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Laminar flow in a porous channel with large wall suction and a weakly
oscillatory pressure

Todd A. Jankowski and Joseph Majdalania)
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~Received 19 January 2001; accepted 29 November 2001!

The laminar oscillatory flow inside a rectangular channel with wall suction is considered here. The
scope is limited to large suction imposed uniformly along the permeable walls. Inside the channel,
the onset of small amplitude pressure disturbances produces an oscillatory field that we wish to
investigate. Based on the normalized pressure-wave amplitude, the conservation equations are
linearized and split into leading-order~steady! and first-order~time-dependent! equations. The
first-order set is subdivided into an acoustic, pressure-driven, wave equation, and a vortical,
boundary-driven, viscous equation. For longitudinal pressure oscillations, both equations are written
to the order of the wall suction Mach number. The resulting equations are then solved in an exact
fashion. The novelty lies in the vortical response that reduces to a Weber equation following a
Liouville–Green transformation. The emerging rotational solution is expressible in terms of
confluent hypergeometric functions of the suction Reynolds number, Strouhal number, and spatial
coordinates. The total solution is then constructed and found to coincide with the numerical solution
of the linearized momentum equation. The oscillatory velocity exhibits similar characteristics to the
exact Stokes profile for oscillations inside a long channel with hard walls. In particular, a thin
rotational layer is observed in addition to the small velocity overshoot near the wall. Both depth and
overshoot are nowhere near their values obtained by switching from mass extraction to mass
addition. In contrast to former studies involving injection, the so-called acoustic boundary layer is
found to depreciate when suction is increased or when viscosity is reduced. This response is similar
to that of the Stokes layer over hard walls. Overall, the effect of increasing frequency is that of
compressing the rotational layer near the wall. ©2002 American Institute of Physics.
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I. INTRODUCTION

The focus of this paper is to obtain an analytical solut
to the oscillatory velocity field in a porous channel with un
form wall suction. The scope is limited to the large sucti
case for which an exact solution can be obtained for b
pressure-driven and boundary-driven temporal velocit
The work is hoped to increase our understanding of osc
tory and pulsatory flows in porous channels and tubes. S
flows arise in the modeling of the respiratory function
lungs and airways, in the design of hydraulic line transm
sions, in sweat cooling, and in boundary-layer control. Sin
oscillatory flows with wall injection have already been an
lyzed in former studies,1 the current article focuses on th
wall suction case. Another purpose for this study is to se
as a prelude for a generalized formulation that could be
plied to oscillatory flow problems with arbitrary levels o
suction.

Much work has been invested in the past for the tre
ment of nonoscillatory flows in channels with the same
ometry considered here. Throughout these studies, num
cal, exact or asymptotic mean flow solutions are obtained
different levels of suction or injection along the walls. The

a!Telephone: ~414! 288-6877; Fax ~414! 288-7790. Electronic mail:
maji@mu.edu
1101070-6631/2002/14(3)/1101/10/$19.00
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formulations stem from a single, nonlinear, fourth-order,
dinary differential equation~ODE! that is an exact solution
to the Navier–Stokes equations. The fundamental simila
equation was originally derived by Berman2 in his analysis
of flows that are bounded by porous surfaces. It depends
the cross-flow Reynolds number (R[vwh/n) that is based
on the wall suction velocityvw and the channel’s half heigh
h. In fact, Berman’s landmark paper2 has set the stage t
extensive porous channel flow studies. While some w
concerned with developing analytical or numerical me
flow solutions over different ranges of suction~or injection!,
others have addressed issues regarding solution multipl
and stability.

With regards to suction flows in rectangular channe
Berman was first in using asymptotic tools to solve t
steady flow problem for the small suction case.2 Soon there-
after, Yuan,3 Sellars,4 and Terrill5 developed solutions tha
extended over increasingly larger ranges of suction. For
ample, Yuan3 extended Berman’s range toR520, and
Sellars4 produced one exact solution forR→`. For large
suction, Terrill5 presented an asymptotic solution that co
tained viscous corrections of orderR21. As R→`, Terrill’s
leading-order term reproduced Sellars’ exact solution for
finite suction. Note that later studies have indicated that th
total solutions could exist for largeR.6–11 In fact, according
to Zaturska, Drazin, and Banks,8 three types of symmetric
1 © 2002 American Institute of Physics
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FIG. 1. System geometry showing select mean flow streamlines.
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solutions exist in separate intervals covering the entire ra
for suction. The three solutions are described as an incr
ing concave down function, an increasing function with
reflection point, and a nonmonotone function with a turni
point. These three solutions are referred to as types I, II,
III, respectively. AsR→`, solutions of type I and II share
the same leading order linear term that is used in the cur
analysis~cf. Zaturska, Drazin, and Banks,8 p. 165!. The type
III solution, however, is trigonometric in nature. It was fir
alluded to by Robinson6 and further verified independentl
by MacGillivray and Lu,7 and Zaturska, Drazin and Banks8

