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The laminar oscillatory flow inside a rectangular channel with wall suction is considered here. The
scope is limited to large suction imposed uniformly along the permeable walls. Inside the channel,
the onset of small amplitude pressure disturbances produces an oscillatory field that we wish to
investigate. Based on the normalized pressure-wave amplitude, the conservation equations are
linearized and split into leading-ordésteady and first-order(time-dependentequations. The
first-order set is subdivided into an acoustic, pressure-driven, wave equation, and a vortical,
boundary-driven, viscous equation. For longitudinal pressure oscillations, both equations are written
to the order of the wall suction Mach number. The resulting equations are then solved in an exact
fashion. The novelty lies in the vortical response that reduces to a Weber equation following a
Liouville—Green transformation. The emerging rotational solution is expressible in terms of
confluent hypergeometric functions of the suction Reynolds number, Strouhal number, and spatial
coordinates. The total solution is then constructed and found to coincide with the numerical solution
of the linearized momentum equation. The oscillatory velocity exhibits similar characteristics to the
exact Stokes profile for oscillations inside a long channel with hard walls. In particular, a thin
rotational layer is observed in addition to the small velocity overshoot near the wall. Both depth and
overshoot are nowhere near their values obtained by switching from mass extraction to mass
addition. In contrast to former studies involving injection, the so-called acoustic boundary layer is
found to depreciate when suction is increased or when viscosity is reduced. This response is similar
to that of the Stokes layer over hard walls. Overall, the effect of increasing frequency is that of
compressing the rotational layer near the wall. 28602 American Institute of Physics.
[DOI: 10.1063/1.1445419

I. INTRODUCTION formulations stem from a single, nonlinear, fourth-order, or-
dinary differential equatiodODE) that is an exact solution
The focus of this paper is to obtain an analytical solutionto the Navier—Stokes equations. The fundamental similarity
to the oscillatory velocity field in a porous channel with uni- equation was originally derived by Bernfaim his analysis
form wall suction. The scope is limited to the large suctionof flows that are bounded by porous surfaces. It depends on
case for which an exact solution can be obtained for bothhe cross-flow Reynolds numbeR&v,,h/v) that is based
pressure-driven and boundary-driven temporal velocitieson the wall suction velocity,, and the channel’s half height
The work is hoped to increase our understanding of oscillah, In fact, Berman’s landmark papehas set the stage to
tory and pulsatory flows in porous channels and tubes. Sucéxtensive porous channel flow studies. While some were
flows arise in the modeling of the respiratory function in concerned with developing analytical or numerical mean
lungs and airways, in the design of hydraulic line transmis{low solutions over different ranges of suctitr injection,
sions, in sweat cooling, and in boundary-layer control. Sincerthers have addressed issues regarding solution multiplicity
oscillatory flows with wall injection have already been ana-and stability.
lyzed in former studie$,the current article focuses on the With regards to suction flows in rectangular channels,
wall suction case. Another purpose for this study is to servéBerman was first in using asymptotic tools to solve the
as a prelude for a generalized formulation that could be apsteady flow problem for the small suction c&s®oon there-
plied to oscillatory flow problems with arbitrary levels of after, Yuan® Sellars? and TerrilP developed solutions that
suction. extended over increasingly larger ranges of suction. For ex-
Much work has been invested in the past for the treatample, Yual extended Berman’s range tR=20, and
ment of nonoscillatory flows in channels with the same ge-Sellaré produced one exact solution f®— . For large
ometry considered here. Throughout these studies, numeruction, Terril? presented an asymptotic solution that con-
cal, exact or asymptotic mean flow solutions are obtained fofained viscous corrections of ordBr 1. As R—o, Terrill's
different levels of suction or injection along the walls. Theseleading-order term reproduced Sellars’ exact solution for in-
finite suction. Note that later studies have indicated that three
Telephone: (414 288-6877; Fax (414 288-7790. Electronic mai: total solutions could exist for largR.°~** In fact, according
maji@mu.edu to Zaturska, Drazin, and BanRsthree types of symmetric
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FIG. 1. System geometry showing select mean flow streamlines.

