle motion. Under such conditions, acoustic ampli® cation is
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suppressed. If the phase between pressure and heat release rate is favorable, acoustic
amplitudes increase, disturbances gain energy, grow in magnitude, and may lead to
undesirable structural vibrations.

A Self-Excited Oscillator

For the Rijke tube, the wave equation can be written with the heat addition term
acting as a driving function. To illustrate the basic source of coupling, the following
simpli® ed expressions may be used for both acoustic pressure and velocity [20]:

1
a2

0

q2p0

qt2 – H2p0 =
1

CpT 0

qq0

qt
(1)

q2u0

qt2 – a2
0H2u0 =

1 – g

r0

qq0

qx
(2)

In a self-excited oscillator, the energy associated with motion is supplied by a
time-dependent quantity that is modulated by the oscillator itself. This quantity can be
a force, an electric current, or a heat source, depending on the case at hand. Since the

Figure 1. Schematic of the Rijke tube’s (a) fundamental acoustic wave structure, (b) three-dimensional
representation inside a room, and (c) computational mesh used in this study.
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unsteady driving term q0 that appears in Eqs. (1) ± (2) is induced by ¯ uctuations in other
thermodynamic quantities within the system, the Rijke tube is of the self-excited type.
As it could be seen in Eqs. (1) ± (2) , the quest for analytical solutions to the problem
requires that we know the functional form of q0 beforehand. Furthermore, conditions
controlling the ¯ ow® eld on both sides of the heat source must be carefully posited.
Determination of q0 and its relation to p0 and u0 is hence desirable. Due to the absence
of closed-form expressions linking p0 , u0 , and q0 , one of our goals will be to provide
a physical explanation of the pertinent coupling based on numerical simulations.

THE COMPUTATIONAL MODEL

The Rijke tube is modeled as a pipe that is 90 cm in length and 5 cm in dia-
meter. Only one cross section of the pipe is modeled, thus taking advantage of
geometric symmetry. Figure 1b gives a three-dimensional rendering of the Rijke tube
that is modeled as a hollow cylinder inside a room. The computational mesh in the
r – x directions is illustrated in Figure 1c. The domain comprises half of the Rijke
tube and surrounding space. Ambient atmospheric conditions, including pressure,
temperature, and density, are used to de® ne the initial conditions at the tube’ s inlets
and outlets, and inside the box representing the room. Note that the room itself does
not constitute part of the numerical domain, but its properties are used to specify the
parameters needed to simulate the convection heat transfer from the pipe walls to the
surroundings. Because the radiation mode is of secondary importance, we ignore it.

To introduce an actual heat source, a horizontal porous obstacle with a dia-
meter of 3.75 cm is inserted into the tube at a distance of 22.5 cm (i.e., 1

4 l) from the
bottom. Thermostatic properties of steel are assigned to the obstacle whose surface
porosity is assumed to result in a 90% open area fraction. The impact of this value
on the thermoacoustic character is found to be secondary as long as the ¯ ow cir-
culation in the tube remains unrestricted. The 90% value is chosen because it cor-
responds to the open area of realistic heated screen used in experimental
investigations of the Rijke tube [21]. To preclude numerical instabilities associated
with sudden parametric jumps, heat is linearly augmented inside the obstacle from
zero to its speci® ed value during the ® rst two seconds of the simulation. After
e� ectuating this gradual increase in a short period of time, the rate of internal heat
generation is maintained constant for the remainder of the simulation.

Numerical Strategy

The numerical procedure involves two successive and equally important stages.
The ® rst stage is transient-like and carries the problem from an initial state of rest to
a time of 20 seconds. After the ® rst 20 seconds, the problem reaches a terminal or
limit-cycle condition. Within numerical uncertainty, the terminal or quasi-steady-
state oscillations exhibit constant amplitudes.