It has been finally illuminated in two contemporaneous
ticles by Cox and King,10 and Lu.11 These recent studie
have provided rigorous descriptions of the mean flow fi
arising from the type III branch. Of the steady symmet
solutions, only the type I branch has been shown to be t
porally stable forR,6.001 353. For largeR, all three solu-
tions are unstable to disturbances of similarity form. For t
reason, it has been speculated that these solutions are
likely to be reproducible in practice. Yet no experimen
data is available to either confirm or deny their physical
In this article, we have made the tacit assumption that
leading order part of types I and II can be a representa
model of the mean flow field. This enables us to extract
exact solution, be it academic, for the rotational disturbanc
In a later study, we hope to address the same problem
the type III solution serving to describe the mean flow m
tion. In that case, only asymptotic solutions will be shown
exist following a careful application of perturbation tools.

It should be noted that former mean flow studies ha
not considered possible fluctuations in the wall suction ra
Such fluctuations can be inevitable and take place at ran
frequencies. Those matching the channel’s natural frequ
cies can be amplified to the point of promoting a se
sustaining acoustic field. The oscillatory pressure dis
bances that are thus produced can give rise to acou
velocity oscillations that alter the mean flow character. T
velocity oscillations stem from both acoustic~pressure-
driven! and vorticity~boundary-driven! disturbance modes.12

Since no other study seems to have explored the resu
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temporal field, it is the purpose of this article to find a
analytical solution that can be used to characterize the s
induced oscillatory field in a channel with large wall suctio
For cases that involve externally induced motion~as opposed
to self-triggered oscillations!, the same analysis presente
here may be employed.

The mathematical modeling starts in Sec. II with a de
nition of the system geometry. This is followed by a listin
of pertinent assumptions and a description of the mean fl
solution that is to be used. In Sec. III, the governing eq
tions are presented and decomposed into mean and t
dependent sets. Section IV deals with the temporal set, w
is further broken down into an acoustic and a vortical co
ponent. The pressure-driven response is dealt with imm
ately, while the rotational component is left to be evalua
in Sec. V. There, an exact solution to the vortical moment
equation is derived, following a Liouville–Green transform
tion. The attainment of the vortical set completes the solut
for the oscillatory velocity which is described in Sec. VI.

II. DEFINING THE BASIC FLOW MODEL

A. The porous channel

To begin, we consider a long slender channel with p
rous walls that are separated by a distance 2h. Therein, fluid
is withdrawn from the porous surfaces at a uniform w
velocity vw . Having defined the length and width of th
channel asL and w, we make the assumption of a two
dimensional planar flow by imposing the conditionw@h. In
fact, Terrill has shown that whenw/h>8, the presence o
lateral walls can be ignored. The system can be further s
plified by imposing the condition of symmetry about th
channel’s midsection plane. This enables us to reduce
solution domain to one half its original size. By way of i
lustration, a cross section of the channel is shown in Fig
For a symmetric low aspect ratio channel, one can ign
variations in thez direction and reduce the solution doma
to 0<x< l , and 0<y<1, wherel 5L/h is the dimensionless
channel length.
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Under the influence of small variations in the sucti
rate, a channel that is rigid at the head end and isobaric
open at the aft end can develop longitudinal pressure o
lations of amplitudeA. The corresponding acoustic fre
quency is specified by

vs5~m2 1
2!pas /L, ~1!

whereas refers to the stagnation speed of sound, andm is the
oscillation mode number.