solutions exist in separate intervals covering the entire rangeemporal field, it is the purpose of this article to find an
for suction. The three solutions are described as an increaanalytical solution that can be used to characterize the self-
ing concave down function, an increasing function with ainduced oscillatory field in a channel with large wall suction.
reflection point, and a nonmonotone function with a turningFor cases that involve externally induced mot{as opposed
point. These three solutions are referred to as types I, Il, antb self-triggered oscillations the same analysis presented
I, respectively. AsSR— <, solutions of type | and Il share here may be employed.
the same leading order linear term that is used in the current The mathematical modeling starts in Sec. Il with a defi-
analysis(cf. Zaturska, Drazin, and Banks. 165. The type  nition of the system geometry. This is followed by a listing
[l solution, however, is trigonometric in nature. It was first of pertinent assumptions and a description of the mean flow
alluded to by Robinsdhand further verified independently solution that is to be used. In Sec. Ill, the governing equa-
by MacGillivray and Lu’ and Zaturska, Drazin and Banks. tions are presented and decomposed into mean and time-
It has been finally illuminated in two contemporaneous ar-dependent sets. Section IV deals with the temporal set, which
ticles by Cox and King® and Lu!! These recent studies is further broken down into an acoustic and a vortical com-
have provided rigorous descriptions of the mean flow fieldponent. The pressure-driven response is dealt with immedi
arising from the type Il branch. Of the steady symmetricately, while the rotational component is left to be evaluated
solutions, only the type | branch has been shown to be tenin Sec. V. There, an exact solution to the vortical momentum
porally stable forR<<6.001 353. For larg®, all three solu- equation is derived, following a Liouville—Green transforma-
tions are unstable to disturbances of similarity form. For thistion. The attainment of the vortical set completes the solution
reason, it has been speculated that these solutions are uior the oscillatory velocity which is described in Sec. VI.
likely to be reproducible in practice. Yet no experimental
data is available to either confirm or deny their physicality.
In this article, we have made the tacit assumption that thg. DEFINING THE BASIC FLOW MODEL
leading order part of types | and Il can be a representativ
model of the mean flow field. This enables us to extract a
exact solution, be it academic, for the rotational disturbances. To begin, we consider a long slender channel with po-
In a later study, we hope to address the same problem witlous walls that are separated by a distanise Pherein, fluid
the type Il solution serving to describe the mean flow mo-is withdrawn from the porous surfaces at a uniform wall
tion. In that case, only asymptotic solutions will be shown tovelocity v,,. Having defined the length and width of the
exist following a careful application of perturbation tools. channel asL and w, we make the assumption of a two-

It should be noted that former mean flow studies havedimensional planar flow by imposing the conditiah. In
not considered possible fluctuations in the wall suction ratefact, Terrill has shown that whew/h=8, the presence of
Such fluctuations can be inevitable and take place at randohateral walls can be ignored. The system can be further sim-
frequencies. Those matching the channel’'s natural frequerplified by imposing the condition of symmetry about the
cies can be amplified to the point of promoting a self-channel’'s midsection plane. This enables us to reduce the
sustaining acoustic field. The oscillatory pressure distursolution domain to one half its original size. By way of il-
bances that are thus produced can give rise to acoustlastration, a cross section of the channel is shown in Fig. 1.
velocity oscillations that alter the mean flow character. TheFor a symmetric low aspect ratio channel, one can ignore
velocity oscillations stem from both acoustipressure- variations in thez direction and reduce the solution domain
driven) and vorticity (boundary-drivendisturbance mode¥.  to O<x<I, and O<y=<1, wherel =L/h is the dimensionless
Since no other study seems to have explored the resultinghannel length.

