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The linearized Navier{Stokes equations play a central role in describing the unsteady
motion of a viscous ®uid inside a porous tube. Asymptotic solutions of these equa-
tions have been found and here we extend the class of known solutions by solving
the problem for an arbitrary mean-®ow function of the Berman type. In the process,
we show how not only do we recover, con­ rm, or correct some of the previously
known solutions, but also ­ nd some completely new forms. It is interesting that,
for su¯ ciently small injection, the Sexl pro­ le can be restored from ours. Further-
more, we ­ nd that analytical, numerical and experimental results obtained by other
investigators compare favourably with ours. The methods we apply provide accurate
expressions for the main ®ow variables and help describe the ensuing oscillatory ­ eld.
By appealing to a space-reductive multiple-scale technique, the problem’s underly-
ing length-scale is rigorously derived. Our results indicate that, irrespective of the
mean-®ow details, the unsteady component of vorticity initiated by small pressure
disturbances can be more intense than its mean counterpart. No vortical study in
porous tubes can therefore be complete unless it incorporates the unsteady ­ eld
contribution.

Keywords: Stokes ° ow; periodic ° ow; porous wall;
perturbation theory; WKB; multiple scales

1. Introduction

Much attention has been given to the description of internal ®ows established inside
circular tubes with porous walls. Depending on whether ®uid is being added or
withdrawn, examples cited in the literature have ranged from paper making (Taylor
1956), to the modelling of biological ®ows (Goto & Uchida 1990), to simulations of the
combustion-induced gas motion inside solid rocket motors (Culick 1966). Research
was spurred on by a series of interesting technological processes. Pertinent applica-
tions have included ®ow ­ ltration, isotope separation, surface ablation, pulmonary
circulation, and arterial blood ®ow modelling. Whereas earlier studies have focused
on steady laminar ®ow analyses, the more challenging temporal aspects have been
deferred to later investigations. In order to gain perspective on the problem at hand,
a brief summary will now be presented.
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The earliest account of steady ®ow solutions in channels with porous bound-
aries can be attributed to Berman (1953). Provided that ®uid was being injected or
removed uniformly through the sidewalls, Berman was able to introduce a technique
that reduced the Navier{Stokes system into a single ordinary di¬erential equation.
Following Berman’s landmark paper, a number of studies appeared in succession.
Most were often valid over restricted ranges of ®uid injection or suction. Further stud-
ies addressed the issue of spatial development and stability along with the existence
of unique or multiple solutions. Experimental investigations were reported as well.

For circular pipes and tubes, Yuan & Finkelstein (1956) presented asymptotic
solutions in the limiting cases of small suction and both small and large injection.
Their formulation depended on the cross®ow Reynolds number R. This key parameter
was based on the uniform injection speed V , tube radius a, and kinematic viscosity
¸ . For large R, their solution correctly reduced to the inviscid expression reported
by Taylor (1956), that same year, for in­ nite injection.

After classifying each type of possible solutions based on the ranges of R, Terrill
& Thomas (1969) attempted the method of inner and outer expansions to derive
asymptotic solutions for each separate class. Contrary to the existing formulations of
Yuan & Finkelstein (1956), their approach indicated possible multiplicity of solutions.
It captured the viscous layer at the pipe centre and predicted two solutions for ­ xed
injection rate. In later studies, Durlofsky & Brady (1984) would demonstrate the
illegitimacy of one of their two solutions.

Since Terrill & Thomas (1969) could not distinguish between the two apparent
types for the large suction case, Terrill (1973) invested further exploratory e¬ort.
He was able to show that inclusion of exponentially small terms in the method of
asymptotic expansions could produce more accurate results. These corrective terms
could serve to predict the range of values for which no solutions could be found
numerically. A formal asymptotic analysis led by Skalak & Wang (1978) concurred
with Terrill’s predictions. Thus it was concluded that there existed at least two
solutions for injection and, at most, four solutions for su¯ ciently large suction. In the
process, elegant arguments were given regarding the necessary presence of multiple
solutions for a given R. This issue was laid to rest following a rigorous mathematical
treatment by Lu (1994). In summary, it was found that two solutions for injection,
one being unphysical, existed for all R. For suction, two solutions existed in the
ranges [0; 2:3] and [9:1; 20:6], no solution existed in [2:3; 9:1], and four solutions were
possible when the suction Reynolds number exceeded 20:6: In this article, the only
physical solution for injection will be of concern.

Using Berman’s similarity transformation in a di¬erent physical setting, Brady &
Acrivos (1981) employed matched asymptotic expansions to treat the general prob-
lem of a tube with a linearly accelerating surface velocity. Inasmuch as the porous
pipe ®ow problem could be reproduced from their generalized formulation, their
results shared similar features to the foregoing predictions. The spatial stability of
such self-similar ®ows was later addressed by Durlofsky & Brady (1984). The phys-
icality of corresponding similarity solutions was examined via small perturbations
in the streamwise velocity. Taking into account the ­ nite pipe length and the poor
likelihood of an inlet velocity satisfying the similarity requirements, Brady (1984)
studied the spatial development of the velocity structure for arbitrary inlet pro­ les
with suction or injection. He found that, when a critical suction Reynolds number
was reached, the in®uence of inlet conditions extended throughout the tube. This
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behaviour prevented the similarity solution from evolving and caused, instead, colli-
sion regions to form near the head end. No such patterns were found with injection.

The in®uence of both symmetric and asymmetric perturbations was investigated
numerically, for the injection case, by Gol’dshtik & Ersh (1989). Details showed that
laminar solutions representing straight-through ®ow were stable for all injection.
Conversely, solutions containing an axial reverse-current zone were absolutely unsta-
ble, indicating the non-physicality of such solutions. For injection Reynolds numbers
exceeding 100, their numerical solution agreed with the asymptotic formulation of
Yuan & Finkelstein (1956).

Other ®ow properties, such as skin friction and heat transfer coē cients, have also
been examined. The onset of turbulence is another issue that several investigators
have attempted to characterize. For steady conditions, useful data can be gathered
from Wageman & Guevara (1960), Yuan & Brogren (1961), Olson & Eckert (1966),
Sviridenkov & Yagodkin (1976), Beddini (1986) and Dunlap et al . (1990). The forego-
ing studies have con­ rmed the existence of a laminar segment whose size depended on
the cross®ow Reynolds number. They have also indicated that mean turbulent pro­ les
di¬ered only slightly from their laminar counterparts derived, for example, by Yuan
& Finkelstein (1956). Such studies reinforced the importance of laminar solutions.

The challenges of modelling ®ows inside porous tubes rises to a new level of com-
plexity when oscillatory wave motion is superimposed. Such has been the case when
cold-®ow simulations were undertaken for the purpose of understanding the inter-
nal gas dynamics during solid propellant burning. A number of experimental studies
have, in fact, attempted to capture the nature of velocity oscillations inside tubes
with transpiring walls. Tests realized on reactive propellants have spanned a range
of almost four decades. In order to both reduce the hazards of dealing with live pro-
pellants and facilitate data acquisition, alternative procedures were sought at times.
The goal was to relay the inherent ®uid dynamics while relying on safe simulations
of the gas addition process. The answer was found, partly, in pursuing cold-®ow
simulations of the injection mechanism.

Several investigators have undertaken cold-®ow experiments that use nitrogen, car-
bon dioxide, or air to simulate the injectant (see, for example, Dunlap et al . 1990;
Ma et al . 1990, 1991; Barron et al . 2000; Gri¬ond & Casalis 2001; Casalis et al .
1998). Most of these studies concentrated on reproducing an acoustic setting of the
closed{closed boundary type. Such a setting pertained to chambers that comprised
impermeable head-end walls and choked ®ow at the downstream end. Acoustic clo-
sure at the aft end simulated rocket motors that (invariably) ended with a choked
De Laval nozzle. Imposition of acoustic conditions of the closed{open type were also
considered in cold-®ow studies of nozzleless tubes. Being reserved to fewer applica-
tions, acoustic environments of the closed{open type received less attention. In the
current study, formulations that apply to both acoustic types will be made available.
However, the physical description will focus on the closed{closed con­ guration.

Mathematical modelling of the oscillatory ­ eld over transpiring surfaces was chie®y
developed by Culick (1966) and Flandro (1974, 1989, 1995a; b). In fact, the ­ rst ana-
lytical solution for the oscillatory ­ eld with in­ nitely large injection was successfully
derived by Flandro (1989). This formulation was ­ ctitiously two dimensional: it
ignored the downstream convection of unsteady vorticity and the radial deprecia-
tion of Taylor’s mean-®ow pro­ le. Consequently, it only applied to a small region
above the porous wall and a restricted range of physical parameters. An asymptotic
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solution by Majdalani & Van Moorhem (1995, 1997) followed. The latter employed
the exact Taylor pro­ le yet shared its precursor’s inability to incorporate the axial
dependency.

An inviscid solution that incorporated the correct Taylor pro­ le and axial depen-
dency was later presented by Flandro (1995a). This was quickly followed by an
improved asymptotic solution that included viscous e¬ects (Flandro 1995b). A prac-
tically equivalent solution was derived by Majdalani & Van Moorhem (1995) using
multiple-scale expansions. As shown by Majdalani & Van Moorhem (1998), both
multidimensional solutions concurred with numerical simulations. They also showed
fair agreement with data gathered from cold-®ow experiments by Brown et al . (1986)
and Dunlap et al . (1990). Later, the multiple-scale solution was used to disclose the
character of the Stokes boundary-layer structure in porous tubes (Majdalani 1999).
Recently, the analogous problem arising in a planar channel has been addressed by
Majdalani & Roh (2000).