B. Limiting conditions

In order to simplify the analysis to the point where
analytical solution can be attempted, several restricti
must be observed. First, the mean flow is assumed to
laminar. The mechanisms of mixing, swirling, or turbulen
are also discounted. Constant thermostatic properties
used, and the oscillatory pressure amplitude is taken to
small in comparison with the stagnation pressure. The M
number, defined asM[vw /as , is taken to be a small param
eter by imposing the conditionM!1. Finally, owing to the
fact that the mean flow is obtained for an infinitely lar
Reynolds number, our solutions are limited to 20<R,`.
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C. The steady Sellars flow

The mean flow solution can be obtained by employi
the similarity parameter suggested by Berman.2 In the ab-
sence of small amplitude pressure disturbances, the Nav
Stokes equations can be solved exactly through the use o
steady stream function

C52xF~y!. ~2!

Defining u05(u0 ,v0) to be the mean velocity vector nor
malized byvw , one can express the components ofu0 as
(u0 ,v0)5(2xF8,F). The separable componentF must sat-
isfy Berman’s equation2

Fiv1R~F8F92FF-!50, ~3!

with

F8~0!5F~1!5F9~1!50, F~0!521. ~4!

For a study concerned with large suction, we consider
case investigated by Sellars,4 Terrill,5 and Zaturska, Drazin
and Banks,8 for which
F~y!5
R~y21!2e2R@e2R~12y!21#1 1

2R
2e2R~y21!~y23!1e2R

R211~2 1
2R

211!e2R

5~y21!~11R21!1 1
2@R21~R11!~y23!22#e2R~y21!2~R211R22!e2R@e2R~12y!21#1¯

5y211O~R21!. ~5!
we
ordi-
y

tial
can

he
the
Clearly, the basic solutionF5y21 proves to be exact fo
R→`. With this choice ofF, the velocity and vorticity fields
can be written as

u05~2x,y21!, ¹3u050. ~6!

Note that, at leading order, satisfaction of the no-s
condition at the wall is no longer a requirement for the me
flow. This can be attributed to the fact that the mean flow
large suction is insensitive to viscosity. Thus, whereas
cous dissipation will be later shown to play a key role
prescribing the weakly oscillatory flow behavior, its influ
ence on the bulk fluid motion is negligible. Mathematical
dropping the no-slip condition is justified because Berma
equation given by~3! becomes a third-order differentia
equation~i.e., F8F92FF-50! whenR→`. As such, only
three of the four boundary conditions in~4! will be needed.
The no-slip condition must be relaxed since the mean flow
no longer constrained by friction at the wall. It is suppress
in order to be consistent with the basic mean flow chara
that cannot be influenced by shear forces at the wall.

After normalizing the mean pressure bygps , ~whereg
is the ratio of specific heats, andps is the stagnation pres
sure!, the complete momentum equation becomes
n
r
-

’s

is
d
er

M2u0•¹u0

52¹p01R21@4¹~¹•u0!/32¹3~¹3u0!#, ~7!

wherefrom

p05g212 1
2M

2@x21~y21!2#. ~8!

III. GOVERNING EQUATIONS

A. Normalized Navier–Stokes

In order to express the differential conservation laws,
evoke dimensionless parameters and see that spatial co
nates are normalized byh, the total instantaneous velocity b
as , and time by the system’s oscillation frequencyvs . Em-
ploying asterisks to represent dimensional variables, spa
and temporal coordinates, velocity, pressure and density
be set as

x5x* /h, y5y* /h, t5vst* , u5u* /as ,

p5p* /gps and r5r* /rs , ~9!

wherers is the stagnation density. Following this choice, t
equations of continuity and motion can be expressed in
nondimensional form

v]r/]t1¹•~ru!50, ~10!
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r@v]u/]t1~u•¹!u#

52¹p1M«@4¹~¹•u!/32¹3~¹3u!#. ~11!

Equations~10! and ~11! follow the definitions of the nondi-
mensional frequencyv[vsh/as , the suction Mach numbe
M[vw /as , and the small parameter«[1/R.

B. Perturbed variables

With the introduction of small amplitude oscillations at
frequencyvs , the instantaneous pressure can be expres
as the linear sum of the time-dependent and steady com
nents

p~x,y,t !51/g1 «̄p1~x,y!exp~2 i t !1O~M2x2!, ~12!

where i 5A21, and «̄5A/(gps) is the pressure wave am
plitude. Expressing the density in the same manner, one

r~x,y,t !511 «̄r1~x,y!exp~2 i t !. ~13!