The second stage carries the problem from 20 to 20.025 seconds using a much
smaller time step. The increased time resolution is necessitated by the need to track
minute temporal changes in the acoustic waves. Throughout the tube, virtual probes
are placed at several locations to monitor pressures, temperatures, densities, and
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velocities. Our primary input variables and numerical parameters are summarized in
Tables 1 and 2, respectively. This information is fed into the preprocessor of the
input code of a commercially available software program developed for the analysis
of ¯ uid dynamic and thermal phenomena [22]. The software package consists of four
separate programs. First, the preprocessor program translates input data into a
useful problem description that can be interpreted by the main processor. Second,
the main processor carries out the algorithms necessary for generating solutions
under a wide range of physical conditions. The main processor exhibits a control

Table 1. Standard input properties

Obstacle (heat source)
Material ö Steel
Diameter cm 3.75
Thickness cm 1.0
Location from bottom cm 22.5
Porosity ö 0.9
Power input W 430
Thermal conductivity W/m/K 36
Thermal capacitance J/m3/K 3:77 £ 106

Heat transfer coe¤cient W/m2/K calculated
Initial temperature K 293.0

Gas
Gas medium ö Air
Gas constant J/Kg/K 287
Dynamic viscosity kg/m/s 1:824 £ 10– 5

Speci¢c heat J/kg/K 718
Thermal conductivity W/m/K 0.0251
Initial temperature K 293.0

Table 2. Numerical parameters used in the code

Standard Settings for stage I
Number of cells in x-direction, NXCELT = 16
Number of cells in z-direction, NZCELT = 51
Initial time step, DELT = 0.001 s
Problem time to end calculation,TWFIN = 20.0 s
Number of materials (air and pipe), NMAT = 2
Gravity component in z-direction, GZ = 7 980 cm/s2

Automatic pressure iteration convergence adjustment for ¢ner convergence,EPSADJ = 0.25
Compressible £ow option enabled, ICMPRS = 1
Implicit pressure-velocity coupling enabled, IMP = 1
Wall shear stress enabled, IWSH = 1
Factor to improve convective stability, CON = 0.25
Heat transfer evaluation paired with conduction equation, IHTC = 2

Modi¢cations for stage II
Continue calculations from stage I,TREST = 20.0 s
Maximum permitted time step size, DTMAX = 0.0025 s
Problem time to end calculation,TWFIN = 20.025 s
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logic that aids in the selection of convergence criteria and time step sizes that help
eliminate numerical instabilities. Third, the postprocessor enables the user to extract
data, manipulate calculations, and format the plots needed to summarize the results
acquired. Geometrical con® gurations are constructed by assembling solid geometric
objects, or obstacles, which, when added together, de® ne the ¯ ow region. The ¯ ow
geometry is then embedded in the computational grid by de® ning the fractional areas
of the grid cells open to ¯ ow and the corresponding fractional volumes that are open.
All equations are formulated with area and volume porosity functions. The scheme is
known as the fractional area-volume obstacle representation (FAVOR). It is in-
tended to model complex geometric regions. Accordingly, all area-volume fractions
are time independent.

Simulated Equat ions

The general continuity equation used in the program can be written as

V
qr

qt
‡ q

qx
ruAx( ) ‡ R

q

qy
rvAy

¡ ¢ ‡ q

qz
rwAz( ) ‡ x

ruAx

x
= 0 (3)

where V is the fractional volume open to ¯ ow, r is the ¯ uid density, and (Ax, Ay, Az)
are the fractional areas open to ¯ ow in the x, y, and z directions. The coe� cients R
and x, on the other hand, depend on the coordinate system. Next, the equations of
motion for the ¯ uid velocity are the Navier± Stokes equations augmented by some
corrective terms. These are

qu
qt

‡ 1
V

uAx
qu
qx

‡ vAy R
qu
qy

‡ wAz
qu
qz

³ ´
– x

Ayv2

xV
= –

1
r

qp
qx

‡ Gx ‡ fx – bx (4)

qv

qt
‡ 1

V
uAx

qv

qx
‡ vAy R

qv

qy
‡ wAz

qv

qz

³ ´
‡ x

Ayuv
xV

= –
1
r

R
qp
qy

‡ Gy ‡ fy – by (5)

qw
qt

‡ 1
V

uAx
qw
qx

‡ vAy R
qw
qy

‡ wAz
qw
qz

³ ´
= –

1
r

qp
qz

‡ Gz ‡ fz – bz (6)

where (Gx, Gy, Gz ) are body accelerations, (fx, fy, fz) are viscous accelerations, and
(bx, by, bz) are ¯ ow losses across the porous baƒ e plates. For compressible and
thermally buoyant ¯ ow problems, the internal energy equation becomes

