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Different numerical approaches have been proposed in the past to solve the Navier–Stokes
equations. Conventional methods have often relied on � nite-difference, � nite-element, and
boundary-element techniques. Multigrid methods have been recently introduced because
they help to obtain a faster convergence rate of the error residual. A dif� culty plaguing
numerical methods today is the inability to treat singularities at or near boundaries. Such
dif� culties become even more pronounced when coupled with the need to handle semi-in-
� nite and in� nite domains. Sinc-based numerical algorithms have the advantage of
handling singularities, boundary layers, and semi-in� nite domains very effectively. In ad-
dition, they typically require fewer nodal points and are proven to provide an exponential
convergence rate in solving linear differential equations. This study involves a � rst step in
applying the Sinc-based algorithm to solve a nonlinear set of partial differential equations.
The example we consider arises in the context of a driven-cavity � ow in two space di-
mensions. As such, the steady and incompressible Navier–Stokes equations are solved by
means of two-dimensional Sinc collocation in conjunction with the primitive variable
method and a pressure correction algorithm based on arti� cial compressibility. Simulations
are also carried out using forward differences, central differences, and a commercial code.
Results are compared with one another and with the Sinc-collocation approximation. It is
found that the error in the Sinc-collocation approximation outperforms other solutions,
especially near the singular corners of the cavity.
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1. INTRODUCTION

The purpose of this article is to present a novel application of the Sinc collo-
cation method to the nonlinear Navier±Stokes equations in two space dimensions.
The Sinc collocation method is a spectral decomposition technique whose
computational algorithm resembles trigonometric interpolation by Fourier series. By
comparison to traditional ®nite-di� erence, ®nite-element, and boundary-element
methods, the Sinc collocation approach has been shown to be more suitable in
handling singularities and semi-in®nite domains. Furthermore, the residual error
entailed in the Sinc collocation approach is known to exhibit an exponential con-
vergence rate, even in the presence of singularities. When these features are added to
the requirement by a Sinc collocation algorithm for fewer nodal points in the so-
lution domain, this spectral technique becomes an attractive alternative which, in
some cases, can become superior to traditional multigrid and modern high-speed
computational methods.

Since its inception by Stenger [1], the notion of a Sinc expansion has appeared in
diverse physical settings including interpolations, integrations, and solutions of both
ordinary and partial di� erential equations [2±4]. For example, in performing accurate
interpolations of discrete signals, geometric transforms, and test measurements, the
Sinc approximation has been used extensively by Jeng [5], by Schanze [6], and by Kober,
Unser, and Yaroslavsky [7]. The latter have demonstrated that Sinc interpolation
methods can signi®cantly outperform conventional methods of nearest neighbor.

In evaluating the homogeneous LameÂ equations, Stenger [8] has presented two
integral formulations through Sinc convolution. In evaluating Cauchy-type integral
equations, Bialecki and Keast [9] have shown that a numerical method based on a
truncated sum of Sinc functions could yield excellent approximations for analytic
functions with endpoint singularities. In fact, Sinc methods have been found to be
particularly useful in the treatment of ordinary and partial di� erential equations
with singularities. This is evidenced throughout the work of Bowers and Lund [10];
therein, the Galerkin method has been successfully used in conjunction with Sinc
functions to approximate the solution of the Poisson problem. In the same context,
Lewis, Lund, and Bowers [11] have applied the space-time Sinc-Galerkin method for
the numerical solution of the parabolic class of partial di� erential equations in one
spatial dimension. Later, in Smith et al. [12], the Sinc-Galerkin method has been
extended to handle fourth-order ordinary di� erential equations. Even at this high
order, the consistency of the method in exhibiting an exponential convergence rate
could be shown. In a subsequent study, Smith, Bowers, and Lund [13] applied the
Sinc-Galerkin method to several examples involving fourth-order time-dependent
partial di� erential equations in both space and time.