. The porous channel



Phys. Fluids, Vol. 14, No. 3, March 2002 Laminar flow in a porous channel with large suction 1103

Under the influence of small variations in the suctionC. The steady Sellars flow
rate, a channel that is rigid at the head end and isobarically
open at the aft end can develop longitudinal pressure oscih1
lations of amplitudeA. The corresponding acoustic fre-
guency is specified by

The mean flow solution can be obtained by employing
e similarity parameter suggested by Berridn. the ab-
sence of small amplitude pressure disturbances, the Navier—
Stokes equations can be solved exactly through the use of the
ws=(Mm—3) mag/L, (1)  steady stream function

whereag refers to the stagnation speed of sound, anid the W= —xF(y). )
oscillation mode number.
Defining uy=(ug,vo) to be the mean velocity vector nor-

B. Limiting conditions malized byv,,, one can express the componentsugfas

In order to simplify the analysis to the point where an (Uo,v0)=(—XF',F). The separable componefitmust sat-
analytical solution can be attempted, several restriction$’y Berman's equatich
must be observed. First, the mean flow is assumed to be _,; L m
laminar. The mechanisms of mixing, swirling, or turbulence F+R(F'F"—FF")=0, ®)
are also discounted. Constant thermostatic properties aigi:,
used, and the oscillatory pressure amplitude is taken to be
small in comparison with the stagnation pressure. The Mach  F’(0)=F(1)=F"(1)=0, F(0)=—1. (4)
number, defined a§l=v,,/a,, is taken to be a small param-
eter by imposing the conditioM < 1. Finally, owing to the For a study concerned with large suction, we consider the
fact that the mean flow is obtained for an infinitely large case investigated by Selldtgerrill,® and Zaturska, Drazin,
Reynolds number, our solutions are limited to<2R<<o. and Bank$ for which

Ry-1)—e e R*Y—-1]+ ;R% Ry-1)(y-3)+e "
R—1+(— iR?’+1)e R

F(y)=

=(y-1D(1+R YH+ IR*>+(R+1)(y—3)—2]e Ry—1)— (R *'+R e e ROV -1]+--
—y—1+O(RY). ®

Clearly, the basic solutiofr=y—1 proves to be exact for M?2y,.Vu,
R— o0, With this choice ofF, the velocity and vorticity fields

can be written as =—Vpo+ R 4V(V-up)/3—VX(Vxup)], (7)
wherefrom
Up=(=Xxy—1), VXup=0. (6) Po=7v 1—IMx?+(y—1)2]. €))

Note that, at leading order, satisfaction of the no-sliplil. GOVERNING EQUATIONS
condition at the wall is no longer a requirement for the mean, \ormalized Navier—Stokes
flow. This can be attributed to the fact that the mean flow for ~
large suction is insensitive to viscosity. Thus, whereas vis-  In order to express the differential conservation laws, we
cous dissipation will be later shown to play a key role inevoke dimensionless parameters and see that spatial coordi-
prescribing the weakly oscillatory flow behavior, its influ- nates are normalized by the total instantaneous velocity by
ence on the bulk fluid motion is negligible. Mathematically, a5, and time by the system’s oscillation frequensy. Em-
dropping the no-slip condition is justified because Berman'gloying asterisks to represent dimensional variables, spatial
equation given by(3) becomes a third-order differential and temporal coordinates, velocity, pressure and density can
equation(i.e., F'F"—FF"”=0) whenR—o. As such, only be set as

three of the four boundary conditions §4) will be needed. —x*/h —vt/h t=odtt -
The no-slip condition must be relaxed since the mean flow is x=xtIh, y=y*/h, o™, u=utfa,
no longer constrained by friction at the wall. It is suppressed  p=p*/yps and p=p*/ps, 9

in order to be consistent with the basic mean flow characte\;vhere is the stagnation densitv. Following this choice. the
that cannot be influenced by shear forces at the wall. Ps 9 Y- 9 !

After normalizing the mean pressure lyp,, (where y equations of continuity and motion can be expressed in the

is the ratio of specific heats, am is the stagnation pres- nondimensional form
sure, the complete momentum equation becomes wdpldt+V-(pu)=0, (10
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plwdul gt+(u-V)u] B. The linearized Navier—Stokes equations

= —Vp+Me[4V(V-u)/3—V X (VXU)]. (11) Insertion _of Eqs.(17) and (18) into Egs.(15) and (16)
) o ~leads to two independent sets that are only coupled through
Equations(10) and (11) follow the definitions of the nondi-  existing boundary conditions. One set that we call acoustic is

mensional frequency=wsh/as, the suction Mach number compressible and irrotational; the other, we call vortical, is

M=v,/as, and the small parameter=1/R. incompressible and rotational. These responses are byprod-
) ucts of pressure-driven and vorticity-driven oscillation
B. Perturbed variables modes at0().