Following Lighthill in the assumption of small oscillations,13

the total velocity can be expanded as

u~x,y,t !5Mu0~x,y!1 «̄u1~x,y!exp~2 i t !. ~14!

C. Total field decomposition

Equations~12!–~14! must be inserted back into Eqs.~10!
and ~11!. The zero-order terms yield the mean flow equ
tions. Likewise,O( «̄) terms result in

2 ivr11¹•u152M¹•~r1u0!, ~15!

2 ivu152M @¹~u0•u1!2u13~¹3u0!

2u03~¹3u1!#2¹p11M«@4¹~¹•u1!/3

2¹3~¹3u1!#. ~16!

Equations~15! and ~16! describe the intimate coupling be
tween mean and steady motions. They clearly indicate
the mean velocityu0 has a strong influence on the oscillato
flow componentu1 .

IV. TEMPORAL FIELD DECOMPOSITION

A. Irrotational and solenoidal vectors

In order to further proceed, the temporal disturbances
split into solenoidal and irrotational components. Using
circumflex to denote the curl-free pressure-driven part, an
tilde for the divergence-free boundary-driven part, the tim
dependent velocity component can be expressed as

u15û1ũ, ~17!

with

V15¹3u15¹3ũ, p15 p̂, r15 r̂. ~18!

This decomposition charges all vortices to the soleno
field, and compressibility sources and sinks to the irrotatio
field. Such decomposition is based on a fundamental theo
of vector analysis that was first addressed by Stokes14 in
1849 and then proven rigorously by Blumenthal in 190
Furthermore, the celebrated theorem appears to be at the
of Helmholtz’s work on vortex motion in 1858.
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B. The linearized Navier–Stokes equations

Insertion of Eqs.~17! and ~18! into Eqs.~15! and ~16!
leads to two independent sets that are only coupled thro
existing boundary conditions. One set that we call acousti
compressible and irrotational; the other, we call vortical,
incompressible and rotational. These responses are byp
ucts of pressure-driven and vorticity-driven oscillatio
modes atO( «̄).

1. The acoustic set

2 ivr̂1¹•û52M¹•~ r̂u0!, ~19!

2 ivû52¹ p̂14M«¹~¹•û!/32M @¹~ û•u0!

2û3~¹3u0!#. ~20!

2. The vortical set

¹•ũ50, ~21!

2 ivũ52M«¹3~¹3ũ!2M @¹~ ũ•u0!2ũ3~¹3u0!

2u03~¹3ũ!#. ~22!

C. Boundary conditions

Unlike the basic mean flow solution that does not p
duce any vorticity, the rotationality that accompanies t
small time-dependent fluctuations is susceptible to visc
dissipation. The strong sensitivity to viscosity must therefo
be accounted for by insuring that friction at the wall is felt b
temporal oscillations. In fact, without friction at the wall, n
unsteady vorticity can be generated. At the outset, one r
izes that the two boundary conditions that must be satis
by the unsteady velocity componentu1 have to be the same
as those used in the injection-flow analogue;15,16 namely, the
no-slip condition at the wallu1(x,0)50, and symmetry
about the midsection plane,]u1(x,1)/]y50. In principle,
these conditions must be observed whenever symme
mean flow solutions are used to represent the bulk fluid m
tion.

D. Acoustic solution

Assuming, as usual,17 isentropic pressure oscillations
the linearization process yieldsp̂5 r̂. In order to recognize
that p̂5 r̂, it is useful to recall the fundamental isentrop
relation, p* /ps5(r* /rs)

g. Following Eqs. ~12! and ~13!,
one can write

p* 5ps1Ap1~x,y!exp~2 i t !,
~23!

r* 5rs@11 «̄r1~x,y!exp~2 i t !#,

where «̄5A/(gps) is the dimensionless pressure wave a
plitude. Substitution of the expanded variables into the is
tropic relation yields

ps1Ap1~x,y!exp~2 i t !

gps
5

1

g H rs@11 «̄r1~x,y!exp~2 i t !#

rs
J g

,

~24!

where both sides have been divided byg. At this point, it is
clear that
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g211 «̄p1 exp~2 i t !5g21@11 «̄r1 exp~2 i t !#g

5g21@11g«̄r1 exp~2 i t !