Following Flandro’s work, Zhao et al . (2000) resorted to multiple scales in order
to analyse the developing transient ®ow that preceded the inception of steady-state
oscillations. Zhao’s approach provided a crude approximation since it was based
on a conjectured set of scales found by intuition. Being the product of guesswork,
these scales were di¬erent from the uniformly valid scales that were prescribed by
the problem’s solvability condition. As such, they di¬ered from those derived by
Majdalani (1998) and Majdalani & Roh (2000).

It should be pointed out that most existing analytical solutions for the oscillatory
­ eld have been constructed by perturbing an initially steady mainstream that cor-
responds to the Taylor pro­ le. As a result, they apply, in practice, to a very large
in®ux through the peripheral walls. Such idealizations are quite suitable in simulating
the relatively high rates of gas expulsion from propellant surfaces during solid rocket
motor burning. In principle, they are limited to an in­ nitely large cross®ow Reynolds
number. On that account, it is the purpose of this article to generalize the techniques
presented by Flandro (1995a; b) and Majdalani & Van Moorhem (1998) by extend-
ing their applicability to arbitrary levels of injection. The resulting solutions should
be useful over a broader range of physical applications. The article also serves as a
vital extension to the planar solution presented recently by Majdalani & Roh (2000).
Another novelty is that, whereas a partial Wentzel{Kramers{Brillouin (WKB) solu-
tion was presented before, a rigorous asymptotic treatment will be o¬ered in x 4 lead-
ing to a complete WKB solution. In particular, the characteristic length-scales that
arise in the circular tube will now be derived using two space-reductive techniques in
xx 5 and 6. While one appeals to Prandtl’s principle of matching by supplementary
expansions, the other will apply the principle of least singular behaviour. For con­ r-
mation purposes, multiple independent veri­ cations will be presented starting in x 7
with comparisons to other solutions. This is followed by a discussion in x 8, wherein
experimental and numerical veri­ cations are provided based on the work carried out
by Brown et al . (1986) and Roh et al . (1995).

2. Problem formulation

(a) The ¯nite circular tube

We consider the steady ®ow of a perfect gas in the region bounded by the porous
walls of a cylindrical tube of radius a and ­ nite length L ¾ a. We assume that the
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Figure 1. Axisymmetric system geometry including mean-° ow streamlines.

speed of the gas at the wall V is uniform. We normalize the spatial variables by a and
select a curvilinear coordinate system whose origin is anchored at the tube’s head-
end centre. As shown in ­ gure 1, x and r can be used to denote the non-dimensional
streamwise and radial coordinates. Axial symmetry reduces the ­ eld investigation to
the domains 0 6 x 6 l and 0 6 r 6 1, where l = L=a < 70. The tube is closed at
x = 0 corresponding to a zero inlet pro­ le in Berman’s formulation. As a result of
this, the mainstream described by the streamline patterns of ­ gure 1 is completely
induced by the injection process. Inasmuch as we consider the case of choked ®ow
at x = l (where a nozzle can be located), we provide formulations that apply to an
isobaric opening as well. The oscillatory ­ eld that we wish to evaluate will exist when
the undisturbed state is perturbed via sinusoidal pressure oscillations of frequency
! and amplitude A. If c is the speed of sound, we follow Majdalani & Roh (2000)
by limiting our scope to low cross®ow Mach numbers (M = V=c < 0:01) and small
A by comparison with the mean stagnation pressure p s .

(b) Arbitrary mean-° ow pro¯le

Our point of departure is the self-similar mean-®ow solution in a tube with porous
walls. Following Berman (1953) or Yuan & Finkelstein (1956), we select a steady
stream function ª that varies linearly in x. Without compromising generality, we
employ ª (x; r) = xF (r) (cf. Weissberg 1959; Brady & Acrivos 1981) and collapse
the Navier{Stokes equations into

r3F 0000 + r2RF 000(F ¡ 2") + R(F 0 ¡ rF 00)[rF 0 + 3(F ¡ ")] = 0; " ² 1=R: (2.1)

In our notation, R = V a=̧ > 0 for injection. The mainstream velocity and vorticity
vectors (normalized by V ) can be expressed as u0 = u0ex + v0er and ­ 0 = « 0e ³ .
Boundary conditions include the no-slip, u0(x; 1) = 0, radial in®ux at the wall,
v0(x; 1) = ¡ 1, axial symmetry, @u0(x; 0)=@r = 0, and boundedness, v0(x; 0) = 0.
From the stream function de­ nition, one can write

u0 =
xF 0

r
; v0 = ¡

F

r
; « 0 =

x(F 0=r ¡ F 00)

r
; (2.2)

F 0(1) = F (0) = 0; lim
r ! 0

(F 00 ¡ F 0=r)

r
= 0; F (1) = 1: (2.3)

As discussed in x 1, a number of asymptotic solutions for F are available for di¬er-
ent ranges of R (cf. Terrill & Thomas 1969; Terrill 1983). From Yuan & Finkelstein
(1956), two simple solutions that are adequate for either small or large injection can
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be expressed as

F (r) =

(
r2(2 ¡ r2) + O(10¡2Rr2); small R (10 < R < 100);

sin( 1
2
º r2) + O(R¡1); large R (> 100):

(2.4)

The mean pressure associated with (2.2) can be normalized by ® p s , where ® is
the ratio of speci­ c heats, and then integrated from the steady ®ow momentum
equation, u0 ¢ ru0 = ¡ M ¡2rp0 + "r2u0. Recalling that c =

p
( ® p s =» s ) and that

p0(0; 0) = 1=® , one ­ nds

p0 =
1

®
¡ 1

2
r¡2M 2fF 2 + x2[F 02 + (r¡1F 0 ¡ F 00)(F ¡ ") ¡ "rF 000] + "rF 0g

= ® ¡1 + O(M 2x2): (2.5)

Equation (2.5) concurs with the pressure distribution found by Yuan & Finkelstein
(1956), Wageman & Guevara (1960) and Durlofsky & Brady (1984). It indicates that
the pressure variation in the axial direction is slow, justifying the usage of a constant
value over the range 0 < x < 70. It also explains the ­ nite upper limit posted on the
tube length in x 2 a.

(c) Linearized Navier{Stokes equations

In normalizing variables, the asterisk is used to designate dimensional quantities.
The instantaneous velocity, pressure, density, spatial coordinates and time can be
rendered dimensionless via

u =
u ¤

c
; p ²

p ¤

® p s
; » ²

» ¤

» s
; x =

x ¤

a
; r =

r ¤

a
; t =

t¤ c

a
: (2.6)

With this choice of parameters, the Navier{Stokes equations with constant properties
can be written as

» t + r ¢ ( » u) = 0; (2.7)

» [ut + (u ¢ r)u] = ¡ rp + "M [4
3r(r ¢ u) ¡ r £ (r £ u)]: (2.8)

In the presence of small oscillations, the total pressure, density and velocity can
be expressed as linear sums of steady and temporal ®uctuations,

p(x; r; t) = 1=® + ·"p1(x; r; t) + O(M 2); (2.9)

» = 1 + ·"» 1; u = Mu0 + ·"u1; ­ = M ­ 0 + ·"­ 1: (2.10)

where ·" = A=( ® p s ) is the wave amplitude ratio. When the expanded variables are
inserted into (2.7) and (2.8), two sets of equations are obtained at O(1) and O(·").
While the leading-order set reduces to Berman’s nonlinear equation, the ­ rst-order
set gives

( » 1)t + r ¢ u1 = ¡ Mr ¢ ( » 1u0) + O(·"); (2.11)

(u1)t = ¡ M [r(u0 ¢ u1) ¡ u1 £ ­ 0 ¡ u0 £ ­ 1]

¡ rp1 + "M [4
3r(r ¢ u1) ¡ r £ ­ 1] + O(·"): (2.12)
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In presetting the size of ·", we adopt a notion used extensively in classic combustion
stability theory, namely, that

M 2 < ·" < M; lim
·";M ! 0

·"

M
= 0: (2.13)

Accordingly, as we reduce M , ·" will approach zero more rapidly.

(d) Irrotational and solenoidal responses

Using the circum®ex and tilde to designate irrotational and solenoidal responses
(cf. Majdalani & Roh 2000), one may write

u1 = û + ~u; with ­ 1 = ~­ , p1 = p̂ and » 1 = ^» : (2.14)

Upon backward substitution into the linearized Navier{Stokes equations, we obtain
two distinct sets. The ­ rst is the pressure-driven response which can be rearranged
into

p̂tt ¡ r2p̂ = ¡ M [r ¢ (u0p̂t) ¡ r2(û ¢ u0) + r ¢ (û £ ­ 0)] ¡ 4
3
"Mr2(r ¢ û) + O(·"):

(2.15)
The second is the vorticity-driven response given by

r ¢ ~u + O(·") = 0; ~ut = ¡ M [r(~u ¢ u0) ¡ ~u £ ­ 0 ¡ u0 £ ~­ ] ¡ "Mr £ ~­ + O(·"):
(2.16)

Since "M < M , 8" < 1, damping due to viscosity can be ignored at O(M ) in
(2.15). For longitudinal oscillations, the ensuing pressure and velocity can be written
as

p̂(x; t) = cos(!mx) exp( ¡ i!mt) + O(M );

û(x; t) = i sin(!mx) exp( ¡ i!mt)ex + O(M );

¾
(2.17)

where !m = !a=c = mº =l, m = 1; 2; 3; : : : , for a tube that is acoustically closed
at both ends. Solutions corresponding to the closed{open (nozzleless) tube can be
obtained straightforwardly by replacing m by (m ¡ 1