In his 1997 review of Sinc methods, Stenger [14] presented a novel procedure,
based on Sinc convolution matrices, for solving the Poisson problem. This in-
novative method has been successfully applied by Stenger and O’Reilly [15] in three
types of medical applications involving optimal controls, reconstruction of X-ray
tomography, and inversion of ultrasonic tomography.

For a second-order, two-point boundary-value problem with multiple do-
mains, Morlet, Lybeck, and Bowers [16, 17] have combined the Sinc collocation
domain decomposition method with the Schwarz alternating technique to overcome
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the problem’s singularities. In their work, the exponential convergence property was
proven for a problem with subdomains. In the same context, the Poisson equation
was solved using domain decomposition by Lybeck and Bowers [18, 19].

For the purpose of achieving higher-order precision, the Sinc function ap-
proximation has also been used in heat transfer problems by Narasimhan, Chen, and
Stenger [20, 21], Lippke [22], and others. In [20], the two-dimensional, steady-state
heat conduction problems in both a square and a semi-in®nite rectangular cavity
were considered. For the square geometry, the Sinc approximation was shown to
outperform both the ®nite-di � erence and multigrid methods uniformly across the
computational domain.

In an e� ort to solve by Sinc collocation the initial-boundary-valu e problems
for the nonlinear evolution equations in one and two space dimensions, recent in-
terest in applying Sinc methods to nonlinear problems has received favor in the work
of Bellomo, Ridol®, and co-workers [23±25]. Recent studies by Bowers and co-
workers [26] have also applied the Sinc technique to the modeling of bio®lms and
wind-driven currents. The current study constitutes one such example whose main
purpose is to determine a viable algorithm for applying the Sinc method to the set of
nonlinear Navier±Stokes equations (NSE). To the authors’ knowledge, such an at-
tempt represents a ®rst step toward better understanding the manner in which Sinc
methods could be e� ectively extended to full solutions of the NSE system. To
illustrate the process, the algorithm will be applied to the cavity-driven problem. For
comparison purposes, the problem will also be solved with ®nite di� erences (both
forward and central) and using a known commercial code [27]. Unlike Bellomo et al.
[23±25], who applied the Sinc collocation on an equispaced domain, we shall follow
conventional Sinc practices of clustering more Sinc points near edges in order to
handle singularities more e� ectively.

2. METHODOLOGY

In seeking a solution for the incompressible NSE system, it may be safe to say
that the two most popular strategies consist of using either the vorticity stream-
function approach or the primitive-variable approach. In this study, the primitive-
variable approach will be adopted.

2.1. The Primitive-Variable Approach

Using the asterisk to denote dimensional variables, the two-dimensional in-
compressible Navier±Stokes equations can be written as

qu¤

qx¤ ‡
qv¤

qy¤ = 0 (1)

qu¤

qt¤ ‡ u¤ qu¤

qx¤ ‡ v¤ qu¤

qy¤ = –
1

r

qp¤

qx¤ ‡ n
q2u¤

qx¤2
‡

q2u¤

qy¤2

³ ´
(2)

qv¤

qt¤ ‡ u¤ qv¤

qx¤ ‡ v¤ qv¤

qy¤ = –
1

r

qp¤

qy¤ ‡ n
q2v¤

qx¤2
‡

q2v¤

qy¤2

³ ´
(3)
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where x¤, y¤, t¤, u¤, v¤, and p¤ represent the streamwise and cross-streamwise space
coordinates, time, the streamwise, and cross-streamwise velocities, and pressure,
respectively. The density and kinematic viscosities are given by r and n. The fore-
going set can be made dimensionless via

x =
x¤

Lref

y =
y¤

Lref

t =
t¤Vref

Lref

u =
u¤

Vref

v =
v¤

Vref

p =
p¤

rV2
ref

Re =
Vref Lref

n

(4)

The ensuing nondimensional NSE system becomes

qu

qx
‡

qv

qy
= 0 (5)

qu

qt
‡ u

qu

qx
‡ v

qu

qy
= –

qp

qx
‡

1

Re

q2u

qx2
‡

q2v
qy2

³ ´
(6)

qv

qt
‡ u

qv

qx
‡ v

qv

qy
= –

qp

qy
‡

1

Re

q2v

qx2
‡

q2v

qy2

³ ´
(7)

Di� erent methods have been followed in the past for the solution of the in-
compressible NSE system expressed in primitive-variable form. One method involves
introducing an arti®cial compressibility term into the continuity equation. This ar-
ti®cial compressibility term is then used as a pressure-correction factor that will
eventually vanish when the steady state is reached. Another method involves con-
sidering a separate Poisson equation for pressure in lieu of the continuity equation.
The arti®cial compressibility artifact will be employed here in unison with the Sinc
collocation method.