1g~g21!«̄2r1
2 exp~22i t !/2!1¯#,

~25!

where the binomial formula has been used to expand
right-hand side. Truncating the series atO( «̄2) gives p1

5r1 and, from Eq. ~18!, p̂5 r̂. This is so because th
pseudopressure and density arising from the rotational s
tion are of second order in the wave amplitude.12

At this juncture, one can multiply Eq.~19! by 2 iv, take
the divergence of Eq.~20!, and combine the resulting term
a wave equation is produced, namely

¹2p̂1v2p̂54M«¹2~¹•û!/32M $ iv¹•~u0p̂!

1¹2~ û•u0!2¹•@ û3~¹3u0!#%. ~26!

A solution atO(M ) can be achieved through the use of se
ration of variables. This solution, corresponding to longi
dinal oscillations, proceeds from the rigid wall bounda
conditions. At the outset, the acoustic pressure and velo
become

p̂5cos~vx!1O~M !, û5 i sin~vx! î1O~M !. ~27!

E. Vortical equations

Assuming that the ratio of the normal to th
x-component of the velocity is of the same order as the M
number~i.e., ṽ/ũ5O(M )!, ṽ can be neglected. This assum
tion can be justified in view of the arguments presented
Flandro18 and Majdalani and Van Moorhem.1 Applying this
condition, along with the definition of the mean flow velo
ity, the x-component of the momentum equation reduces

iSrũ5
]

]x
~ ũu0!1v0

]ũ

]y
2«

]2ũ

]y2 1O~M !, ~28!

whereSr[v/M is the Strouhal number. For large suctio
Eq. ~28! becomes

iSrũ5~y21!
]ũ

]y
2x

]ũ

]x
2ũ2«

]2ũ

]y2 1O~M !. ~29!

An exact solution to Eq.~29! is presented next.

V. THE EXACT SOLENOIDAL SOLUTION

A. The separable boundary-layer equation

An exact solution to Eq.~29! can be achieved throug
the use of separation of variables. Assuming the form

ũ~x,y!5X~x!Y~y!, ~30!

substitution into Eq.~29! leads to

x

X

dX

dx
5

~y21!

Y

dY

dy
2

«

Y

d2Y

dy22 iSr215kn , ~31!

wherekn.0 is the separation eigenvalue. Integration of t
x-equation can be performed easily and then inserted into
~30!. The solution becomes
e

lu-

-
-

ty

h

y

e
q.

ũ~x,y!5(
n

cnxknYn~y!, ~32!

wherecn is an integration constant associated withkn . Sat-
isfaction of the no-slip boundary condition at the wall r
quires setting the acoustic and vortical velocity compone
equal and opposite aty50. One finds

ũ~x,0!52 i sin~vx!. ~33!

Using a series expansion of the sine function, and setting
result equal to Eq.~32!, one gets

(
n

cnxknYn~0!52 i (
n50

`
~21!n~vx!2n11

~2n11!!
. ~34!

Equating terms yields

kn52n11, cn52 i
~21!nv2n11

~2n11!!
, Yn~0!51, ~35!

wheren50,1,2,...,̀ . The expression for the rotational com
ponent becomes

ũ~x,y!52 i (
n50

`
~21!n~vx!2n11

~2n11!!
Yn . ~36!

In order to complete Eq.~36!, Yn needs to be determine
from Eq. ~31!. The search forYn leads to a boundary-valu
problem of the form

«
d2Yn

dy2 2~y21!
dYn

dy
1~ iSr12n12!Yn50, ~37!

that is subject to

Yn~0!51, Yn8~1!50. ~38!

The two boundary conditions stem from the no-slip and c
symmetry requirements.

B. The Liouville–Green transformation

Careful examination of Eq.~37! leads us to believe tha
an exact solution is tractable if the equation is first tra
formed from a variable coefficient ODE, to an equation w
constant coefficients. Working toward that end, t
Liouville–Green transformation is applied by first settingr
512y. This transforms Eq.~37! into

«
d2Yn

dr 2 2r
dYn

dr
1~ iSr12n12!Yn50, ~39!

with boundary conditionsYn(1)51 andYn8(0)50. Next, we
define

Z5f~r !, B~Z!5c~r !Yn~r !. ~40!