2
) everywhere. In much the same

way, the oscillatory vortical response can be expressed by

~u(x; r; t) = ·u(x; r) exp( ¡ i!mt); ~­ (x; r; t) = ·­ (x; r) exp( ¡ i!mt); (2.18)

where ·u ² ·uex + ·ver and ·­ ² r £ ·u = ·« e ³ . Instead of (2.16), we now have

r ¢ ·u + O(·") = 0; iS ·u = [r( ·u ¢ u0) ¡ ·u £ ­ 0 ¡ u0 £ ·­ ] + "r £ ·­ + O(·"M ¡1);
(2.19)

where S = !a=V > 10 is the Strouhal number.
Following Flandro (1995a) and Majdalani & Roh (2000), we now assume that

·v=·u = O(M ). The axial component of (2.19) becomes

iS·u = (u0·u)x + v0·ur ¡ "r¡1(r·ur)r: (2.20)

(e) Vorticity and momentum transport formulations

One may proceed to solve either the vorticity or momentum transport equations.
In the ­ rst case, one must start by taking the curl of (2.19) to obtain

·« r ¡ (r¡1 + iSv¡1
0 ) ·« +u0v¡1

0
·« x = ¡ ·uv¡1

0 ( « 0)x+"v¡1
0 ( ·« xx + ·« rr + r¡1 ·« r ¡ r¡2 ·« ):

(2.21)
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In the second case, ~u may be derived directly from the momentum equation. To
that end, one must ­ rst rearrange (2.20) into

x·ux =

µ
irS

F 0 ¡ 1

¶
·u +

µ
F

F 0

¶
·ur + "r

(·urr + r¡1·ur)

F 0 : (2.22)

Using ·u(x; r) = X(x)R(r) and ·u(x; 1) = ¡ i sin(!mx), one ­ nds that (2.22) exhibits
a solution of the form

·u(x; r) = ¡ i

1X

n= 0

( ¡ 1)n(!mx)2n + 1 Rn(r)

(2n + 1)!
; (2.23)

where Rn must be solved from

"
d2Rn

dr2
+ r¡1(" + F )

dRn

dr
+ [iS ¡ (2n + 2)r¡1F 0]Rn = 0; 0 6 r 6 1; (2.24)

with
Rn(1) = 1 (no-slip) and R0

n(0) = 0 (symmetry): (2.25)

By virtue of (2.3), (2.24) admits a regular singularity at the core where F (0) = 0.
In what follows, both WKB and two-variable multiple-scale expansions will be used
to overcome this singularity.

Before initiating the asymptotic work, we de­ ne uN
1 as the numerical solution of

the linearized momentum equation. It follows that uN
1 can be determined by coupling

the numerical solution of (2.24) with (2.23), (2.18) and (2.17).

3. The vorticity-transport technique

(a) Vorticity-transport equation

In this section, (2.21) will be used to derive asymptotic expressions for the rotational
vorticity and velocity ­ elds. When ·« = $0 + M$1 + O(M 2) is used in (2.21), the
leading-order equation becomes

($0)r ¡ (r¡1 + iSv¡1
0 )$0 + u0v¡1

0 ($0)x = 0: (3.1)

Assuming a solution of the form $0 = R(r)X(x), one gets

$0(x; r) = r exp( ¡ i © 0)
X

¶ n

cn(xF ) ¶ n ; ¶ n > 0;

© 0(r) = S

Z r

1

x dx

F (x)
=

8
><

>:

1
4
S ln[r2=(2 ¡ r2)]; small R;

1

º
S ln tan( 1

4
º r2); large R:

9
>>>>>=

>>>>>;

(3.2)

Note that cn must be speci­ ed in a manner to satisfy the no-slip condition at the
wall. This condition must be expressed in terms of vorticity. Recalling that « 1 = ~« ,
v1 = ~v, p1 = p̂, and that u1(x; 1; t) must vanish to prevent slippage, the axial
projection of (2.12) gives, at the wall,

M [(~vv0)x ¡ ~v« 0 ¡ v0
~« ] + p̂x + "M( ~« r + r¡1 ~« ) = 0: (3.3)

Rearranging, and using (2.17), one gets

·« (x; 1) = S sin(mº x=l) ¡ "( ·« r + ·« ) + O(M ): (3.4)
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(b) Inviscid solution

At the wall, (3.4) must be equated to (3.2) in order to specify the separation
eigenvalues. Since F (1) = 1 from (2.3), one can write $0(x; 1) ² S sin(!mx). This
will be true when ¶ n = 2n + 1 and

cn = S( ¡ 1)n(!m)2n+ 1=(2n + 1)! (3.5)

Recalling that ª = xF , backward substitution into (3.2) yields

$0(x; r) = rS sin(!m ª ) exp( ¡ i © 0):

Introducing ·u = r¡1Ár and ·v = ¡ r¡1Áx, the vorticity equation becomes

r ·« = ¡ Áxx + r¡1Ár ¡ Árr: (3.6)

When Á0(x; r) = Ác(r)$0(x; r) is used in (3.6), a balance between leading-order
quantities yields Ác = r© 0¡2

0 = S¡2r¡1F 2. Di¬erentiating the stream function for
the velocity gives, at length,

·u(x; r) = ¡ F [i sin(!m ª )ex + Mr¡1F 2 cos(!m ª )er] exp( ¡ i © 0): (3.7)

(c) Viscous corrections

In order to properly account for viscous e¬ects, we set

·u(x; r) = uc(r) sin(!m ª ) exp( ¡ i © 0) and ·« (x; r) = $c(r) sin(!m ª ) exp( ¡ i © 0):
(3.8)

The viscous correction multipliers, uc and $c, are then found in a manner to satisfy
the complete vorticity-transport equation. In fact, when (3.8) is substituted into
(2.21), one notes the cancellation of several terms. Balancing the remaining quantities
requires that

d$c

dr
¡ ("S2r3F ¡3 + r¡1)$c + (F 00 ¡ F 0r¡1)F ¡1uc = 0: (3.9)

At this point, a relation between uc and $c is needed to make any headway. De­ ning
¹ ² "S2 = a¸ !2V ¡3, we realize that 10¡2 < ¹ < 102, 10¡1 < "1=2S < 10, S =
O("¡1=2) and S ¹

p
R. Next we use (2.20) and ­ nd that

uc = ¡ S¡1(iF r¡1 + ¹ S¡1rF ¡1)$c:

Inserting this expression into (3.9) leads to

d$c

dr
¡ [ ¹ r3F ¡3 + r¡1 + iS¡1r¡1(F 00 ¡ r¡1F 0)]$c = 0; $c(r) = Cr exp ± 0;

(3.10)
where

± 0

¹
=

Z r

1

x3F ¡3(x) dx

=

(
¡ 1

32
[3 ln(2r¡2 ¡ 1) + 2(1 ¡ r¡2)(2r4 ¡ 3r2 ¡ 4)(2 ¡ r2)¡2]; small R;

¡ º ¡2[csc ³ + ³ cot ³ csc ³ ¡ 1 ¡ I( ³ ) + I( 1
2
º )]; ³ ² 1

2
º r2; large R;

(3.11)
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and

I(x) = x +

1X

k = 1

( ¡ 1)k 2(1 ¡ 22k¡1)B2kx2k + 1

(2k + 1)!

= x + 1
18

x3 + 7
1800

x5 + 31
105 840

x7 + ¢ ¢ ¢ : (3.12)

The integration constant C in (3.10) can be speci­ ed from (3.4). Noting that
± 0

0(1) = ¹ , © 0
0(1) = S and ± 0(1) = © 0(1) = 0, 8F , we ­ nd C(1 ¡ i"S) = S + O(S¡2).

Hence,

Cr =
S

1 + "2S2
and C i =

"S2

1 + "2S2
: (3.13)

Straightforward substitution into (3.10), (3.8) and (2.18) yields

·« = Cr sin(!m ª ) exp( ± 0 ¡ i © 0 ¡ i!mt):

The corrective multiplier is therefore

uc = ¡ S¡1(ir¡1F + "SrF ¡1)Cr exp ± 0 ² iUr exp ± 0;

where

U r = ¡ S¡1Crr¡1F ¡ "C irF ¡1 and U i = "CrrF ¡1 ¡ S¡1C ir¡1F; (3.14)

Next, ~u may be obtained from (3.8) and (2.18). The outcome is

~u = irU sin(!m ª ) exp( ± 0 ¡ i © 0 ¡ i!mt):

Having fully determined ~u, ~v can be obtained, at leading order, from mass conser-
vation. Starting with ~v = r¡1g(r) cos(!m ª ) exp( ± 0 ¡ i © 0 ¡ i!mt), substitution into
r¡1(r·v)r + ·ux = 0 requires that g = MrUF 2. Using the superscript `V’ for the
vorticity-transport formulation, key results obtained heretofore can be summarized
in

uV
1 = sin(!mx) sin(!mt) ¡ r(U r sin ’ ¡ U i cos ’) exp ± 0 sin(!mxF );

’ = !mt + © 0;

¾
(3.15)

vV
1 = MF 2(U r cos ’ + U i sin ’) exp ± 0 cos(!mxF );

« V
1 = (Cr cos ’ + C i sin ’)r exp ± 0 sin(!mxF ):

)
(3.16)

4. The WKB technique

(a) The WKB expansion

Formal WKB theory (cf. Bender & Orszag 1978) suggests setting

Rn(r) = exp( ¯ ¡1S0 + S1 + ¯ S2 + ¯ 2S3 + ¯ 3S4 + ¢ ¢ ¢); (4.1)

where ¯ is a small parameter and Sj(r) must be determined sequentially for j > 0.
Straightforward di¬erentiation and substitution into (2.24) yields the distinguished
limit ¯ =

p
" and S

p
" = O(1). The equation for S0 becomes

F r¡1S0
0 + iS

p
" = 0; S0(1) = 0 ) S0(r) = ¡ iS

p
"

Z r

1

xF ¡1(x) dx = ¡ i
p

"© 0:

(4.2)
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By the same token, one ­ nds

F r¡1S0
1 + S02

0 ¡ (2n + 2)F 0r¡1 = 0; S1(1) = 0 (4.3)

hence

S1(r) = (2n + 2) ln F + ¹

Z r

1

x3F ¡3(x) dx: (4.4)

F r¡1S0
2 + S00

0 + 2S0
0S0

1 + r¡1S0
0 = 0; S2(1) = 0; (4.5)

and so

S2(r) = iS
p

"

½
(2n + 3

2
)[1 ¡ r2F ¡2(r)] + (4n + 5)

Z r

1

xF ¡2 dx + 2¹

Z r

1

x5F ¡5 dx

¾
:

(4.6)
The ­ rst-order WKB solution can be constructed via (4.1). Using `W’ for WKB, one
may write

RW
n (r) = F 2n + 2 exp( ± 0 ¡ i © 0 ¡ i © n

1 ) + O("); (4.7)

with

© n
1 ² ¡ "S

½
(2n + 3

2
)[1 ¡ r2F ¡2(r)] + (4n + 5)

Z r

1

xF ¡2 dx + 2 ¹

Z r

1

x5F ¡5 dx

¾
:

(4.8)
For small and large R, © n

1 can be calculated from

© n
1

"S
=

8
>>>>>>><

>>>>>>>:

1
128

r¡4(2 ¡ r2)¡4

£[32 ¹ + 2r2(16(2 ¡ r2)2(1 ¡ r2)[16(1 + n) ¡ (23 + 28n)r2 + 2(3 + 4n)r4]

+ ¹ f48 + r2[6 ¡ r2(3 ¡ r2)(84 ¡ 65r2 + 16r4)]g)

+r4(2 ¡ r2)4(80 + 64n + 15¹ ) ln(2r¡2 ¡ 1)]; small R

º ¡1f(4n + 5) cot ³ + (4n + 3)( ³ csc2 ³ ¡ 1
2
º ) ¡ 8 º ¡2 ¹ [T ( ³ ) ¡ T ( 1

2
º )]g;

large R;

(4.9)
where

T (x)

=

Z
x2 csc5 x dx

= 1
48 f40 ln tan( 1

2
x) + 9x2 ¡ 2 csc x[18x + (2 + 9x2) cot x] ¡ 4x csc3 x(2 + 3x cot x)g

+
3

4

1X

k = 1

( ¡ 1)k (1 ¡ 22k¡1)B2kx2k + 2

(2k + 2)(2k)!
: (4.10)

(b) The ¯rst-order WKB solution

Equation (4.7) can be inserted back into (2.23) to render

·u(x; r) = ¡ iF exp( ± 0 ¡ i © 0 ¡ i © n
1 )

1X

n= 0

( ¡ 1)n(!mxF )2n + 1

(2n + 1)!

= ¡ iF exp( ± 0 ¡ i © 0 ¡ i © n
1 ) sin(!mxF ): (4.11)
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This formula can be used in conjunction with (2.18), (2.17) and (2.14) to construct
the oscillatory velocity component. At length, one ­ nds

uW
1 (x; r; t) = sin(!mx) sin(!mt) ¡ F sin(!mxF ) exp ± W sin(!mt + © W); (4.12)

± W = ± 0; © W = © 0 + © 0
1;

© 0
1 = ¡ "S

½
3
2
[1 ¡ r2F ¡2(r)] + 5

Z r

1

xF ¡2 dx + 2 ¹

Z r

1

x5F ¡5 dx

¾
;

9
>=

>;
(4.13)

wherein

© 0
1 =

8
>>>>><

>>>>>:

1
128

"S[r4(2 ¡ r2)4(80 + 15 ¹ ) ln(2r¡2 ¡ 1)

+2r2(16(2 ¡ r2)2(1 ¡ r2)(16 ¡ 23r2 + 6r4)

+ ¹ f48 + r2[6 ¡ r2(3 ¡ r2)(84 ¡ 65r2 + 16r4)]g)

+32 ¹ ]r¡4(2 ¡ r2)¡4; small R;

º ¡1"Sf5 cot ³ + 3( ³ csc2 ³ ¡ 1
2
º ) ¡ 8 º ¡2 ¹ [T ( ³ ) ¡ T ( 1

2
º )]g; large R:

(4.14)

5. The undetermined-scale technique

(a) Nonlinear transformation

A two-variable expansion requires specifying two ­ ctitious coordinates, an outer
scale, r0, and an inner scale, r1. Conventional scaling transformations include vari-
able selections of the form r1 = f(")r, or r1 = f(")(1 ¡ r). According to formal
practices, the strict de­ nition of f(") must precede the expansion. The di¯ culty,
in our case, is that conventional selections fail to yield uniformly valid solutions. In
fact, we ­ nd it necessary to introduce a nonlinear variable transformation of the form
r1 = "s(r). Our choice is di¬erent in that s(r) is not pre-set by foreknowledge, ratio-
nalization, or an order-of-magnitude analysis. Rather, it is left to be an undetermined
function that can accommodate generally nonlinear distortions. This choice provides
more freedom and enables us to determine s(r) in a manner to satisfy the problem’s
solvability condition. The latter can be rigorously prescribed using either Prandtl’s
principle of matching by supplementary expansions, or the principle of least singular
behaviour.

(b) The two-scale expansion

Introducing r0 = r and r1 = "s(r), functions and derivatives can be expanded
in a manner to discard O("2) quantities. Using superscripts to denote perturbation
orders, one can write

Rn(r0; r1) = R(0)(r0; r1) + "R(1)(r0; r1) + O("2);

d

dr
=

@

@r0

+ "
ds

dr0

@

@r1

;
d2

dr2
=

@2

@r2
0

+ O("):

9
>=

>;
(5.1)
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Inserting these expansions into (2.24), terms of the same power in " can be collected.
The result is

@R(0)

@r0
+

·
i
r0S

F
¡ 2(n + 1)

F 0

F

¸
R(0) = 0; R(0)(1) = 1;

@R(0)

@r0
(0) = 0; (5.2)

@R(1)

@r0
+

·
i
r0S

F
¡ 2(n + 1)

F 0

F

¸
R(1) = ¡ ds

dr0

@R(0)

@r1
¡ 1

F

@R(0)

@r0
¡ r0

F

@2R(0)

@r2
0

: (5.3)

Since F (1) = 1 is a property of all Berman functions, integration of the leading-order
equation yields

R(0)(r0; r1) = a1(r1) exp

·
2(n + 1) ln F (r0) ¡ iS

Z r0

1

xF ¡1(x) dx

¸
: (5.4)

Here, a1 must be determined in a manner to ensure a secular-free series expansion
of Rn. This can be achieved when the right-hand side of (5.3) is set to zero. The
resulting ­ rst-order di¬erential equation in a1 can be integrated in closed form (using
² (1) = 0, Rn(1) = 1 and s(1) = 0). Expressed in the original laboratory coordinate,
one obtains

a1 = exp( ¡ ¹ ² r3F ¡3f1 ¡ 2S¡2(n + 1)r¡2[F (F 00 + r¡1F 0)

+ (2n + 1)F 02] + iS¡1r¡2[rF 0(4n + 3) + 2F ]g): (5.5)

The e¬ective scale functional ² (r) that appears in (5.5) is

² (r) ² ¡ s(r)=s0(r): (5.6)

Knowing ² (r), the rest is straightforward substitution into (5.4). Recalling that the
overall solution is sought at O(·"M ¡1), retention of R(0) is su¯ cient. Subsequently,
(5.1) becomes

Rn = F 2n+ 2 exp

µ
¡ ¹ ² r3F ¡3

¡ iS

½Z r

1

xF ¡1 dx + ¹ S¡2r² F ¡3[rF 0(4n + 3) + 2F ]

¾¶
+ O("):

(5.7)

(c) Prandtl’s principle of matching by supplementary expansions

Based on Prandtl’s principle of matching by supplementary functions, the undeter-
mined-scale solution developed here must exhibit the same leading-order terms ob-
tained using the basic WKB expansion. Physically, the spatial damping function in
(5.7) must match its counterpart arising in the WKB solution. This will be the case
when

² U(r) = ¡ r¡3F 3(r)

Z r

1

x3F ¡3(x) dx

=

8
<

:

1
32

r3(2 ¡ r2)3

½
ln

(2 ¡ r2)3

r6
+ 4 +

2[4 + 3r2(r2 ¡ 3)]

r2(2 ¡ r2)2

¾
; small R;

º ¡2[csc ³ + ³ cot ³ csc ³ ¡ 1 + I( 1
2
º ) ¡ I(³ )]r¡3 sin3 ³ ; large R:

(5.8)
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As usual, the superscript `U’ is used to denote the result based on the undetermined-
scale technique. Having determined ² U, the undetermined coordinate transformation
can be speci­ ed from (5.6). The result is

sU(r) ¹
Z r

1

x3F ¡3(x) dx: (5.9)

Equation (5.9) is a key expression that unravels the dependence of s(r) on the
Berman function F . The algebraic content of (5.9) may be the reason for the futility
of standard multiple-scale methods.

(d ) The undetermined-scale solution

Having determined Rn, (5.7) can be substituted into (2.23) and (2.18), and then
added to (2.17). One gets

u1(x; r; t) = ¡ iF

1X

n = 0

( ¡ 1)n(!mxF )2n+ 1

(2n + 1)!