With the introduction of small amplitude oscillations at a ,
frequencyws, the instantaneous pressure can be expressell The acoustic set
as the linear sum of the time-dependent and steady compo- —jup+V.-0=—-MV-(puy), (19
nents

p(x,y,1)=1/y+epi(x,y)exp —it)+ O(M?x?), (12

wherei=\—1, ande=A/(yp,) is the pressure wave am-
plitude. Expressing the density in the same manner, one geE The vortical set

p(X,y,)=1+epy(X,y)exp—it). 13 V.T=0, 21)

—iwl=—Vp+4MeV(V-0)/3—M[V(Q-uy)
— X (VXug)]. (20)

Following Lighthill in the assumption of small oscillatiof$,

the total velocity can be expanded as —lol=—MeVX(VXU)~M[V(U-up) ~TUX(VXUo)

u(x,y,t)=Mug(X,y) +eus(X,y)exp —it). (149 —UpX (VXT)]. (22
C. Total field decomposition C. Boundary conditions
Equations(12)—(14) must be inserted back into E¢&0) Unlike the Ibgsic mean flgw splution that does npt pro-
and (11). The zero-order terms yield the mean flow equa_duce any vorticity, the rotationality that accompanies the
tions. Likewise,O(s) terms result in small time-dependent fluctuations is susceptible to viscous
) dissipation. The strong sensitivity to viscosity must therefore
—lwp+V-u1=—MV-(piUp), (19 pe accounted for by insuring that friction at the wall is felt by
—iwuy;=—M[V(Ug-Uy)— Uy X (VX Ug) temporal oscillations. In fact, without friction at the wall, no
! ot ! 0 unsteady vorticity can be generated. At the outset, one real-
—UpX (VXU ]—=Vp1+Me[4V(V-uy)/3 izes that the two boundary conditions that must be satisfied
—VX(VXup)]. (16) by the unsteady velocity componemt have to be the same

as those used in the injection-flow analoderé® namely, the
Equations(15) and (16) describe the intimate coupling be- no-slip condition at the wallu;(x,0)=0, and symmetry
tween mean and steady motions. They clearly indicate thaibout the midsection plan&u;(x,1)/dy=0. In principle,

the mean velocity, has a strong influence on the oscillatory these conditions must be observed whenever symmetric
flow componenu; . mean flow solutions are used to represent the bulk fluid mo-
tion.

IV. TEMPORAL FIELD DECOMPQOSITION

) ) D. Acoustic solution
A. Irrotational and solenoidal vectors

. Assuming, as usual, isentropic pressure oscillations,
In order to further proceed, the temporal disturbances a'fhe linearization process yields=p. In order to recognize

split into solenoidal and irrotational components. Using 3that p=p, it is useful to recall the fundamental isentropic
circumflex to denote the curl-free pressure-driven part, and folation p*/ps=(p*/ps)?. Following Egs.(12) and (13
tilde for the divergence-free boundary-driven part, the time-; o carll Writes s '

dependent velocity component can be expressed as .
P* =pstApi(X,y)exp—it),

U1:0+U, (17)

with p* =pd 1+Epy(x,y)exp —it)], (23

wheree=A/(yps) is the dimensionless pressure wave am-
plitude. Substitution of the expanded variables into the isen-
This decomposition charges all vortices to the solenoidatropic relation yields

field, and compressibility sources and sinks to the irrotational . — .
field. Such decomposition is based on a fundamental theorems T APLX Y)exp(—it) 1 [pd1+eps(xy)exp—it)]|”
of vector analysis that was first addressed by Stékes 7Ps Y Ps

1849 and then proven rigorously by Blumenthal in 1905. (24)
Furthermore, the celebrated theorem appears to be at the romhere both sides have been divided fayAt this point, it is
of Helmholtz’s work on vortex motion in 1858. clear that