V
q

qt
rI( ) ‡ q

qx
rIuAx( ) ‡ R

q

qy
rIvAy

¡ ¢ ‡ q

qz
rIwAz( ) ‡ x

ruAx

x

= – p
q(uAx)

qx
‡ R

q(vAy)
qy

‡ q(wAz)
qz

‡ x
uAx

x

µ ¶
‡ TDIF (7)

where I = CV is the macroscopic mixture internal energy assumed to be a linear
function of temperature, and CV is the speci® c heat at constant volume. Heat con-
duction is accounted for in the term for di� usion (TDIF).

THERMOACOUSTIC FIELD INSIDE A COMBUSTOR 251



Since the heat transfer option is selected in the input code, dynamic tem-
peratures of solid structures are evaluated. Solid structures can be either mesh wall
boundaries or obstacles. The most general equation solved for the dynamic tem-
perature of solid structures is

rwCwqT w=qT ‡ H ¢ KwHT w( ) = TSOR (8)

where Tw is the solid structure temperature while rw, Cw, and Kw represent the solid
material values for density, speci® c heat, and thermal conductivity. The term for
solid obstacle representation (TSOR) is an energy source term composed of con-
tributions from user-speci® ed external sources and solid± liquid interactions. In our
problem, this term accounts for the heat generated at the obstacle.

Heat transfer coe� cients are evaluated using simple correlations appropriate
of heat convection from ¯ at surfaces. The correlations implemented are based on
four physical situations: natural convection, forced laminar convection, forced tur-
bulent convection, and conduction within the ¯ uid. Leaning toward the conservative
side, we evaluate all correlations and adopt the largest value, as prescribed by the
program algorithm. Using standard notation, we see that these correlations corre-
spond to

Nu =
0:57 (Gr Pr)1=4 Gr Pr µ 109

(natural covection)
0:14 (Gr Pr)1=3

Gr Pr > 109

8
<

: (9)

Nu = 0:664 Pr1=3 R1=2
e (forced laminar convection) (10)

Nu = Pr1=3 (0:036R0:8
e – 836) (forced turbulent convection) (11)

h =
k(qT=qs)
T w – T f

(fluid conduction) (12)

The nondimensional quantities in these expressions are given by the Nusselt, Prandtl,
Reynolds, and Grashof numbers; namely,

Nu = hL =k Pr = Cpm=k Re = ruL =m and Gr = gb Tw – T f
 L 3(r=m)2 (13)

The code solves the foregoing equations using ® nite volume and ® nite di� er-
ence approximations . Since our ¯ ow is compressible, the continuity equation is
solved as a parabolic equation (i.e., by a marching algorithm in time). The pressure is
then determined by requiring the equation of state density to equal the updated cell
density. The ¯ ow region is subdivided into a mesh of ® xed rectangular cells. With
each cell, one associates average values of all dependent variables. Variables are
located at the centers of the cells except for velocities; these are located at the cell
faces. Curved obstacles, wall boundaries, and other geometric features are embedded
in the mesh by specifying the fractional areas and fractional volumes of the cells that
are open to ¯ ow. To construct discrete numerical approximations to the governing
equations, control volumes are de® ned surrounding each variable location. For all
control volume surface ¯ uxes, surface stresses and body forces are computed in
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terms of surrounding variable values. These quantities are then combined to form
approximations for the conservation equations. Most terms in the equations are
evaluated using the current time level values of the local variables. This produces a
simple and e� cient (explicit) computational scheme for most purposes, but requires
the use of a limited time step size to maintain computationally stable and accurate
results. One important exception to this explicit formulation arises in the treatment
of pressure forces. In fact, pressures and velocities are coupled implicitly by using
time-advanced pressures in the momentum equations and time-advanced velocities
in the continuity equation. This semi-implicit formulation of the ® nite di� erence
equations leads to an e� cient solution of the low speed and incompressible ¯ ow
problems. In our application where a more implicit solution method is required, a
special alternating direction, line implicit method is used.