2.2. Sinc Collocation in One Dimension

The Sinc collocation is similar to the Fourier spectral technique for approx-
imating functions and derivatives. Before applying the approach to the NSE system,
it may be helpful to illustrate the procedure with a simple example in one space
dimension. The purpose of the example is to explain how functions can be ap-
proximated with Sinc collocation. On that account, we consider the cubic poly-
nomial

f(x) = 2x2 ‡ x – 3x3 0 µ x µ 1 (8)

Clearly, f(x) vanishes at both ends of the interval. In order to approximate this
function, we invoke, for a function extending over an interval a µ x µ b, the loga-
rithmic transformation [3]
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f(x) = log
x – a

b – x

± ²
= log

x

1 – x

± ²
(9)

Subsequently, the Sinc points are de®ned by

xk =
ekh

1 ‡ ekh
h =

�������
pd

bN

s

(10)

where d = p, b = 1, and N is the number of Sinc points (left and right) that will be
used in the f(x) approximation [28]. Based on Eqs. (9)±(10), the collocation expan-
sion can be expressed as

f(x) ’
Xk= N

k= – N

CkS[f(x); kh] (11)

where the Sinc function S[f(x); kh] is given by

S[f(x); kh] =
sin ( p[f(x) – kh]{ }=h)

p[f(x) – kh]=h
k = – N; – N ‡ 1; . . . ; – 1; 0; 1; . . . ; N – 1; N

(12)

When the Sinc function is approximated at the (2N ‡ 1) nodal points, one may
express the results in matrix form. Using [I ] to represent the identity matrix, one may
write

I[ ](2N‡1)(2N‡1) Ck[ ](2N‡1)(1)= f(xk)[ ](2N‡1)(1) (13)

At the outset, the 2N ‡ 1 collocation constants [Ck] can be evaluated from the
function at the nodal points. Once these constants are determined, Eq. (11) can be
used to evaluate the function at any intermediate point. Figure 1a compares true and
approximate values obtained with N = 10. In the interest of clarity, the corre-
sponding absolute error in the Sinc approximation is calculated and tabulated in
Table 1 at several values of N. Note that the error drops rapidly as N is increased.
However, for N ¶ 160, one notices a ¯attening in the error. This is due to inevitable
limitations in machine precision leading to the accumulation of round-o� errors.

By virtue of Eqs. (11), (12), and (9), Sinc expansions always vanish at the
endpoints. As such, the scheme needs to be modi®ed for functions not exhibiting this
property. This notion will be illustrated by considering a polynomial that has non-
zero values at the ends. For simplicity, let us consider

f(x) = 2x2 ‡ x – 3x3 ‡ 3 (14)

which has a value of 3 at x = 0; 1. To overcome this di� culty, the Sinc approx-
imation of Eq. (14) must be augmented by two splines at either ends. This can be
accomplished by setting

SINC COLLOCATION FOR THE NAVIER±STOKES EQUATIONS 451



Figure 1. Sinc collocation approximation for a function that is (a) zero and (b) nonzero at the endpoints.