£ exp

µ
¡ ¹ ² r3F ¡3

¡ iS

½Z r

1

xF ¡1 dx + ¹ S¡2r² F ¡3[rF 0(4n + 3) + 2F ]

¾
¡ i!mt

¶

+ i sin(!mx) exp( ¡ i!mt) + O("): (5.10)

Since the error associated with n > 1 terms is smaller than the error at n = 0,
corrections of O(S¡2) can be retained for n = 0 and dismissed for n > 1. The
equivalent expression for u1 is

u1 = i exp( ¡ i!mt)

µ
sin(!mx) ¡ F sin(!mxF ) exp

½
¡ ¹ ² r3F ¡3

¡ iS

·Z r

1

xF ¡1 dx + "r² F ¡3(3rF 0 + 2F )

¸¾¶
: (5.11)

The meaningful part of the solution is identical to (4.12), namely,

uU
1 (x; r; t) = sin(!mx) sin(!mt) ¡ F sin(!mxF ) exp ± U sin(!mt + © U); (5.12)

where

± U = ± 0 = ¡ ¹ ² Ur3F ¡3;

© U = © 0 + © 1 = S

·Z r

1

xF ¡1 dx + "r² UF ¡3(3rF 0 + 2F )

¸
:

9
>=

>;
(5.13)

(e) Total solution

From the axial component ~u, the radial velocity ~v can be obtained by appealing
to continuity. To expedite the process, one may let

~v(x; r; t) = r¡1G(r) cos(!mxF ) exp ± exp[ ¡ i(!mt + © )]; (5.14)
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where G(r) is a subsidiary function that must be determined so that ~ux +r¡1(r~v)r =
0. After some algebra, we ­ nd that G = ¡ MF 3. By di¬erentiating ~u and ~v, the
temporal vorticity is also obtainable. The total periodic components become

vU
1 (x; r; t) = ¡ Mr¡1F 3 cos(!mxF ) exp ± U cos(!mt + © U);

« U
1 = rS sin(!mxF ) exp ± U cos(!mt + © U):

)
(5.15)

Despite their dissimilar expressions, both vU
1 and « U

1 agree, almost to a fault, with
(3.16).

6. The generalized-scale technique

(a) Nonlinear transformation

In the previous section, the modi­ ed variable is left unspeci­ ed while carrying out the
two-scale expansion. At the conclusion of the asymptotic analysis, physical arguments
are employed to evaluate the required transformation. These physical arguments are
based on comparisons with the basic WKB solution. Despite the novelty in retain-
ing an undetermined scale throughout the derivation process, the main limitation
plaguing the previous approach lies in its strict dependence on the availability of an
alternative approximation. This limitation is caused by Prandtl’s principle requiring
the presence of at least one other expansion for the same problem.

The main purpose of this section is to present a di¬erent approach that leads to the
independent speci­ cation of the inner scaling transformation. This will be obtained
by imposing the problem’s solvability condition stemming from the principle of min-
imum singularity. At the outset, the generally nonlinear scale will be determined
by satisfying the mathematical constraint requiring boundedness between succes-
sive asymptotic orders. Unlike the former solutions, the current procedure precludes
guessing and reveals, totally independently, the problem’s intrinsic scales.

(b) The generalized two-scale expansion

As before, we let Rn(r0; r1) = R(0)(r0; r1) + "R(1)(r0; r1) + O("2), where r0 = r
and r1 = "s(r). The only di¬erence here is that the general transformation will have
to originate from the problem’s solvability condition. The leading-order solution can
be readily put in the form

R(0)(r0; r1) = C1(r1) exp

·
2(n + 1) ln F (r0) ¡ iS

Z r0

1

xF ¡1(x) dx

¸
; (6.1)

where C1 awaits evaluation from the ­ rst-order equation. This corrective multiplier
must be determined in a manner to promote the least singular behaviour in Rn.
To that end, we ­ nd it unnecessary to determine R(1) fully. In fact, it will be su¯ -
cient to formulate a solvability condition for which an asymptotic series of the form
R(0) + "R(1) + o(") can exist. This may be accomplished by ­ rst introducing

¦ =
R(1)(r0; r1)

R(0)(r0; r1)
: (6.2)
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In order to determine ¦ , one can multiply (5.2) by R(1)[R(0)]¡2 and subtract the
result from the product of (5.3) and [R(0)]¡1. One gets

1

R(0)

@R(1)

@r0
¡ R(1)

[R(0)]2
@R(0)

@r0

= ¡ s0

R(0)

@R(0)

@r1
¡ 1

F R(0)

@R(0)

@r0
¡ r0

F R(0)

@2R(0)

@r2
0

: (6.3)

Noting that the left-hand side is the derivative of ¦ , (6.3) can be written as

@¦

@r0

=
@

@r0

·
R(1)

R(0)

¸

= ¡ s0

C1

dC1

dr1

+ S2r3
0F ¡3 ¡ 2(n + 1)F 0F ¡2 ¡ 2(n + 1)r0F 00F ¡2

¡ 2(n + 1)(2n + 1)r0F 02F ¡3 + iSr0F ¡2 + i(4n + 3)Sr2
0F 0F ¡3: (6.4)

Therefore,

¦ = ¡ s

C1

dC1

dr1

+ S2

Z r0

1

fx3F ¡3 ¡ 2(n + 1)S¡2[F 0F ¡2 + xF 00F ¡2 + (2n + 1)xF 02F ¡3]

+ iS¡1xF ¡2[1 + (4n + 3)xF 0F ¡1]gdx:
(6.5)

(c) The problem’s solvability condition

In order to promote a uniformly valid asymptotic series, the ratio of R(1) and
R(0) must be bounded 8r1. This can be accomplished by imposing ¦ = O(1). For
arbitrary F , ¦ will be bounded 8r1 if

1

C1(r1)

dC1(r1)

dr1
² K(r1) = O(1) or

C1 = C0 exp

µZ
K dr1

¶
= C0 exp

µ
"

Z
K ds

¶
:

9
>>=

>>;
(6.6)

Here C0 is a constant that can be later determined from R(0)(1) = 1. Setting K =
const: will be su¯ cient (but not necessary) to guarantee boundedness. In fact, K(r1)
will prove to be important for temporary bookkeeping. From (6.5), one ­ nds

s = K¡1S2

µZ r0

1

fx3F ¡3 ¡ 2(n + 1)S¡2F ¡2[F 0 + xF 00 + (2n + 1)xF 02F ¡1]

+ iS¡1xF ¡2[1 + (4n + 3)xF 0F ¡1]gdx ¡ S¡2 ¦

¶
: (6.7)

Recalling that ¦ = O(1), one can put

s = K¡1S2

µZ r0

1

fx3F ¡3 + iS¡1xF ¡2[1 + (4n + 3)xF 0F ¡1]gdx + O(S¡2)

¶
: (6.8)
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At this point, small corrections of O(S¡2 ¹ ") can be ignored. Partial di¬erentiation
of (6.8) gives

@s

@r0

= K¡1S2fr3
0F ¡3 + iS¡1r0F ¡2[1 + (4n + 3)r0F 0F ¡1]g: (6.9)

When (6.9) is paired with (5.1), it can be seen that

ds =

µ
@s

@r0

+ "s0 @s

@r1

¶
dr

= (K¡1S2fr3
0F ¡3 + iS¡1r0F ¡2[1 + (4n + 3)r0F 0F ¡1]g + O(")) dr: (6.10)

(d ) The generalized-scale solution

In the process of substituting (6.10) back into (6.6), K is fully eliminated. One is
left with

C1 = C0 exp

µ
"

Z
S2fr3F ¡3 + iS¡1rF ¡2[1 + (4n + 3)rF 0F ¡1]gdr

¶
: (6.11)

Further substitution into (6.1) gives the leading-order solution

Rn = F 2n + 2 exp

µZ r

1

f¹ x3F ¡3 ¡ iS[xF ¡1 ¡ "xF ¡2 ¡ (4n + 3)"x2F 0F ¡3]g
¶

dx;

(6.12)
where the boundary condition Rn(1) = 1 has been applied. Using x2F 0F ¡3 =
( ¡ 1

2
xF ¡2)0 + xF ¡2, one simpli­ es (6.12) into

RG
n = F 2n + 2 exp

·Z r0

1

f¹ x3F ¡3 ¡ iS[xF ¡1 ¡ 4(n + 1)"xF ¡2]g dx

+ i(2n + 3
2
)"S(1 ¡ r2F ¡2)

¸
+ O("): (6.13)

In the above, `G’ denotes a multiple-scale solution based on a generalized coordinate.
The current solution can be expressed in the same form as (5.12) and (5.15). The
di¬erence here is that © G must be replaced by

© G = S

·Z r

1

(xF ¡1 ¡ 4"xF ¡2) dx + 3
2
"(r2F ¡2 ¡ 1)

¸
; (6.14)

© G =

8
><

>:

¡ 1
4
S[(1 ¡ 2") ln(2r¡2 ¡ 1) + 2"(1 ¡ r¡2)(7 ¡ 11r2 + 3r4)(2 ¡ r2)¡2];

small R;

Sº ¡1fln tan( 1
2
³ ) + "[4 cot ³ + 3( ³ csc2 ³ ¡ 1

2
º )]g; large R:

(6.15)

(e) The general characteristic length

In the current analysis, determination of ² is not a prerequisite for ­ nding s(r).
Speci­ cation of the generalized scale in (6.8) is done exclusively by observing the
principle of minimum singularity. From (6.8), the need for a nonlinear coordinate
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transformation is explicitly ascertained. Although unnecessary, the problem’s char-
acteristic length-scale can be evaluated from (5.6), (6.8) and (6.10). One ­ nds

² G(r) ¹
¡ r¡3F 3

R r

1
x3F ¡3f1 + iS¡1x¡3[xF + (4n + 3)x2F 0]gdx

f1 + iS¡1r¡3[rF + (4n + 3)r2F 0]g
; (6.16)

which con­ rms that

sG(r) ¹
Z r

1

fx3F ¡3 + iS¡1xF ¡2[1 + (4n + 3)xF 0F ¡1]gdx: (6.17)

It is interesting to note that ² U can be restored from ² G since ² G ! ² U as S ! 1,
8n. Thus ² U in (5.8) represents the dominant, leading-order part of ² G. Similarly, sU

in (5.9) is recoverable from sG. This may explain the ability of the undetermined-scale
technique to yield a uniformly valid approximation.