RESULTS AND DISCUSSION

A number of parametric studies are carried out in an attempt to characterize
the internal ¯ ow ® eld. This is done after re® ning the grid to the point at which
changes in the solution become insigni® cant. A benchmark case is ® rst selected with
typical physical dimensions and thermodynamic properties. The acoustic character is
analyzed and compared with both experimental and theoretical predictions. After
setting up the proper boundary conditions, the temporal evolutions of mean and
acoustic variables are tracked. The location and power supply to the heater source
are varied separately to assess their in¯ uence on the solution. Whenever possible, the
coupling between thermal and acoustic variables is reported.

Benchmark Case

To set a benchmark, a standard case is de® ned whose properties correspond to
a typical Rijke tube, heat source power input, and gas properties. As posted in
Table 1, our benchmark case is a standard run that involves a steady heat release of
430 watts at an optimal heater position of 1

4 l from the bottom. Results are sum-
marized in Figures 2± 4.

In Figure 2a, temporal plots are shown, during the ® rst 20 seconds, for pres-
sure, axial velocity, temperature, density, and heat transferred to the air. The rate of
heat transferred to the air q is a function of the obstacle temperature T obs , tem-
perature of ambient air T 1, surface area of the source Aobs , and average heat transfer
coe� cient ·h. It is de® ned according to Newton’ s cooling law, namely, q =
·hAobs(T obs – T1).

Note that, after about 8.5 seconds, heat, pressure, and velocity oscillations
begin. This threshold coincides with the time when the air temperature around the
source begins to approach its terminal condition. This condition is signaled by the
leveling out of the temperature curve in Figure 2a. In that region, small tem-
perature oscillations occur but are too small to be discerned without scale mag-
ni® cation (see Figure 2b). As the temperature of the air increases, both pressure
and velocities increase as well. This is accompanied by a decline in density as the
heated gas expands. Since no acoustic pressure growth occurs prior to the tem-
perature reaching its limit-cycle oscillations, it may be inferred that thermal
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¯ uctuations at the heater location are the main driving factor in producing the
acoustic excitation. In a sense, the Rijke tube may be likened to a thermoacoustic
pump in which the pumping-like temperature oscillations raise the acoustic energy
to markedly audible levels.

The physics underlying these observations may be attributed to the following.
As the source temperature begins to rise, a temperature di� erence between the source
and surrounding air is created on both sides of the obstacle surface. The reduced
density of the surrounding air causes it to stratify. Natural convection currents are
hence produced due to buoyancy. As the heated air rises, it crosses the porous ob-
stacle. The heat transferred from the source to the surrounding air can be determined
to be a function of source temperature, ambient air temperature, source area, and
average convection heat transfer coe� cient. Since all properties are intimately re-
lated, the slightest disturbance in a given quantity is echoed in the signals obtained
from the remaining variables. The acoustically driven motion is hence established
once temperature oscillations become self-sustained.

Figure 2b displays temporal plots of pressure, axial velocity, temperature,
density, and heat transferred to the air for the limit-cycle oscillation stage (20 to
20.025 seconds). Here, a smaller time step is utilized to track the acoustic growth
more e� ectively. Clearly, Figure 2b indicates that periodic oscillations are present in
all ¯ ow variables at a frequency of about 200 Hz. This reassuring frequency matches
very closely the acoustically prescribed natural frequency, f = ma0=(2l), for the
fundamental oscillation mode (m = 1) in a pipe with isobaric ends.