Table 1. Error in the Sinc approximation for the test functions given in F igure 1 using increasing values

of N. Errors are identical for both cases (a) and (b) in F igure 1

x\N 5 10 20 40 80 160 320 640

0.00 0 0 0 0 0 0 0 0

0.05 2.4E-3 8.7E-5 1.3E-5 2.7E-8 5.6E-11 6.1E-16 1.6E-16 1.5E-16

0.10 9.5E-3 5.7E-4 1.1E-5 1.4E-7 5.4E-11 4.4E-16 2.1E-16 1.5E-16

0.15 7.2E-3 7.3E-4 3.0E-5 1.7E-7 1.6E-11 8.3E-17 3.3E-16 l.7E-16

0.20 4.8E-4 1.0E-3 2.7E-6 1.1E-7 1.5E-11 1.6E-15 2.8E-16 6.1E-16

0.25 7.5E-3 3.7E-4 3.3E-5 1.2E-7 3.8E-11 1.1E-15 1.7E-16 6.1E-16

0.30 l.1E-2 5.2E-4 2.1E-5 l.6E-7 9.6E-11 l.9E-15 6.1E-16 1.7E-16

0.35 1.2E-2 1.1E-3 1.3E-5 1.4E-7 6.9E-ll 1.8E-15 3.9E-16 4.4E-16

0.40 9.4E-3 l.1E-3 3.5E-5 1.1E-7 4.8E-11 l.4E-15 2.2E-16 2.2E-16

0.45 5.1E-3 6.9E-4 2.8E-5 1.9E-7 1.0E-10 5.6E-16 1.2E-15 0

0.50 0 0 0 0 0 0 0 0

0.55 4.6E-3 6.5E-4 2.6E-5 l.9E-7 9.8E-ll 7.8E-16 1.1E-16 0

0.60 7.8E-3 9.9E-4 3.2E-5 1.0E-7 4.6E-11 7.8E-l6 8.9E-16 l.1E-16

0.65 8.9E-3 8.9E-4 l.1E-5 l.3E-7 6.4E-11 1.3E-l5 1.1E-16 5.6E-16

0.70 7.6E-3 3.9E-4 l.7E-5 1.4E-7 8.7E-l1 8.9E-16 5.6E-16 8.9E-16

0.75 4.4E-3 2.6E-4 2.6E-5 9.7E-8 3.3E-11 2.2E-15 l.1E-15 1.1E-16

0.80 2.3E-4 6.4E-4 1.9E-6 8.7E-8 l.3E-l1 2.0E-15 7.8E-16 1.1E-15

0.85 2.8E-3 3.9E-4 2.0E-5 1.2E-7 l.3E-11 0 3.3E-16 1.1E-16

0.90 2.6E-3 2.5E-4 6.0E-6 9.8E-8 4.1E-l1 3.3E-16 3.9E-16 7.2E-16

0.95 2.5E-4 2.6E-5 5.7E-6 l.6E-8 3.9E-11 4.2E-16 7.2E-16 5.6E-16

1.00 0 0 0 0 0 0 0 0
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f(x) ’ C– N– 1x ‡
Xk= N

k= – N

CkS[f(x); kh] ‡ CN‡1(1 – x) (15)

As the Sinc function S[kh; f(x)] goes to zero at the boundaries, the constants
C– N– 1 and CN‡1 can be readily evaluated to be 3 in order to ensure that the function
itself equals 3 at x = 0; 1. After ®nding C– N– 1 and CN‡1, the regular collocation
constants Ck can be evaluated as before. A comparison between the Sinc approx-
imation and the true function is given in Figure 1b. The error in this approximation
is found to be identical to that given in Table 1. Clearly, the inclusion of splines does
not seem to degrade the Sinc approximation.

3. THE DRIVEN-CAVITY PROBLEM

The Sinc collocation scheme described previously is now applied to the NSE
system in two space dimensions. The physical setting considered is that of the driven-
cavity problem. The corresponding governing equations are given by Eqs. (5)±(7).
These will be solved using the primitive-variable method with arti®cial compressi-
bility.

In this study, the NSE solution was ®rst attempted using the vorticity-stream
function approach. As usual, the vorticity-stream function approach involved cal-
culating second-order derivatives on the boundary. To that end, the original Sinc
function had to be divided by the derivative of the logarithmic transformation
variable that accompanied the Sinc formulation [28]. This operation caused the
solution matrices to become ill-conditioned. For this reason, the vorticity-stream
function approach was no longer pursued.