Q1=VXU1=VXTJ, pl:ﬁ, pl:ﬁ (18)
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vy Y4+epexp—it)=y Y1+ep,exp —it)]”

=y [1+yep exp —it)
; herec, is an integration constant associated with Sat-
+ 1 exp(—2it)/21+---],  Wherecy : >
iy et p1 " ) I isfaction of the no-slip boundary condition at the wall re-
(25  quires setting the acoustic and vortical velocity components

where the binomial formula has been used to expand th@dual and opposite t=0. One finds
right-hand side. Truncating trje se'rie.s @ts?) gives p; TU(x,0)= —i sin( wX). (33)
=p; and, from Eq.(18), p=p. This is so because the _ _ _ _ _ _
pseudopressure and density arising from the rotational sollJsing a series expansion of the sine function, and setting the

n(x,y)=; CaX Y (y), (32

tion are of second order in the wave amplitd@e. result equal to Eq(32), one gets
At this juncture, one can multiply E419) by —i o, take (—1)"(wx)21*1
the divergence of Eq20), and combine the resulting terms; 2 CX"nY,(0)=—i 2 A (34)
a wave equation is produced, namely n=0 (2n+1)!
V2p+ w?p=4MeV3(V-0)/3—M{i 0V - (Usp) Equating terms yields
+V2(0-Ug) — V-[GX (VX Ug) ]} 26 (—1)"w®
(0-0g) = V-[0X(VXu) ;. (28 _onyg, =i g Y(@=1 @9

A solution atO(M) can be achieved through the use of sepa-
ration of variables. This solution, corresponding to longitu-wheren=0,1,2,...5c. The expression for the rotational com-
dinal oscillations, proceeds from the rigid wall boundary ponent becomes
conditions. At the outset, the acoustic pressure and velocity
( 1) ( )2n+1
become _
T(x,y)=—i 2

R o R i=o (2n+1)! ne (36)
p=cogwx)+O(M), O=isin(wx)i+O(M). (27

In order to complete Eq(36), Y, needs to be determined
E. Vortical equations from Eq. (31). The search foiY, leads to a boundary-value

. . roblem of the form
Assuming that the ratio of the normal to thep

x-component of the velocity is of the same order as the Mach d?v, no.
number(i.e.,5/l=0O(M)), 7 can be neglected. This assump- & gz ~ (Y~ 1) - +(ISr+2n+2)¥,=0, (37)
tion can be justified in view of the arguments presented by

Flandrd® and Majdalani and Van MoorhemApplying this  that is subject to

pondition, along with the definition of the mean flow veloc- Ya(0)=1, Y!(1)=0. (39)
ity, the x-component of the momentum equation reduces to

o The two boundary conditions stem from the no-slip and core

d Ju U :
iISIT= — (T el symmetry requirements.
iSru ﬁx(uu0)+vo(9y 8&y2+O(M)’ (289
where Sr=w/M is the Strouhal number. For large suction, B- The Liouville—Green transformation
Eq. (28) becomes Careful examination of Eq37) leads us to believe that
qJu proy an exact solution is tractable if the equation is first trans-
iISru=(y— 1) — a——u e 2 +O(M). (29)  formed from a variable coefficient ODE, to an equation with
x y constant coefficients. Working toward that end, the
An exact solution to Eq(29) is presented next. Liouville—Green transformation is applied by first setting
=1-vy. This transforms Eq(37) into
V. THE EXACT SOLENOIDAL SOLUTION dZY“ dv, .
: sF—rW+(|Sr+2n+2)Yn:O, (39
A. The separable boundary-layer equation
. . ith bound dition¥ ,(1)=1 andY/(0)=0. Next,
An exact solution to Eq(29) can be achieved through \éVéfineoun ary condition¥,(1)=1 andY(0) ext, we
the use of separation of variables. Assuming the form
~ Z=¢(r), B(Z)=u¢(r)Y,(r). 40
Bxy) = XOOY(Y). 30 ¢(r),  B(Z)=y(r)Yy(r) (40

substitution into Eq(29) leads to These change the derivatives Yf into

x dX (y—1)dY e d?Y dy, ¢’ 1dBdz ¢ ¢,_

i A iSr—1=«,, (31 ?:_?B Wy dzZ dr ¢_

¥
wherex,>0 is the separation eigenvalue. Integration of the ~ &°Y, ¢'*d*B [¢" 2¢ lﬁ (Y 21#'2
x-equation can be performed easily and then inserted into Eq.  dr2 ¢ dz2 '\ ¢ WP