Figure 2. T|me evolution of pressure,axial velocity, temperature,density, and heat transfer during (a) stage
I, and (b) stage II.This benchmark case corresponds to a power input of430 watts supplied to a heat source
at x = 1

4 l.
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Figure 3. Here we show (a) the acoustic pressure and axial velocityat three key locations corresponding to
x = 1

2 l (ö), 1
16 l (- - -), and x = 15

16 l (^ - ^); and (b) the spatial distribution of steady pressure, temperature, and
densityat several times before the inception of oscillations.Starting from rest,time evolutions are shown at
discrete steps corresponding to t = öö0; ^ ^ ^ 2; - - - 4; ^ - ^ - 6; ^ - - ^8 s.

Figure 4. T|me evolution of pressure, axial velocity, temperature, density, and heat transfer during the ¢rst
20.0 seconds of the numerical simulations. Keeping the power input at the benchmark value of 430 watts,
we can now move the heater to (a) x = 1

2 l and (b) x = 2
3 l. Clearly, oscillations are suppressed when moving

away from the optimal quarter length location.
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The Tube’s Finite Length

To capture the acoustic mode shapes due to the pipe’s ® nite body length, we
use Figure 3a to illustrate the pressure and axial velocity oscillations at several
di� erent locations along the pipe. An examination of Figure 3a suggests that pres-
sure oscillations reach their maxima at the center of the pipe and are small near both
ends. Also, pressure oscillations appear to be in phase at any axial location, as one
would expect from acoustic wave theory. The velocity plot, on the other hand, shows
that velocity oscillations reach their maxima near both ends and are near zero at the
center of the pipe. As such, velocity oscillations are 180¯ out of phase in the lower
and upper half-domains. These results exhibit the expected patterns predicted by
acoustic theory. Surely, they are also in agreement with experimental observations in
Rijke tubes [1, 3, 4, 6, 14].

Boundary Condit ions

One side bene® t of numerical experiments is that they can help complete a
mathematical model by helping to identify the necessary boundary conditions. This
may be accomplished by verifying the types of auxiliary conditions that are necessary
for a successful assault on the problem. In our case, pressure, temperature, and
density distributions had to be carefully selected at key locations for t < 0. Subse-
quently, from t = 0 until the oscillations began, the evolution of the primary ther-
modynamic variables had to be tracked numerically along the length of the tube.
Results obtained are shown in Figure 3b for the three principal variables. Note, in
particular, the temporal solution across the heat source where abrupt changes take
place. Prior to the inception of thermoacoustic oscillations, the pressure is almost
constant along the pipe. The temperature remains constant in the lower section of
the tube also. Its amplitude experiences a sudden jump upon crossing the source.
This is followed by a rapid decay due to mixing with the unheated air.

The density variation shows that air expands after crossing the heat source.
The similar but inverted functional form exhibited by the density may be anticipated
from the ideal gas equation. Results provide numerical predictions for local ¯ ow
properties, especially at both ends of the heat source.

Relocat ing the Heat Source

During separate numerical runs, the source is relocated to the middle 1
2 l

¡ ¢
and

to the upper section 2
3 l

¡ ¢
of the pipe. This is done to observe whether oscillations

would occur. Figures 4a± 4b are graphical representations of the pressure, axial ve-
locity, temperature, density, and source heat transfer versus time at the 1

2 l and 2
3 l

heater locations. The location of the heat source seems to be a key factor in pro-
ducing large amplitude oscillations. When the source is positioned at 1

2 l, no oscil-
lations are seen. The same can be said when the source is at 2

3 l. When the source is
placed in the lower half of the pipe, however, large amplitude oscillations are trig-
gered. The resulting oscillations are found to have the largest amplitudes when the
source is located at 1

4 l from the bottom end. This is in accord with experimental
® ndings reported previously [1, 3, 4, 6, 14]. Conclusively, oscillations occur only in
the regions where acoustic velocity and pressure couple favorably such as in the
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lower half of the tube (see Figure 1a). This pairing occurs when the pumping motions
of both acoustic pressure and velocity take place in the same direction. In fact,
maximum growth is noted where the modular product of acoustic pressure and
velocity is maximized.