3.1. Domain and Variables

As usual, the bottom of the cavity is located at y = 0, 0 µ x µ 1, and the ve-
locity is constant and equal to the reference velocity Vref along y = 1, 0 µ x µ 1. The
dimensionless velocity boundary conditions at y = 1 are hence u(x; 1) = 1 and
v(x; 1) = 0. The vertical walls are rigid at both x = 0 and x = 1, 0 µ y < 1. Due to
the singularities at (0; 1) and (1; 1), the approximations for u and v can be written as
sums of Sinc expansions and splines at the endpoints:

u(x; y) ’
XN

k1= – N

XN

k2= – N

Ck1;k2
S[f(x); k1h]S[f(y); k2h] ‡ x ‡ (1 – x)

‡
XN

k1= – N

Ck1
S[f(x); k1h] ‡ x

XN

k2= – N

Ck2
S[f(y); k2h]

‡ (1 – x)
XN

k2= – N

Ck2
S[f(y); k2h] (16)

v(x; y) ’
XN

k1= – N

XN

k2= – N

Ck1;k2
S[f(x); k1h]S[f(y); k2h] (17)
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In like fashion, the pressure can be approximated by

p ’
XN

k1= – N

XN

k2= – N

Ck1 ;k2
S[f(x); k1h]S[f(y); k2h] ‡ y

XN

k1= – N

Ck1
S[f(x); k1h]

‡ (1 – y)
XN

k1= – N

Ck1
S[f(x); k1h] ‡ x

XN

k2= – N

Ck2
S[f(y); k2h]

‡ (1 – x)
XN

k2= – N

Ck2
S[f(y); k2h] (18)

These approximations can be used in conjunction with a pressure-correction
scheme to develop the computational algorithm.

3.2. Modified Pressure-Correction Scheme

The nonlinear convective terms in Eqs. (6) and (7) can be linearized by using
the velocities stored during a preceding iteration. For example, in order to evaluate
u qu=qx, one may use un– 1 qun=qx, where un represents the velocity at the current
iteration step n. In this study, the steady-state Navier±Stokes equations are re-
peatedly solved until the modi®ed continuity equation is satis®ed. The modi®ed
pressure-correction algorithm requires one to perform the following steps:

1. Initialize the velocities and pressure u0, v0, and p0 in the entire domain.
2. Calculate the pressure gradients – qp=qx, and qp=qy using the Sinc collo-

cation expression (18).
3. Update the velocities by using the Sinc collocation equations for u and v

given by Eqs. (16)±(17) and by solving the steady-state Navier±Stokes
equations in the primitive variable form:

1

Re

q2un

qx2
‡

q2un

qy2

³ ´
– un– 1 qun

qx
– vn– 1 qun

qy
=

qpn

qx
(19)

1

Re

q2vn

qx2
‡

q2vn

qy2

³ ´
– un– 1 qvn

qx
– vn– 1 qvn

qy
=

qpn

qy
(20)

Note that the convective terms are linearized by using the most recently
stored values un– 1 and vn– 1.

4. Obtain the velocity gradients qu=qx and qv=qy from the current velocity ®eld.
5. De®ne the arti®cial compressibility D = (qu=qx) ‡ (qv=qy).
6. Calculate the pressure correction term pcorr = – lD, where l is a small

number.
7. Update the pressure ®eld by using pn = pn– 1 ‡ pcorr.
8. Repeat steps 1±7 until satis®ed. This condition will typically occur when D

becomes so small that the continuity equation becomes virtually satis®ed
and when both velocity and pressure ®elds would have reached their steady-
state values.
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3.3. Special Treatment at the Boundaries

The pressure correction near the endpoints requires evaluating the derivatives

qu=qx and qv=qy. These, in turn, require evaluating the derivatives of the Sinc
functions at the boundaries. This is rendered di� cult by the fact that the derivatives
of the Sinc functions can lead to a numerical over¯ow near the boundaries. One
reason can be attributed to the tight grid spacing near the boundaries, where Sinc
points become clustered in a geometric fashion.