These change the derivatives ofYn into

dYn

dr
52

c8

c2 B1
1

c

dB

dZ

dZ

dr
52

c8

c2 B1
f8

c

dB

dZ
, ~41!

d2Yn

dr 2 5
f82

c

d2B

dZ2 1S f9

c
2

2f8c8

c2 D dB

dZ
2S c9

c22
2c82

c3 DB,

~42!
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where primes stand for differentiation with respect tor. Sub-
stitution of these derivatives into Eq.~39! gives

d2B

dZ2 1
1

f82 S f92
2f8c8

c
2rRf8D dB

dZ

1
1

f82 S 2
c9

c
1

2c82

c2 1
rRc8

c DB

1
R

f82 ~ iSr12n12!B50. ~43!

The functionsc andf are now chosen to force the variab
coefficients in the transformed equation to be constant
ues. To do this, the coefficient of the first derivative term
set equal to zero; hence

c8/c5~f9/f82rR!/2. ~44!

Integrating givesc5H0Af8 exp(2Rr2/4), where H0 is a
subsidiary constant. Equation~43! simplifies into

d2B

dZ2 1H R

f82 ~ iSr22n12!1dJ B50, ~45!

where

d5
1

f82 S 2
c9

c
1

2c82

c2 1
rRc8

c D . ~46!

By imposing

R

f82 @ iSr1~2n12!#5constant, ~47!

one obtains

f85AR and Z5f5rAR. ~48!

Furthermore, settingH051/A4 R gives

c~r !5exp~2Rr2/4!. ~49!

Finally, the transformed equation and corresponding bou
ary conditions become

d2B

dZ2 1~p1 1
22 1

4Z
2!B50; p5212n1 iSr, ~50!

with

B~AR!5exp~2R/4!;
dB~0!

dZ
50. ~51!

C. The complete solution

Equation~50! is a Weber differential equation. This typ
is known to have independent solutions that are parab
cylinder functions of the form

B~Z!5K1Dp~Z!1K2Dp~2Z!. ~52!

Due to the complexity of the parabolic cylinder function
symbolic programming may be relied upon to evaluate
constantsK1 and K2 . This is done in fulfillment of the
boundary conditions given by Eq.~51!. The result is

K15K252212p/2G~ 1
22 1

2p!/@ApF~2 1
2 p, 1

2 , 1
2R!#, ~53!
l-

d-

ic

,
e

whereG is Euler’s Gamma function andF is the confluent
hypergeometric function. The latter is expandable in a se
of the type

F~a,b;x!511
a

b

x

1!
1

a~a11!

b~b11!

x2

2!

1
a~a11!~a12!

b~b11!~b12!

x3

3!
1¯ . ~54!

Substitution of Eqs.~52! and ~53! into Eq. ~40! leads to

Yn~r !5
F~2 1

2 p, 1
2 , 1

2 Rr2!

F~2 1
2 p, 1

2 , 1
2 ,R!

. ~55!

One may now revert back to original variables and rev
Eq. ~36!. One finds

ũ52 i (
n50

` ~21!n~vx!2n11F@2 1
2 p, 1

2 , 1
2 R~y21!2#

~2n11!!F~2 1
2 p, 1

2 , 1
2 R!

.

~56!

Using continuity, the normal component of the rotational v
locity can be deduced also. From Eq.~21! we have

ṽ52E ]ũ

]x
dy

52 ivr (
n50

` ~21!n~vx!2nF~2 1
2 p, 3

2 , 1
2 Rr2!

~2n!!F~2 1
2 p, 1

2 , 1
2 R!

1 iA~x!,

~57!

where A(x) is an admittance function that depends on t
wall’s material properties and porosity. In view of Eqs.~56!
and ~57!, the total oscillatory velocity can now be con
structed by summing both acoustical and vortical com
nents. At length, one obtains

u15 i F sin~vx!2 (
n50

` ~21!n~vx!2n11F~a,b, 1
2 RF2!

~2n11!!F~a,b, 1
2 R!

G ,

~58!

v15 ivF (
n50

` ~21!n~vx!2nF~a,c, 1
2 RF2!

~2n!!F~a,b, 1
2 R!

1 iA~x!, ~59!

with a5212n2 1
2iSr, b51/2, andc53/2.

D. Numerical verification

The analytical solution that we constructed can be ea
verified via comparisons with the numerical solution of E
~29!. This can be accomplished using the same numer
code that was developed by Majdalani and Van Moorhe1

for the injection case. For large suction, we obtain a unifo
agreement of at least six significant digits using a step siz
Dy5531026. Note that, for injection, numerical predic
tions acquired by the same code were shown, in previ
studies,1,19 to agree with both asymptotic and experimen
observations.