(30). The solution becomes (42)

(41)

dz’
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where primes stand for differentiation with respect t&ub-
stitution of these derivatives into E(39) gives

( 2¢'y’

1 w// 2¢/2 erI
+—f2<7+7+7)8

+ —>(iSr+2n+2)B=0.

¢
R (43
¢

The functionsys and ¢ are now chosen to force the variable
coefficients in the transformed equation to be constant val- Y(r)
ues. To do this, the coefficient of the first derivative term is

set equal to zero; hence

Y= (¢" 1" —TR)/I2. (44)

Integrating givesy=Hq\¢' exp(—Rr%/4), whereH, is a
subsidiary constant. Equatid43) simplifies into

&’B R

=2 ?(|Sr—2n+2)+5 B=0, (45)
where

" 12 !
By imposing
R

W[iSr+(2n+2)]=constant, (47)
one obtains

¢'=\R and Z=¢=rR. (48)
Furthermore, settingl,=1/4/R gives

(r)=exp—Rr?/4). (49)

Finally, the transformed equation and corresponding boundﬂl:i sin(wx) — E

ary conditions become

dzB 1 152 i
@+(p+5—zz )B=0; p=2+2n+iSr, (50
with
dB(0
B(\R) = exp — R/4): %:o. (51)

C. The complete solution

T. A. Jankowski and J. Majdalani

wherel is Euler's Gamma function an® is the confluent
hypergeometric function. The latter is expandable in a series
of the type

ax a(atl) x?

CI>(a,b;x)=1+ BF+ mg

a(a+1)(a+2) x3
Tb+Db+2) 31

Substitution of Eqs(52) and (53) into Eq. (40) leads to

(54

®(—3p, 3, 3Rr?)
d(—1ip,3, 3R

(59

One may now revert back to original variables and revisit
Eq. (36). One finds

< (FD)Y @) P[- 3p, 3, zR(Y-1)?]
11 )
212

U=—i
A=0 (2n+1)!®d(—3p, 3,3R)

(56)

Using continuity, the normal component of the rotational ve-
locity can be deduced also. From Eg1) we have

- Ju

v——J'Edy

S D@0t 3 R

T S T e ip s iR
(57)

where A(x) is an admittance function that depends on the
wall's material properties and porosity. In view of E¢S6)
and (57), the total oscillatory velocity can now be con-
structed by summing both acoustical and vortical compo-
nents. At length, one obtains

(= 1D)"(wx)?""1d(a,b, 1RF?)

n=0 (2n+1)!®(a,b, 3R)
(58
Z(—1)"(wx)?"d(a,c, sRF?)
—iwF iAX), (59
vamle nZO (2n)!®(a,b, iR) HAK), (59

with a=—1—n—3iSr, b=1/2, andc=3/2.

D. Numerical verification

The analytical solution that we constructed can be easily

is known to have independent solutions that are paraboli€29). This can be accomplished using the same numerical

cylinder functions of the form
B(Z2)=KiDp(Z2)+K;Dp(—2). (52

code that was developed by Majdalani and Van Moorhem
for the injection case. For large suction, we obtain a uniform
agreement of at least six significant digits using a step size of

_ 76 . . . . .
Due to the complexity of the parabolic cylinder functions, AY=5x10"". Note that, for injection, numerical predic-
symbolic programming may be relied upon to evaluate thdions acquired by the same code were shown, in previous

constantsK; and K,. This is done in fulfilment of the
boundary conditions given by E¢1). The result is

Ki=Kp=2 1P (3= 3p)/[Va®(~ 3p, 3, 3R)], (53

studiest*® to agree with both asymptotic and experimental
observations.