A variety of plausible approaches were tried in this study in order to im-
prove the convergence history for the NSE system. The ®rst approach was based
on a revised de®nition of the Sinc function within the series. This revised de®-
nition consists of dividing the original Sinc function by the ®rst derivative of the
logarithmic transformation function raised to the power of the order of the de-
rivative to be approximated [28]. For example, if we were to approximate a
second-order derivative, we would have to raise the ®rst derivative of the trans-
formation function (f0) to the second power. The revised de®nition would read, in
that case,

f(x) ’
XN

k= – N

f(kh)S[f(x); kh]

(f0(x))2
(21)

The main disadvantage of this approach lies in the ill-conditioning of the so-
lution matrix stemming from Eq. (13). In fact, the condition number of the resulting
matrix becomes enormous. This, of course, defeats practical attempts to make
progress toward a solution. Unfortunately, a more convenient technique to handle
derivatives at boundaries has yet to be developed. It is hoped that future research
with Sinc methods will be successful in devising a scheme that is capable of over-
coming similar di� culties.

The second approach that was attempted consisted of approximating each
endpoint derivative by its adjacent value. The latter could be determined from the
closest nodal point near the boundary. This approximation was possible here be-
cause of the ®ne-grid resolution near the boundaries, where derivatives changed very
slowly. In the driven-cavity problem, this approach led to a diverging solution. As a
result, it was abandoned.

The third approach we used was to calculate the derivatives on the boundaries
using ®nite di� erences. For example, boundary gradients of u and v were evaluated
using ®rst-order operators such as

qu

qx
’ ui; j – ui– 1; j

Dx
(22)

qv

qy
’ vi; j – vi; j– 1

Dy
(23)

These approximations worked very well and led to a rapidly converging solution.
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4. RESULTS AND DISCUSSION

The Sinc collocation method along with the modi®ed pressure-correction al-
gorithm and the ®nite-di� erence method for calculating derivatives near boundaries
have given rise to a well-behaved solution algorithm. In this study, simulations were
carried out at di� erent Reynolds numbers. For brevity, they will be illustrated for
Re = 25 and l = 0:0001. Simulations were also carried out independently with a
®nite-di � erence algorithm using central di� erencing without upwinding as well as
®rst-order upwinding for the nonlinear terms. For further reassurance, numerical
results were also acquired from a commercially available computational ¯uid dy-
namics (CFD) package [27]. The computational meshes that were used are shown in
Figure 2. Both ®nite-di � erence and Fluent codes utilized a uniform resolution of
1006100 steps. In the Sinc collocation, a value of N = 10 resulted in (2N ‡ 1) = 21
steps in both x and y directions. As such, the total number of cells used by the Sinc
collocation was approximately 4.4% of the cells considered by the other routines.

In Figure 3a, a comparison is presented showing the results of the Sinc col-
location, Fluent, ®nite di� erence with central di� erencing, and ®nite di� erence
with upwinding for the u pro®le along the vertical centerline of the cavity
(x = 1

2
; 0 µ y µ 1). Clearly, the agreement is satisfactory. In the same context,

Figure 3b compares pro®les for v along the horizontal centerline of the cavity
(y = 1

2 ; 0 µ x µ 1). Here too, pro®les seem to compare reasonably well except for
some small discrepancies in magnitudes. Figures 4 and 5 give the iso-velocity contour
plots of u and v within the entire cavity using all four numerical schemes. At the
outset, favorable agreement is found between the Sinc approach and Fluent. By the
same token, the least accuracy is realized with the ®nite-di� erence approach based
on central di� erencing.

In addition to these plots, an error analysis that uses Fluent as a benchmark
has indicated that the absolute errors in evaluating u and v increase as the singular
corners at the top are approached (i.e., near y = 1; x = 0; 1). The error with the Sinc
method was found to be the smallest. This may be attributed to the inherent capacity
of a Sinc-generated grid to cope better with singularities at the top corners of the
cavity, where more points are automatically distributed.