7. Other approximations

(a) The composite-scale technique

In two previous studies, Majdalani & Van Moorhem (1995, 1998) used a di¬er-
ent approach to analyse the large injection problem. Following a space-reductive
multiple-scale theory, inner, outer and intermediate scales were ­ rst identi­ ed and
then replaced by one `composite’ function, sC(r) = (1 ¡ r)r¡a(1¡r)b

, with a = b = 3
2
.

The composite scale sC was uniformly valid over the solution domain and could
reproduce asymptotically the scales that existed near r = 0; 1. The corresponding ²
could be derived by direct di¬erentiation of sC. The resulting functional, namely,

² C(r) = (1 ¡ r)f1 + a(1 ¡ r)b[(1 ¡ r)r¡1 ¡ b ln r]g¡1; (7.1)

was corroborated by Majdalani (1998) in a separate study covering the porous chan-
nel ®ow. For small injection, one ­ nds a = 4

3
and b = 8

3
. The composite-scale solution

can now be reproduced by simply substituting ² C into (5.12) and (5.13).

(b) Zhao’s approximation

In similar but independent work concerned with large sidewall injection in a tube,
Zhao et al . (2000) introduced a nonlinear transformation also. However, Zhao’s trans-
formation was based on the choice of two scales that were found by intuition. While
the ­ rst scale was taken to be the radial distance from the wall, the second was
based on a `much shorter length associated with the radial distance travelled by a
®uid particle on the acoustic timescale.’ Subject to a minor correction in the lower
bound of Zhao’s de­ ning integral (i.e. the lower bound should be `1’ instead of `0’
lest the nonlinear scale be indeterminate), the two scales introduced by Zhao are

r1 = 1 ¡ r ² y and r2 = M ¡1V ¡1(x)

Z r1

1

z csc(1
2
º z2) dz: (7.2)

Here V (x) represents the normalized radial velocity distribution along the porous
walls. For uniform injection, V (x) = 1. The scaling transformation employed by
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Figure 2. Comparing the characteristic length-scale ² U with existing theories for (a) large and
(b) small cross° ow Reynolds numbers. While ² C is the composite length-scale derived by Maj-
dalani & Van Moorhem (1995), ² Z is based on the scales introduced by Zhao et al . (2000).

Zhao et al . (2000) can be extended to a problem with arbitrary injection. For that
purpose, one must have

r1 = 1 ¡ r;

r2 = M ¡1V ¡1(x)

Z r1

1

z dz

F (z)
=

(
1
4
M ¡1V ¡1(x) ln[y2=(2 ¡ y2)]; small R;

º ¡1M ¡1V ¡1(x) ln tan( 1
4
º y2); large R:

9
>=

>;
(7.3)

Using `Z’ to denote the scale functional based on the idea presented by Zhao et al .
(2000), one ­ nds

² Z = y¡1F (y)

Z y

1

z dz

F (z)
=

(
1
4
y(2 ¡ y2) ln[y2=(2 ¡ y2)]; small R;

º ¡1y¡1 sin( 1
2
º y2) ln tan( 1

4
º y2); large R:

(7.4)

At this point, Zhao’s approximation can be obtained by substituting ² Z into (5.12)
and (5.13).

8. Results and discussion

(a) Characteristic length-scales

So far, several nonlinear length-scales have been presented. Physically, ² G, ² U, ² C

and ² Z represent approximations to the characteristic length-scale for radial convec-
tion and attenuation of rotational disturbances. The intrinsic nonlinearity of ² can
be attributed to the co-existence of three important mechanisms evolving simulta-
neously on vastly dissimilar dimensions. These are viscous di¬usion, radial convec-
tion and unsteady inertia. While viscous forces di¬use vorticity on the small Stokes
length,

p
2 ¸ =!, radial convection of unsteady vorticity evolves on a spatially varying

wavelength. By analogy to the channel ®ow analysis (Majdalani & Roh 2000), the
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Figure 3. Error entailed in the various asymptotic formulations for uW
1 , uG

1 , uU
1 , uC

1 , uV
1 and

uZ
1 . For the ¯rst two oscillation modes, we compare solutions for a typical cold-° ow experiment

with S = 50m and R = 5000. Results are presented at acoustic pressure nodes corresponding
to (a) x=l = 1

2 and (b) x=l = 3
4 . Relative deviations from the numerical solution appear to be

contained within §5% at the exception of uZ
1 . Enlargements are shown in the insets.

dimensional wavelength for radial propagation of vorticity waves can be shown to be
2 º V F=(!r).

On the one hand, both ² G and ² U are systematically determined a posteriori with-
out the need for guessing. While ² U obeys Prandtl’s principle of matching by sup-
plementary functions, ² G is derived from the coordinate transformation prescribed
by the principle of minimum singularity. Due to the validity of both principles,
it is not surprising that ² U can be recovered from ² G for large S . On the other
hand, both ² C and ² Z are introduced at the beginning of the asymptotic analy-
sis. While ² C requires repeated trials to identify the inner scales, ² Z is obtained
following a rough scaling analysis. Despite the di¬erent modes of analysis used in
their determination, these scales exhibit interesting similarities. Figure 2 illustrates
their behaviour for both large and small injections. Graphically, ² U and ² C seem to
exhibit the same algebraic content despite their completely dissimilar expressions.
Despite matching the endpoints at r = 0; 1, the appreciating discrepancy between
² Z and the formal scales can be attributed to the dependence of ² Z on F instead of
F 3. This may also explain the reduced precision that can be associated with Zhao’s
approximation.

It should be noted that the idea of a nonlinear scale is not entirely novel. It has
been reported by Van Dyke (1975) that a nonlinear transformation had been ­ rst
introduced by Munson (1964). The relevant work involved the convection{di¬usion
equation appropriate to the study of the vortical layer on an inclined cone. In that
problem, linear stretching was ine¬ective, and an inner coordinate of the form r1 = r"

had to be devised. The main novelty in the current analysis lies, perhaps, in the
manner by which the scales are derived, a posteriori, by appealing to fundamental
principles.
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Table 1. Temporal velocity comparisons for a typical cold ° ow experiment with
S = 50m, ¹ = 1

2
m2 , R = 5000, !m t = 1

2
º , x=l = 1

2
and m = 1

r uN
1 uW

1 uG
1 uU

1

0.25 1.004 653 1 1.004 477 4 1.003 932 8 1.004 351 4

0.30 1.006 703 5 1.006 608 7 1.005 142 5 1.006 438

0.35 0.973 365 10 0.973 743 5 0.972 463 2 0.973 761 7

0.40 0.990 395 40 0.990 303 9 0.993 265 5 0.989 870 7

0.45 1.074 499 9 1.074 372 1.071 814 9 1.075 083 9

0.50 0.857 381 10 0.857 526 6 0.859 535 0.856 691 6

0.55 1.205 359 0 1.205 421 1.203 239 8 1.206 658 1

0.60 0.768 443 90 0.767 888 5 0.770 842 8 0.765 725 4

0.65 1.145 684 9 1.146 902 4 1.143 334 4 1.150 132 6

0.70 1.123 730 1 1.122 185 6 1.125 295 5 1.118 804 4

0.75 0.487 155 60 0.488 137 1 0.486 648 8 0.490 051

0.80 1.748 320 7 1.748 542 8 1.748 404 8 1.748 745

0.85 0.464 727 30 0.463 770 7 0.464 358 1 0.462 669 8

0.90 0.903 153 50 0.903 814 2 0.903 678 1 0.904 334 5

0.95 1.740 656 2 1.740 553 9 1.740 445 1.740 594

r uC
1 uV

1 uZ
1

0.25 1.004 437 2 1.003 676 1.001 856 1

0.30 1.006 511 1.004 387 1.004 480 9

0.35 0.973 133 1 0.971 751 0.984 264 7

0.40 0.989 953 1 0.995 357 0.989 222 6

0.45 1.075 903 6 1.069 648 1.063 521 5

0.50 0.855 174 0.861 564 0.875 303 4

0.55 1.208 584 9 1.200 635 1.185 982 2

0.60 0.763 908 4 0.775 048 0.782 729 3

0.65 1.150 755 3 1.137 126 1.144 820 4

0.70 1.120 815 6 1.132 144 1.104 336 3

0.75 0.485 071 5 0.482 291 0.525 564 9

0.80 1.754 340 5 1.747 759 1.705 207 3

0.85 0.459 985 3 0.468 972 0.488 894 1

0.90 0.903 639 4 0.899 133 0.914 518 8

0.95 1.741 614 1.742 110 1.705 510 2

(b) Comparison with the numerical simulation of
the linearized momentum equation

A sample comparison between di¬erent velocity formulations is given in table 1 for
parameters corresponding to a typical cold-®ow experiment. It is reassuring to note
the overall concurrence of various asymptotic techniques and the numerical solution
of the linearized Navier{Stokes equation. This good agreement actually persists over
a broad range of physical parameters. Using uN

1 as a benchmark, relative errors
are determined and plotted in ­ gure 3 for the ­ rst two oscillation modes and the
same physical setting. Whereas discrepancies between most asymptotic solutions and
uN

1 are almost too small to be discerned graphically, the error in uZ
1 exhibits large
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Figure 4. Comparison at two successive times between our asymptotic solution for u1 (solid lines)
and numeric simulations of the nonlinear Navier{Stokes equations (chains). For the ¯rst three
oscillation modes, pro¯les are provided at axial positions corresponding to acoustic pressure
nodes. Here S = 50m, R = 4 £104 and ¹ = m2 =16. Discrepancies between numerics and asymp-
totics can be attributed, in part, to the ¯nite mesh resolution of (a) 60 £150, (b), (c) 80 £ 240
and (d){(f) 90 £360 (in the axial and radial directions) for m = 1, 2 and 3.

random peaks that re®ect non-uniformity. These random deviations become more
pronounced at higher oscillation modes. This result can be attributed to the clear
di¬erences (shown in ­ gure 2) between ² U and Zhao’s assumed function ² Z.