Comparing the numerical output to the asymptotic solu-
tion of the linearized momentum equatifdag. (29)] serves a



Phys. Fluids, Vol. 14, No. 3, March 2002

Y
y

AN

-1.5 1.5
a)

Ya
y

Vil

) N B /l
R WP )

-1.5 -1.0 -0.5 0 0.5 1.0 1.5
b)

Ya
y

v L

Y R -& 4&4’:) —

-15 -1.0 -0.5 0 0.5 1.0 1.5
<)

FIG. 2. The oscillatory velocity, exp(—it) plotted at eight different times

for m=1, x/I=1, Sr=20, and(a) R=20, (b) R=50, and(c) R=100. This
variation can be due to a progressive decrease in viscosity. tHevere-
sponds to—— 0°, — — — —45°,----90°, 135°, 180°
---- 225°,.... 270°, ——-—- 315°,—— 360°.
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FIG. 3. The oscillatory velocityl, exp(—it) plotted at eight different times

for x/I=1, R=20, andm=1. Properties correspond t@ Sr=10 and

(b) Sr=100. This variation is due to an order of magnitude increase in

oscillation frequency. Highe®r increase the overshoot while reducing the

penetration depth. Herecorresponds te—— 0°, — — — — 45°---- 90°,
135°, 180°, ---- 225°:... 270°, ——— 315°,

— 360°.

to be a traveling wave with two distinct components. A vis-
cous, rotational component that is dominant near the wall,
and an inviscid, acoustic part that is retained near the core.
While their sum satisfies the no slip at the wall, the rotational
part decays as the distance from the wall is increased. The
rotational layer and corresponding thickness appear to be
largest for relatively small values of the suction Reynolds
number. The profile also exhibits a small velocity overshoot
near the wall. This phenomenon is known as Richardson’s
annular effect and is a characteristic of oscillatory flGiv&.

dual purpose. First, it increases our confidence in the numerfan take place near the wall when rotational and acoustic
cal algorithm that we used to integrate the momentum equa¥aves have favorable phases and, hence, additive ampli-

tion. Second, it insures the correctness of the procedure thi4des.

led to the exact solution.

VI. DISCUSSION

In order to illustrate the effect dR on the solution, the
suction Reynolds number is increased in Fig. 2 by one order
of magnitude while keeping other variables constant. As the
Reynolds number is increased, viscous effects become less

Based on Eg.(58), the time evolution of the pronounced: The penetration defile., rotational boundary-
x-component of the velocity is analyzed in Figs. 2—4 over adayer) becomes smaller. The Richardson overshoot also di-
range of parameters. At first glance, the profiles seem to comminishes. This effect is to be expected because the convec-
cur with the classic theory of time-dependent flows. In par-tive withdrawal at the wall becomes more appreciable with
ticular, the reader is referred to the fairly well-presented sursuccessive increases iR Clearly, suction seems to inhibit
vey by Rott?® On that account, a strong resemblance isthe boundary-layer growth near the wall. This effect is con-
found between our solution and the oscillatory flow solutiontrary to what has been reported in the presence of injection.
over nonpermeable walls. In both cases, the velocity appearss shown by MajdalariP‘®increasing injection increases the
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FIG. 4. The oscillatory velocity; exp(~it) plotted at eight different times i, 5. Comparison between the oscillatory velocities with and without
for x/I=1, andm=1. Properties correspond 1@ R=20, Sr=>50, and  gyction. Bothu, exp(~it) and the exact Stokes soluti¢over hard wallsare

(b) R=200, Sr=5. This variation is due to an order of magnitude increase shown at eight different times fo| = 1, v,,= 2/ [ow. andm=1. Param-

in suction speed. Clearly, large suction reduces both penetration deptle*lterS are(a) R=20, Sr=16, and(b) R=’180 Sr= 805 "rhe SUCtiOI’.‘I speed is

and overshlo3c;t; Here correlsggfd to 225000' - _27_O: 45°% - -- 3221 set below the small Stokes diffusion speed. Timelines show that the penetra-
R ’ T T ' tion depth and overshoot are reduced with suction. Heserresponds to
360°. — 0°, — — — —45° - - - - 90°, 135°, 180°, - 225°,