Comparing the numerical output to the asymptotic so
tion of the linearized momentum equation@Eq. ~29!# serves a
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dual purpose. First, it increases our confidence in the num
cal algorithm that we used to integrate the momentum eq
tion. Second, it insures the correctness of the procedure
led to the exact solution.

VI. DISCUSSION

Based on Eq. ~58!, the time evolution of the
x-component of the velocity is analyzed in Figs. 2–4 ove
range of parameters. At first glance, the profiles seem to c
cur with the classic theory of time-dependent flows. In p
ticular, the reader is referred to the fairly well-presented s
vey by Rott.20 On that account, a strong resemblance
found between our solution and the oscillatory flow soluti
over nonpermeable walls. In both cases, the velocity app

FIG. 2. The oscillatory velocityu1 exp(2it) plotted at eight different times
for m51, x/ l 51, Sr520, and~a! R520, ~b! R550, and~c! R5100. This
variation can be due to a progressive decrease in viscosity. Heret corre-
sponds to 0°, – – – –45°, - - - - 90°, –-–-–-–-135°, –--–--– 180°,
---- 225°, •••• 270°, –•–•–• 315°, 360°.
ri-
a-
at

a
n-
-
r-
s

rs

to be a traveling wave with two distinct components. A v
cous, rotational component that is dominant near the w
and an inviscid, acoustic part that is retained near the c
While their sum satisfies the no slip at the wall, the rotatio
part decays as the distance from the wall is increased.
rotational layer and corresponding thickness appear to
largest for relatively small values of the suction Reyno
number. The profile also exhibits a small velocity oversho
near the wall. This phenomenon is known as Richardso
annular effect and is a characteristic of oscillatory flows.21 It
can take place near the wall when rotational and acou
waves have favorable phases and, hence, additive am
tudes.

In order to illustrate the effect ofR on the solution, the
suction Reynolds number is increased in Fig. 2 by one or
of magnitude while keeping other variables constant. As
Reynolds number is increased, viscous effects become
pronounced: The penetration depth~i.e., rotational boundary-
layer! becomes smaller. The Richardson overshoot also
minishes. This effect is to be expected because the con
tive withdrawal at the wall becomes more appreciable w
successive increases inR. Clearly, suction seems to inhib
the boundary-layer growth near the wall. This effect is co
trary to what has been reported in the presence of inject
As shown by Majdalani15,16increasing injection increases th

FIG. 3. The oscillatory velocityu1 exp(2it) plotted at eight different times
for x/ l 51, R520, and m51. Properties correspond to~a! Sr510 and
~b! Sr5100. This variation is due to an order of magnitude increase
oscillation frequency. HigherSr increase the overshoot while reducing th
penetration depth. Heret corresponds to 0°, – – – – 45°,- - - - 90°,
–-–-–-–- 135°, –--–--– 180°, ---- 225°,•••• 270°, –•–•–• 315°,

360°.
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penetration depth. Injection also leads to a substanti
larger velocity overshoot.

In Fig. 3, the effect of varying the oscillation frequenc
is captured. Thus, as the Strouhal number is increased
10 to 100, a slight increase in the Richardson effect is no
This is accompanied by a reduction in penetration depth.
observation indicates a consistency with the effect of vary
frequency in the presence of injection. In both cases, incr
ing frequency increases the temporal velocity near the w
and decreases the penetration depth. The increased over
can be attributed to the fact that the normal rotational wa
length is inversely proportional toSr. A shorter wavelength
leads, of course, to a vortico-acoustic coupling that is clo
to the wall. Since the vortical amplitude increases as
draw nearer to the wall, a larger vortical contribution can
added to the acoustic component at shorter waveleng
This additional contribution is responsible for the increas
overshoot.