Figure 5 describes the temporal evolution of the source temperature T obs at
several locations. It can be observed that the heat source has a lower temperature
when placed at 1

4 l than at 1
2 l and 2

3 l. The observation of a lower surface temperature
at the 1

4 location is accompanied by the maximum acoustic ampli® cation recorded in
the Rijke tube. Consequently, the heater location that produces the maximum
acoustic energy appears to coincide with the point where the maximum amount of
energy is converted to acoustic pressure intensity. In conjunction with the maximum
conversion of thermal energy into sound, it is unsurprising that the temperature of
the obstacle at 1

4 l is minimized. A similar thermal character has been reported in
coal-® red gas turbines [23, 24].

Varying the Heat Pow er Input

While the standard conditions stated above are retained, we vary the heat power
input to the source. Keeping the source at the ideal 1

4 l position, we release several heat
power levels of 125.5, 376.6, 408.0, 426.9, 430.0, 433.1, and 439.4 watts. The e� ect of
varying the heat input on the induced acoustic motion can thus be captured.

Figure 6 is a graphical representation of the pressure for the ® rst 20 seconds.
For su� ciently small input (e.g., 125.5 W or below) no sign of oscillations can be
detected. We infer that the heat input level, which feeds the acoustic oscillations,
must possess some low threshold value. For the benchmark case chosen here, we ® nd
that self-sustaining acoustic oscillations are established when the heat input exceeds
a threshold value of 376 W. Below this value, no appreciable acoustic oscillations can
occur. The breakdown in the oscillations at high powers (i.e., 433.1 and 439.4 W)
signals the onset of acoustic resonance in the form of self-sustained, large amplitude
oscillations. Clearly, the breakdown takes place sooner when a higher internal
generation heat source is provided. This explains the shifting of the ¯ at section in the
pressure trace preceding the large amplitude oscillations in the last two insets of
Figure 6.

Figure 5. T|me evolution of the surface temperature for the heat source when located at x = 1
4 l (ö), x = 1

2 l

(^ ^ )̂, and 2
3 l (^ - ^).
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Our experiments suggest the presence of another critical value beyond which
the acoustic growth becomes very pronounced. This is illustrated in Figure 7a where
maximum pressure amplitudes are shown along with the sound pressure levels that
accompany them. Clearly, large decibel levels are detected when the heat power input
is in excess of 427 W. In fact, somewhere between 427 and 433 W, a sudden jump in
the pressure output levels is observed with repeated runs. This phenomenon is akin
to resonance and is reproducible at a critical heat power input of approximately
430 W.

Figure 6. T|me evolution of pressure for di¡erent power inputs (stage I).This a standard run with the heat
source located at the optimal distance x = 1

4 l.

Figure 7. Plot of (a) maximum pressure (ö) and corresponding sound pressure levels (- - -) for a range of
heat power input levels. Note the sudden pressure jump near a critical power input of 430 W. In (b) the
corresponding modular product of acoustic pressure and velocity (^ ^) is compared with the modulus of
heat oscillation £ux (^ ^).
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Acoust ic Pressure and Velocity Mode Shapes

Along the pipe’s axis of symmetry, the acoustic pressure and velocity mode
shapes obtained numerically are in general accord with one-dimensional , plane wave
theory. As shown in Figure 8a, the oscillatory pressure reaches its maximum value at
the center of the pipe and is a minimum near both ends. This mode shape concurs
with classic theory. Likewise, acoustic velocity reaches its local maximum near both
ends and is a minimum at the center of the pipe. This is also in agreement with
acoustic theory. However, an interesting result can be seen in the velocity mode
shape near the heater. There, a local distortion appears in the velocity amplitude.
The increased local velocity can be ascribed to the strong coupling between velocity
and thermal oscillations near the heater. In fact, recent articles by Prosperetti,
Watanabe, Yuan, and Karpov have revealed similar mode shape behavior [25, 26]. In
particular, Prosperetti and coworkers have been successful in developing analytical
solutions that can accurately predict the complex behavior near the heat source. For
a thorough theoretical description of thermoacoustic phenomena observed in Rijke
tubes, the reader is referred to the fundamental analyses presented in Refs. [25± 28].