While 10,000 cells were employed in both ®nite-di� erence and CFD codes,
the Sinc algorithm necessitated only 441 cells. Despite this 23:1 gain in spatial dis-
cretization, the Sinc matrices were dense and hence demanded longer computation
time. The advantage of the Sinc approach in improving accuracy with fewer collo-
cation points (than needed in the corresponding ®nite-di� erence or ®nite-element
methods) appears to be o� set by the dense matrices that become inevitable by virtue
of the global approximation nature of the Sinc method. This problem becomes quite
pronounced in the iterative solution of the nonlinear NSE system, where repeated
matrix operations must precede the steady-state solution. This is one area where the
use of parallel computing and message-passing interface (MPI) could be very helpful.

Another important functionality that has to be introduced within the Sinc
function scheme is a better way to approximate derivatives at the boundaries. The
traditional Sinc approach has relied on approximating the endpoint derivatives by
using a modi®ed de®nition of the Sinc function [3]. This has led, in our problem,
to ill-conditioned matrices. To overcome this complication, a di� erent approach,
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namely, one that was based on ®nite di� erencing, had to be resorted to. It is hoped
that a better way of approximating the derivative will be later developed in order
to extend the application of Sinc collocations to more complex engineering
problems.

Figure 2. Grid resolution inside the square cavity using (a) 101 £ 101 nodal points in both ®nite-di� erence

and Fluent computations, and (b) 23 £ 23 nodes in the Sinc collocation. The inset in (b) magni®es the

geometric grid resolution near the upper right corner.
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Suggestions for future developments include methods to transform the Navier±
Stokes equations into integral equations (which can be more easily solved). An at-
tempt could also be made to assign certain weights to the coe� cients within the Sinc
expansion. These weighing or relaxation factors could be related to the neighboring
velocities in a manner to introduce arti®cial upwinding into the Sinc collocation
method. The fact remains that Sinc collocation is a global spectral approximation
method and not a localized pointwise approximation. Unlike ®nite-di� erence or
®nite-element methods, where localized approximations are inherent, upwinding
remains, at present, more di� cult to accommodate into a Sinc collocation scheme.
As such, it needs to be carefully addressed.

5. CONCLUSIONS

In this article, the Sinc collocation expansion was applied to the two-
dimensional Navier±Stokes equations to solve the driven-cavity ¯ow problem. The
primitive-variable method was used in conjunction with a modi®ed pressure-
correction algorithm based on arti®cial compressibility. Calculations of the velocity
and pressure distributions were repeated until the mass balance was satis®ed and
the velocity pro®les no longer changed. The ¯ow pro®les obtained from Sinc col-
location were compared with the results obtained from central di� erences, forward
di� erences, and a commercial CFD code. Comparisons indicated that the pro®les
agreed well with each other except for some discrepancies near the left- and

Figure 3. Comparison of velocity pro®les for (a) u along the cavity’s vertical centerline and (b) v along the

cavity’s horizontal centerline.
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right-hand-side corners of the cavity. In the neighborhood of those singular end-
points, the Sinc algorithm appeared to outperform other methods by spreading an
increasingly larger number of points as the corners were approached. In the cavity-
driven problem, more accuracy was uniformly obtained with the Sinc results than
with ®nite-di� erence methods that employed 23 times more computation cells.
However, the improved accuracy with fewer nodes was hampered by the need to
repeatedly solve dense matrices. Another di� culty was encountered in evaluating
the derivatives near the boundaries, where singularities occurred. In order to avoid
ill-conditioning, a better methodology to de®ne endpoint derivatives than pre-
scribed by conventional Sinc practices is deemed necessary. In addition to pro-
posing a more suitable scheme for calculating derivatives, we suggest a careful
combination of upwinding with Sinc collocation and the use of parallel computing

Figure 4. Iso-velocity contours of u pro®les using (a) central di� erencing, (b) upwinding, (c) Sinc collo-

cation, and (d) Fluent.
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to reduce the time needed for convergence. The problem described in this study
illustrates a successful application of Sinc collocation to the treatment of nonlinear
partial di� erential equations.
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