In Fig. 4, all parameters are fixed except for the suct
speed. Hence, asvw is increased by one order of magnitud
a reduction in penetration depth and breadth~overshoot! are
noted. The influence of suction speed on altering the fl
character is certainly the greatest. Surveying these figure
a whole suggests that, over a wide range of Reynolds
Strouhal numbers, the boundary layer at the wall shares

FIG. 4. The oscillatory velocityu1 exp(2it) plotted at eight different times
for x/ l 51, and m51. Properties correspond to~a! R520, Sr550, and
~b! R5200,Sr55. This variation is due to an order of magnitude increa
in suction speed. Clearly, large suction reduces both penetration d
and overshoot. Heret correspond to 0°, – – – – 45°, - - - - 90°,
–-–-–-–- 135°, –--–--– 180°, ---- 225°,•••• 270°, –•–•–• 315°,

360°.
ly
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eral similarities with the classic Stokes layer over hard wa
As opposed to the penetration depth with injection, the s
tion boundary layer here is much thinner. The velocity ov
shoot is also minimal. These characteristics are marke
different from the basic features of an oscillatory flow wi
wall injection.15,16

In order to compare our solution directly to the exa
solution by Stokes, the suction speed is reduced to a v
below the Stokes diffusion speed,A2vsn. Letting vw

521/6Avsn, the Stokes number becomes

hAvs/2n5Sr2/R. ~60!

For this particular condition, one can compare in Fig
the current asymptotic solution to the Stokes exact profile
oscillations in a channel with hard walls. In the interest
clarity, the Stokes profile is expressed in our nomenclat
and written as

u1 exp~2 i t !5sin~ t !2exp@ASrR/2~y21!#

3sin@ t1ASrR/2~y21!#. ~61!

As shown at two different Reynolds numbers, the prese
of suction attracts the shear layers closer to the wall. A
result, both rotational depth and overshoot are reduced w

FIG. 5. Comparison between the oscillatory velocities with and with
suction. Bothu1 exp(2it) and the exact Stokes solution~over hard walls! are
shown at eight different times forx/ l 51, vw521/6Avsn, andm51. Param-
eters are:~a! R520, Sr516, and~b! R5100,Sr580. The suction speed is
set below the small Stokes diffusion speed. Timelines show that the pen
tion depth and overshoot are reduced with suction. Heret corresponds to

0°, – – – –45°, - - - - 90°, –-–-–-–-135°, –--–--– 180°, ---- 225°,
•••• 270°, –•–•–• 315°, 360°.
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suction is present. The boundary-layer thickness with suc
is thus thinner than the traditional Stokes layer.

In Fig. 6, the penetration depthd is plotted versus the
viscous parameterj5«Sr25nvs

2hvw
23 at axial locations

corresponding to the fore and aft ends of the channel.
Reynolds and Strouhal numbers are varied throughout
range of physical parameters under consideration, and
resulting figures again show that the penetration depth
creases with an increase in eitherR or j. Comparing the
thickness of the penetration depth at the extreme axial lo
tions indicates that the axial dependence ofd is small at
relatively low suction levels and insignificant when sucti
is increased. This spatial dependence becomes less a
ciable when the viscous parameter is increased. The rol
viscosity as an inhibitor of rotational growth is consiste
with our analysis of the oscillatory velocity. It is clear from
Fig. 6 thatd becomes smaller when either the viscosity
frequency are increased. Moreover, the penetration depth
pears to be a weak function of the oscillation mode numb

In closing, we use Fig. 7 to verify the assumption ma
earlier to simplify the vorticity-driven momentum equatio
into a form that is susceptible to an exact solution. To t
end, one may recall that our decomposition of the tim
dependent equations requiredṽ/ũ to be of the same order a
that of the wall suction Mach number. This assumption c

FIG. 6. Boundary-layer thickness versus the viscous parameter for a
nolds number ranging betweenR520 andR5200 at~a! m51 and~b! m
52. The penetration depth is seen to decrease with increases in both
nolds number and Strouhal number. In addition, some axial dependenc
boundary-layer thickness is noted. Solid and broken lines correspon
x/ l 5 0.01, ------ 0.99.
n

e
e

he
e-

a-

re-
of
t

r
p-
r.
e

t
-

n

be substantiated by definingG5 ṽ/(ũM ) and later verifying
that G;O(1). This is indeed accomplished in Fig. 7 whe
G is evaluated at several axial locations. Clearly, the mag
tude ofG increases as we move toward the head end. Des
this spatial dependence,G appears to be ofO~1! throughout
the channel length. Being the outcome of an exact soleno
solution, this result indicates that our assumption ofṽ/ũ
;O(M ) used in Sec. IV E was justifiable.
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