Acoust ic Phase Angles

Figure 8b shows the relationship among pressure, velocity, and heat transfer
oscillations at the source. In concurrence with acoustic theory, the pressure leads the
velocity oscillation by a 90¯ phase angle. Interestingly, we ® nd that q0 is leading u0 by
45¯, and lagging behind p0 by the same amount. In a former study, Carvalho [3] had
demonstrated that the phase between acoustic pressure and heat had to be less than
90¯. His hypothesis is in agreement with our result, which suggests a phase lag of 45¯.
In supplementing Carvalho’ s analytical model, we now propose that a value of
f = p=4 may be used in his expression for pressure oscillations. Repeated here for
convenience, the pertinent equation reads

p0 = Asin
mpx

l
sin(ot ‡ f) (14)

where f is the phase lead between p0 and q0 .

Figure 8. Plot of (a) acoustic pressure and velocity versus distance for several discrete times in a cycle. In
(b),we show the relationship between acoustic pressure (ö), axial velocity (- - -), and heat £ux (^ - ^) at the
optimal x = 1

4 l location. Results in (b) correspond to the limit-cycle oscillations of stage II.
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The Therm oacoust ic Form of Coupling

Suspecting a relationship between thermal and mechanical energy (in the form
of acoustic intensity, p0u0), we have decided to plot the modulus of heat oscillations
alongside the modulus of the acoustic intensity. Based on our numerical simulations,
the modulus of the heat oscillation q0 appears to be proportional to the modular
product of acoustic velocity and pressures p0u0 . As shown in Figure 7b, there is a
strong indication of an intimate coupling between q0 and p0u0 in the standing wave
® eld. Physically, these observations suggest that a direct conversion of heat into
mechanical energy does exist. A simple expression for q0 may be proposed. Owing to
the fact that the heat at the source is produced per unit area, and for dimensional
homogeneity, the constant cross-sectional ¯ ow area may be factored in. Thus one
may write

q0| | ¹ p0u0| |A (15)

Equation (4) can be used in ® nding a solution to the set given by (1) ± (2) .

CONCLUDING REMARKS

The numerical results described above appear to be in good agreement with
laboratory observations reported by other investigators. This is especially true when
taking into consideration the experimental uncertainties associated with laboratory
measurements. As such, they are supportive of a theory that attributes acoustic
growth to the by-product of pressure and velocity interactions. Both experimental
observations and present numerical solutions agree that, unless the pressure and
velocity couple favorably, acoustic attenuation will prevail. Favorable coupling takes
place when the temporal pumping-like motions of ¯ uctuating pressure and velocity
components occur synchronously in the same upward or downward directions.
When thermal oscillations become self-sustained, acoustic pressure and velocity
begin to grow in amplitude. When suitably paired, they lead to a strong acoustic
ampli® cation and a relatively large conversion of thermal energy into sound. The
conversion of thermal energy into sound appears to be maximum at the heater lo-
cation leading to the minimum surface temperature of the heating screen (i.e., at 1

4 l).
Our study also suggests the presence of a minimum threshold value for the heat
power supplied below which no self-sustained acoustic oscillations may be possible.
In our numerical experiment, this value is 376 W. A critical value of the heat power
input is also found to cause resonance to occur. When 430 W are supplied to the
heater, a sharp peak in the acoustic amplitude is observed. Unsurprisingly, the re-
sulting acoustic pressure and velocity mode shapes do concur with classic acoustic
theory along the axis of the tube. Near the heater, however, a marked increase is
noted in the velocity amplitude that eludes plane wave acoustic theory. This abrupt
variation in velocity amplitude agrees with recent models developed by Prosperetti
and coworkers. During limit-cycle oscillations, the acoustic pressure is found to lead
thermal ¯ uctuations by a 45-degree angle. The acoustic velocity also lags behind
thermal ¯ uctuations by the same amount. This numerically determined result helps
complete Carvalho’ s solution. Finally, the modulus of heat oscillations is found, in
all numerical experiments, to be proportional to the modulus of acoustic intensity.
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