- 270°, ——— 315°,—— 360°.

penetration depth. Injection also leads to a substantially

larger velocity overshoot. _ o eral similarities with the classic Stokes layer over hard walls.
~InFig. 3, the effect of varying the oscillation frequency as opposed to the penetration depth with injection, the suc-
is captured. Thus, as the Strouhal number is increased frofghn poundary layer here is much thinner. The velocity over-
10 to 100, a slight increase in the Richardson effect is notedsnoot is also minimal. These characteristics are markedly
This is accompanied by a reduction in penetration depth. OUgitferent from the basic features of an oscillatory flow with
observation indicates a consistency with the effect of varying, 4 injection 516

frequency in the presence of injection. In both cases, increas- |5 order to compare our solution directly to the exact
ing frequency increases the temporal velocity near the walgoytion by Stokes, the suction speed is reduced to a value

and decreases the penetration depth. The increased overshgglo\ the Stokes diffusion speed2w.r. Letting v,
can be attributed to the fact that the normal rotational wave-_ 21/6@ the Stokes number becomes

length is inversely proportional t8r. A shorter wavelength

leads, of course, to a vortico-acoustic coupling that is closer hVwg/2r=Sr*/R. (60)

to the wall. Since the vortical amplitude increases as we £ this particular condition, one can compare in Fig. 5
draw nearer to the wall, a larger vortical contribution can b&ye cyrrent asymptotic solution to the Stokes exact profile for
added to the acoustic component at shorter wavelengthggijiations in a channel with hard walls. In the interest of
This additional contribution is responsible for the mcreaseddarity’ the Stokes profile is expressed in our homenclature

overshoot, _ _and written as
In Fig. 4, all parameters are fixed except for the suction

speed. Hence, as, is increased by one order of magnitude, U exp(—it)=sin(t) —exd ySrR2(y—1)]

a reduction in penetration depth and brea@thershoox are . e oia e,

noted. The influence of suction speed on altering the flow Xsint+ySrR2(y=1)]. (6D
character is certainly the greatest. Surveying these figures @#s shown at two different Reynolds numbers, the presence
a whole suggests that, over a wide range of Reynolds andf suction attracts the shear layers closer to the wall. As a
Strouhal numbers, the boundary layer at the wall shares sevesult, both rotational depth and overshoot are reduced when
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FIG. 7. Plots ofG=v/(M1u) versusy for Sr=50 andm=1 at various
FIG. 6. Boundary-layer thickness versus the viscous parameter for a ReyReynolds numbers. Axial positions correspond(& x/I=0.25, and(b)
nolds number ranging betwedt=20 andR=200 at(a) m=1 and(b) m x/1=0.5. Results support the assumption thé&li=O(M). Suction Rey-

=2. The penetration depth is seen to decrease with increases in both Regelds numbers correspond te:— 100; -------- 90; ------ 8Q------ 70;
nolds number and Strouhal number. In addition, some axial dependence on------ 60; -- -- -- 50; - - ---- 40;- - - - - 30; 20.
boundary-layer thickness is noted. Solid and broken lines correspond to

x/l=——0.01, ------ 0.99.

be substantiated by definirg=7/(tiM) and later verifying
o ) ) ~ thatG~O(1). This is indeed accomplished in Fig. 7 where
suction is present. The boundary-layer thickness with suctiog; js evaluated at several axial locations. Clearly, the magni-
is thus thinner than the traditional Stokes layer. tude ofG increases as we move toward the head end. Despite
In Fig. 6, the penetration depth is plotted versus the ipig spatial dependence, appears to be ab(1) throughout

; —Q@2_ . 2 3 : : : _
viscous parameteg=gSr'=vwshuv,,~ at axial locations the channel length. Being the outcome of an exact solenoidal

corresponding to the fore and aft ends of the channel. Thegytion, this result indicates that our assumptionzé
Reynolds and Strouhal numbers are varied throughout the (M) used in Sec. IV E was justifiable.
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