(c) Computational veri¯cation

The most striking result is, perhaps, the good agreement found when asymptotic
predictions are compared with numerical simulations of the complete set of (nonlin-
ear) Navier{Stokes equations. Inasmuch as small nonlinearities are not incorporated
in the analytical derivations, deviations between asymptotics and numerical simu-
lations turn out to be smaller than expected. A sample comparison is provided in
­ gure 4 for the ­ rst three oscillation modes of a typical large injection case. While the
axial locations are chosen to coincide with harmonic pressure nodes, results obtained
are based on the fully implicit, ­ nite-volume code developed by Roh et al . (1995).
The small discrepancies between asymptotic and computational data are ascribed
to the ­ nite space and time discretization errors, and to small nonlinearities that
elude the asymptotic model. Note, in particular, the presence of j ¡ 1 rotational
velocity nodes downstream of the jth internal velocity node in ­ gure 4c; e; f . These
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Figure 5. Comparison between our asymptotic solution for u1 (solid lines) and experimental
data obtained by Brown et al . (1986). For m = 1 and 2, temporal velocity amplitudes are shown
in (a) and (b) while their phase angles (with respect to pressure) are shown in (c) and (d).
Similarity parameters correspond to S = 51:3m, R = 4900 and x=l = 0:106. Other parameters
are M = 0:0018, l = 34, !m = ( º =34)m, and ¹ = 0:539m2 . Hollow and dark symbols correspond
to experimental data acquired with a pressure wave amplitude ¹" of 0.0005 and 0.0039. Squares
and circles are used to denote ¯rst and second oscillation modes. With reference to Brown et
al . (1986), our symbols (¤ ), ( )̄, (¥ ) and (°) are for tables VI{IX.

premature nodes appear in the computational solution for m > 1 and concur with
the forthcoming description. They do not appear in ­ gure 4a; b; d, each of which is
taken, for each oscillation mode m, at the axial location corresponding to the ­ rst
internal pressure node upstream of the jth internal velocity mode.

(d ) Experimental veri¯cation

In order to better understand the oscillatory ®ow character over transpiring sur-
faces, numerous velocity and pressure measurements have been gathered during cold-
®ow experiments conducted by Brown and co-workers (Brown et al . 1986; Dunlap
et al . 1990). Their tests were carried out using a circular tube that allowed uniform,
steady, sidewall injection of nitrogen gas. Their experimental set-up corresponded
to S = 51:3m, R = 4900, M = 0:0018, L = 1:727 m, a = 0:0508 m, c = 290 m s¡1,
¸ = 5:43£10¡6 m2 s¡1 and ! = 168 º m rad s¡1. Using three-element hot-wire probes
positioned in an upstream portion of the tube (where the ®ow is strongly laminar),
experimental measurements were collected for the ­ rst two oscillation modes (84 and
168 Hz), and for two dimensionless pressure ratios (cf. tables VI{IX in Brown et al .
(1986), pp. 120{123). While velocity amplitudes are shown in ­ gure 5a; b for the ­ rst
two oscillation modes, the velocity-to-pressure phase lags are compiled in ­ gure 5c; d.
Comparisons with asymptotic predictions show satisfactory agreement between the-
ory and experiment. This agreement becomes more convincing when experimental
acquisition and calibration errors are factored in. Note that, at the wall, the phase
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Figure 6. From top to bottom, the modulus of unsteady velocity is plotted at several axial
locations and for the ¯rst three oscillation modes. Results are shown for geometrically similar
tubes (solid lines) and channels (broken lines). Physical parameters are R = 4 £104 , ¹ = m2 =16
and S = 50m. A pattern correlation with classic acoustic mode shapes is apparent. Maximum
rotational amplitudes occur near acoustic pressure nodes and diminish in the direction of velocity
nodes. Rotational amplitudes are not symmetric with respect to pressure nodes as they increase
downstream due to the mean-° ow convection of unsteady vorticity. The presence of premature
zero rotational amplitudes for m = 2; 3 are due to streaks of zero vorticity (chain lines) emanating
from the jth internal velocity nodes located at x=l = j=m, j < m. The penetration of vorticity
is more signi¯cant in a channel (broken lines).

lag can be calculated, following Majdalani (1999), to be º =2 ¡ arctan(R=S). This
result can be numerically veri­ ed 8F .

(e) Evolution of unsteady velocity and vorticity

Unlike the vorticity-transport formulation, the generalized-scale solution is su¯ -
ciently compact to provide simple expressions for a number of ®ow features. Included
are the depth of penetration, Richardson overshoot factor, phase lag and veloc-
ity modulus. The ­ rst three features have been covered, for large R, by Majdalani
(1999). The arbitrary injection case can be similarly treated. The velocity modulus
will be now examined because of its usefulness in describing the ®ow character across
the tube’s ­ nite length.

For a typical test case, ju1j can be evaluated and is shown in ­ gure 6 at several dis-
crete locations. For the ­ rst three oscillation modes, patterns are clearly in®uenced by
the inviscid pressure mode shapes. Rotational amplitudes are largest along the wall
near harmonic pressure nodes where the pressure-driven velocity response is most
intense. Pressure nodes may be identi­ ed by x=l = (2j ¡ 1)=2m, 1 6 j 6 m, for the
jth internal pressure node. The additional downstream intensi­ cation of rotational
amplitudes is due to the axial convection of unsteady vorticity by the mean ®ow.
Conversely, a weakening in vortical strength is noted during inward propagation.
The vortical attenuation in the radial direction can be attributed to the compound-
ing e¬ects of viscous di¬usion and the speed reduction in the convective motion.
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Irrespective of the acoustic oscillation mode, one observes, near the wall, an over-
shoot in the unsteady velocity amplitude. Commonly referred to as the Richardson
annular e¬ect (cf. Rott 1964), this phenomenon is more intense near the wall where
the large vortical response can favourably couple with the pressure-driven response.

At higher oscillation modes (m > 1), the presence of premature nodes of zero
rotational amplitude is noted j < m times downstream of the jth internal velocity
node. These irrotational points are caused by the lines of zero vorticity that originate
at the velocity nodes (x=l = j=m) and stretch across the solution domain. In fact,
when ju1j is plotted at several axial locations, the rotational nodes are found to
appear at the radial intersections with the zero vorticity streaklines.

Whereas acoustic velocity nodes correspond to zero vorticity points, the most
appreciable vorticity sources appear at the pressure nodes. In fact, a close examina-
tion of (3.4) con­ rms that fresh vorticity is constantly supplied at the wall where the
oscillatory pressure gradient in the axial direction is perpendicular to the radially
incoming ®ow. Thus ·« (x; 1) is highest at x=l = (2j ¡ 1)=2m, where p̂ = 0 and û
exhibits the maximum amplitude given by (2.17). Since the total vorticity can be
written as

« = Mx(F 0=r ¡ F 00)=r + ·"rS sin[mº (x=l)F ] exp ± cos(!mt + © ); (8.1)

it is clear that the maximum ·« (x; 1) is of the order of ·"S=M = !m ·"=M 2 in compar-
ison with the steady vorticity. Recalling from (2.13) that ·"=M 2 > 1, it follows that
unsteady vorticity can be more intense than the mean-®ow vorticity. The role played
by unsteady vorticity is hence very important and should not be discounted in this
or similar low Mach number viscous models.

(f ) Curvature e® ects

In order to illustrate the principal di¬erences between axisymmetric and planar
motions, results in ­ gure 6 are shown for two geometrically similar ducts, namely, for
a tube (solid lines) and a channel (broken lines) that exhibit circular and rectangular
cross-sections. We ­ nd the inward penetration of vorticity to be more signi­ cant
in a channel due to the absence of curvature. A curvature appears to inhibit the
penetration depth of vorticity by reducing the ®ow cross-section normal to incoming
streams. For the same reason, the unsteady velocity amplitude decays more rapidly
in a tube.

With respect to mean vorticity generation and transport, two interesting features
can be noted. The ­ rst regards vorticity amplitudes. By comparing the mean-®ow
velocity and vorticity in (2.2) to that in a channel (Majdalani & Roh 2000), one
­ nds, for any position x,

u0(r = 1)

u0(y = 0)
=

(
8
3
;

2;

« 0(r = 0)

« 0(y = 1)
=

(
8
3
; small R;

4; large R:
(8.2)

Hence, for large R, « 0 = º 2x is four times larger near the wall in a tube than in
a channel with « 0 = 1

4
º 2x. Reasons can be attributed to the larger axial velocity

in the tube. The larger amplitudes are compounded by vortex augmentation caused
by the radial compression of circular vortex rings. Such compression is not present
in the less vortical channel having the same aspect ratio. As explained by Flandro
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(1995a) and Majdalani et al . (2000), vorticity can lead to an important destabilizing
term in solid rocket motor combustion that needs to be accounted for lest predictions
fall short of actual measurements. From that perspective, an enhanced vortical ­ eld
in a tube is likely to promote a less stable acoustic environment.

The second feature regards the transverse penetration of mean vorticity. Since
vorticity is carried by the mean ®ow, its penetration depth is found to be more
signi­ cant in a channel where a more gradual ®ow turning occurs. As ®ow turning
requires energy to be transferred from the axial acoustic ­ eld to the radially incoming
®uid, the energy exchange happens more rapidly near the walls of a tube. Despite the
smaller local vorticity in the channel, the in­ nite radius of curvature allows vorticity
rings to tap deeper into the core. Conversely, since a ­ nite curvature inhibits the
inward propagation of vorticity, a broader inviscid core is realized in a tube.

(g) Comparison with Sexl’s pro¯le

Since the mean ®ow is solely induced by the in®ux at the walls, suppressing injec-
tion drastically alters our model. As we approach the limiting process of zero injec-
tion, walls become impermeable and pressure loses its mean component. The question
that could be raised is where should one stop? We ­ nd that, if V in our model is
made comparable with the Stokes di¬usion speed,

p
2!¸ , our results will mimic Sexl’s

exact solution for an oscillatory ®ow bounded by rigid walls. In that event, dynamic
similarity parameters can be chosen such that ¹ = ¶ S , where ¶ S = a

p
!=2 ¸ is the

Stokes number. Accordingly, we will have

R = 21=6a
p

!=¸ and V =
p

2!¸ =
3
p

2:

The wall injection velocity will hence be slightly smaller than the di¬usion speed. One
may interpret this condition to be re®ective of insigni­ cant injection. The resulting
­ eld can be compared with the exact solution given by Sexl (1930) for an oscillating
®uid inside an impermeable tube. The latter is derived for an in­ nitely long tube
and exhibits ­ rst-mode oscillations that are independent of x. Due to our tube’s
­ nite length, we compare u1 in ­ gure 7 with the exact solution at x=l = 1

2
and m =

1. Graphically, the comparison seems to indicate a favourable agreement between
asymptotic and exact predictions. In particular, when injection is virtually absent, a
reversal can be noted in the role played by viscosity. This phenomenon is consistent
with Prandtl’s classic theory foreseeing a deeper vortical presence with increased
viscosity (­ gure 7a).

Overall, our approximate solution seems to embrace Sexl’s solution when injection
is reduced to the di¬usion speed. Thus, although it is possible to approximate the one-
dimensional oscillatory solution from ours, the converse is not true. Since 21=6 ¹= 1:12,
one may set the lower limit on the cross®ow Reynolds number to be R = a

p
!=¸ =

10, so that " 6 0:1. This lower limit is prescribed, in part, by the desired precision in
the ensuing perturbation analysis. At the lower end of the spectrum, properties must
therefore satisfy a

p
!=¸ > 10 and V a=¸ > 10. The corresponding model remains

applicable as long as
V > 10¸ =a and ! > 10V=a: (8.3)

These inequalities set the lower bounds for an open-ended range of physical parameter
encompassing many realistic ®ows.
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Figure 7. Velocity pro¯les of u1 shown at eight successive time-intervals. Results are obtained
from asymptotic predictions (broken lines) and the exact formula by Sexl (full lines). Parameters
correspond to ¹ = ¶ S for which convective and di® usive speeds are of the same order. We use
a
p

!=¸ = 100 in (a) and 100
p

10 in (b). In the absence of appreciable wall injection, the
penetration of vorticity diminishes when viscosity is reduced, going from (a) to (b).

(h) Viscosity and the boundary layer

Observations made in the channel analogue regarding the role of viscosity are
recon­ rmed here for an arbitrary mean-®ow function. For moderate-to-large injection
speeds, the penetration depth is found to diminish with increasing viscosity. However,
for sū ciently small injection, the depth of penetration decreases when viscosity
is made smaller. In order to understand the seemingly paradoxical role played by
viscosity, one needs to examine the details of the penetration depth, ¢ ¤ . To begin,
one needs to realize that ¢ ¤ encompasses two adjacent regions: a highly vortical layer
immediately above the wall followed by a highly viscous layer of O(

p
¸ =V ) that is

blown-o¬ by the incoming stream.
For sū ciently small injection, the solution is a strongly damped wave whose

viscous layer is formed in the close proximity of the wall. Moreover, it is much larger
than the vortical layer pressed beneath it. The resulting depth of penetration becomes
slightly larger than the Stokes layer of O(

p
¸ =!). Now when viscosity is increased,

the viscous layer grows in size and the rate at which vorticity di¬uses increases
also. The enhanced di¬usion rate causes the underlying vorticity layer to narrow in
thickness. Since the vortical thickness is of order V 3=(!2 ¸ ), it can be near zero for
su¯ ciently small V ; as such, the net reduction in the vorticity sheet constitutes an
insigni­ cant contribution to the overall depth of penetration. The net growth in the
viscous layer outweighs the net reduction in the thin vorticity layer to the point that
a larger ¢ ¤ is realized.

For appreciable injection reported in cold-®ow studies, the highly viscous layer
of O(

p
¸ =V ) is now pushed to the central portion of the tube (Proudman 1960).

It is much thinner than the vorticity layer of O(a) (since V 3=(!2 ¸ ) = a=¹ and
¹ ¹ 1). When viscosity is increased, the expansion of the thin viscous layer of O( ¸ 1=2)
becomes negligible in comparison with the contraction of O( ¸ ¡1) experienced by the
vorticity layer. The ensuing ¢ ¤ decreases when ¸ is made larger. In a sense, it is the
relative sizes of vorticity and viscosity layers at di¬erent injection speeds that stand
behind the dual roles played by viscosity.
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Figure 8. Comparison of maximum errors entailed in uW
1 , uG

1 , uU
1 , uC

1 and uV
1 for the large

injection case. As " = R ¡ 1 is varied, the Strouhal number is held at (a) 10 and (b) 100.
For every Strouhal number, the lowest curve that is indicative of the most accurate solution
corresponds to uW

1 .

(i) Error veri¯cation

Using uN
1 as a benchmark, the asymptotic error associated with uW

1 , uG
1 , uU

1 , uC
1

and uV
1 can be evaluated. Following Bosley (1996), we de­ ne Em to be the maximum

absolute error between uN
1 and u1 given asymptotically. Assuming a logarithmic

variation of the form Em / " ¬ , the slope ¬ can be read from the log{log plot of Em

versus ". This, of course, gives the order of the error. As we show in ­ gure 8, ¬ ! 1
asymptotically in all cases. Pursuant to Bosley’s arguments, the clear asymptotic
behaviour indicates that all asymptotic solutions are correct, uniformly valid, and
exhibit errors of O(") over a wide range of parameters. The errors associated with
uW

1 and uG
1 remain, however, the smallest. The improved accuracy of uW

1 is o¬set
by the increased algebraic complexity in evaluating its ­ rst-order correction terms
(see (4.14)). The simplicity, accuracy and ease of evaluating uG

1 make it our favourite
solution.

9. Concluding remarks

The quest for exact or asymptotic solutions of the viscous ®ow equations in porous
tubes has a long history. In this work, we have presented a comprehensive account
of the forms of asymptotic approximations that can proceed from the linearized vor-
ticity and momentum transport equations. In contrast to previous studies of this
topic that have addressed speci­ c physical settings, we have implemented a system-
atic investigation using a general form of the mean-®ow ­ eld. Other authors have
typically considered one level of injection in a given geometric setting. This work has
demonstrated the possibility of presenting the ­ nal solution in a generic form that
provides realizable expressions for any su¯ ciently di¬erentiable mean-®ow function
F . The generalized formulations show how not only do we recover (e.g. uU

1 and uV
1 ),

con­ rm (uC
1 ), or correct previously attempted solutions (uZ

1 ), but also ­ nd some
completely new asymptotic forms (uG

1 and uW
1 ). These have been catalogued in their

most simple forms in xx 3{7. Any of them can be repeated for a more elaborate
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setting that includes, for example, the e¬ects of expanding or contracting walls, non-
uniformly permeable boundaries, and suction instead of injection. They can also be
used to study the onset of hydrodynamic instability in the tube. As such, they open
new lines of further enquiry.

Our solutions are especially useful in correcting de­ ciencies in current predictive
algorithms used to determine the system stability in solid rocket motors. By demon-
strating that unsteady vorticity exceeds in magnitude its steady counterpart, we
have established the importance of implementing the elements of vorticity, viscos-
ity, and other ®ow interactions not incorporated previously. To avoid combustion
instabilities late in the development cycle, corrective procedures that include vor-
ticity e¬ects, such as those developed here, must therefore be accommodated in the
analysis of oscillatory ®ows in high energy propulsion systems and industrial burners.

From a physical standpoint, our formulations promote a complete ®ow charac-
terization that displays interesting vorticity and velocity patterns. These patterns
are strongly in®uenced by the acoustic pressure mode shapes. For example, we ­ nd
the most signi­ cant sources of unsteady vorticity to be concentrated near pressure
nodes (at x=l = (2j ¡ 1)=2m, 1 6 j 6 m). By comparing tube and channel ®ows,
our study brings into focus the e¬ect of a tube’s radius of curvature. In comparison
with a channel, a tube is found to exhibit faster ®ow turning near the wall. It also
induces magni­ cations in core velocities and vorticities by ( 8

3
; 8

3
) and (2; 4) for small

and large R. While a smaller radius of curvature inhibits the inward penetration of
mean and unsteady vorticity, it promotes larger vortical magnitudes.

It is reassuring that our mathematical models, which have been hypothetical in
nature, could be corroborated by experimental and computational tests. It is also
vital that our formulations could reproduce exact solutions (such as Sexl’s) and
con­ rm, correct, or recover previously reported approximations. In the case of the
generalized-scale technique, the ensuing work encompasses a completely new and
rigorous method of analysis. The underlying multiple-scale structure encountered
here can be attributed to the co-evolution of radial convection and viscous di¬usion of
vorticity waves on separate radial dimensions. Similar interactions can be present in
other convection{di¬usion problems that have been, heretofore, impossible to solve.
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