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Summary

In this article, a long rectangular channel is considered with two transpiring walls that are
a small distance apart. The channel’s head end is hermetically closed while the aft end is
either open (isobaric) or acoustically closed (choked). A mean flow enters uniformly across
the permeable walls, turns, and exits from the downstream end. The slightest unsteadiness in
flow velocity is inevitable and occurs at random frequencies. Small pressure disturbances are
thus produced. Those waves with oscillations matching the natural frequencies of the enclosure
are promoted. Inception of small pressure perturbations alters the flow character and leads to
a temporal field that we wish to analyse. The mean flow is of the Berman type and can be
obtained from the Navier–Stokes equations over different ranges of the cross-flow Reynolds
number. The unsteady component can be formulated from the linearized momentum equation.
This has been carried out in numerous studies and has routinely given rise to a singular,
boundary-value, double-perturbation problem in the cross-flow direction. The current study
focuses on the resulting second-order differential equation that prescribes the rotational wave
motion in the transverse direction. This equation exhibits unique features that define a general
class of ordinary differential equations. Due to the oscillatory behaviour of the problem, two
general asymptotic formulations are derived, for an arbitrary mean-flow profile, using WKB and
multiple-scales expansions. The fundamental asymptotic solutions reveal the same similarity
parameter that controls the rotational wave character. The multiple-scales solution unravels the
problem’s characteristic length scale following a unique, nonlinear variable transformation. The
latter is derived rigorously from the problem’s solvability condition. The advantage of using a
multiple-scales procedure lies in the ease of construction, accuracy, and added physical insight
stemming from its leading-order term. For verification purposes, a specific mean-flow solution
is used for which an exact solution can be derived. Comparisons between asymptotic and
exact predictions are gratifying, showing an excellent agreement over a wide range of physical
parameters.
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1. Introduction

The purpose of this paper is to obtain the fundamental asymptotic form of the rotational solution
for wave propagation inside a viscous channel bounded by transpiring walls. The original
partial differential equation (PDE) stems from the momentum equation arising in the context of
a fluid oscillating inside a chamber with permeable walls (1 to 8). Mean-flow interactions with
the oscillatory motion involve unsteady inertial, convective, and diffusive mechanisms. Such
interactions lead to a nonlinear scaling structure that we wish to analyse. The mean flow is of
the Berman type and can be obtained from the Navier–Stokes equations over different ranges of
the cross-flow Reynolds number (9). Traditionally, a solution is said to be of the Berman type
when it satisfies Berman’s nonlinear equation (10). The latter is a fourth-order ordinary differential
equation (ODE) that arises from the two-dimensional Navier–Stokes equations applied to a porous
channel, and subject to a similarity transformation. As shown in former studies (3 to 7), the temporal
component can be formulated from the linearized momentum equation. Accordingly, separation of
variables reduces the momentum equation to a coupled set of ODEs. While an exact solution can be
obtained for the longitudinal set, the same cannot be said of the transverse equation. For this reason,
the current study focuses on the separated, second-order differential equation that prescribes the
rotational wave motion in the transverse direction. The emerging cross-flow equation defines a
singular, boundary-value, double-perturbation problem exhibiting an oscillatory behaviour. Such
features characterize a particular class of ODEs that we wish to solve asymptotically, in general
conceptual form.

To set the stage, we proceed by formulating two fundamental asymptotic solutions for the
cross-flow boundary-layer equation. We choose the standard WKB approach to arrive at a first-
order approximation. Next, a multiple-scales procedure is implemented to produce a two-variable
expansion. The latter brings into focus the emerging nonlinear scaling structure. It should be pointed
out that, to the authors’ knowledge, the nonlinear coordinate transformation that is necessary for
the success of the multiple-scales technique appears to be a novelty. Unlike previous studies in
which the scaling transformation is conjured from guesswork or inspection, in this article it is
derived rigorously from the problem’s solvability condition. Subsequently, following the formal
specification of the problem’s characteristic length scale, the multiple-scales formulation will be
shown to incorporate the leading-order terms arising in the WKB approximation. Asymptotic results
are verified using a special example for which the boundary-layer equation can be solved in an exact
fashion. Using the exact solution as a benchmark, the truncation error is examined also. The special
example that we employ stems from a practical application. In fact, both exact and asymptotic
formulations serve as useful extensions to a recent study that considers the oscillatory flow inside
rectangular cavities (1 to 3). Such flows take place in a number of interesting applications, including
cold-flow simulations of burning propellant (5 to 8), isotope separation (9 to 11), turbulence of
oscillatory flows (12 to 17), filtration mechanisms (18) and sweat cooling (19).

2. Physical setting

Our interest lies in an ideal gas performing small oscillations (at an angular frequency ω) about
a steady two-dimensional velocity field. The solution domain consists of a long and narrow
rectangular channel of length L , height 2h, and width w. The channel is closed at the head end
and either (a) choked or (b) open (isobaric) at the downstream end (see Fig. 1). Furthermore, we
select a Cartesian reference frame that is anchored at the head-end centre, and use x and y to
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Fig. 1 Sketch of the two-dimensional geometry and solution domain

represent the cross-flow (normal) and streamwise (longitudinal) coordinates (normalized by h). For
the reader’s convenience, the complete details that may be found in (2) and (3) are briefly revisited
in this section. For periodic pressure perturbations of amplitude P , one can express the total velocity
profile as a sum of its mean and time-dependent components:

u(x, y, t) = V u(x, y) + Pρ−1a−1[û(x, y, t) + ũ(x, y, t)], (2.1)

where V is the gas velocity at the transpiring wall, ρ is the gas density, a is the acoustic speed
of sound, and t is dimensional time. In (2.1), the normalized mean velocity is u = (u, v) while
û = (û, v̂) and ũ = (ũ, ṽ) denote the irrotational (curl-free) and solenoidal (divergence-free) time-
dependent components (3). The oscillatory pressure p(y, t) is of the form

p = P cos(ky) exp(−iωt), (2.2)

and the corresponding irrotational velocity response in a rectangular cavity will be (cf. (2) or (3))

û = [0, i sin(ky) exp(−iωt)]. (2.3)

Here k is the dimensionless wavenumber, and ω is the dimensional frequency corresponding to an
oscillation mode number m = 1, 2, 3, . . . ,∞. The patterns associated with the mode numbers
are known as the fundamental, first harmonic, second harmonic (etc.) oscillation mode shapes.
In practice, the lowest oscillation mode shapes require the least energy to excite and are therefore
the most likely to occur. Depending on whether the downstream end is (a) closed (acoustically
non-compliant) or (b) open (isobaric), the wave number and frequency of oscillations are given
by (1)

k =
{

mπh/L , (a)

(m − 1
2 )πh/L , (b)

ω =
{

mπa/L , (a)

(m − 1
2 )πa/L . (b)

(2.4)
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The rotational velocity component can be derived from the linearized momentum equation known
to the order of the cross-flow Mach number M = V/a. In fact, one may follow Majdalani (3) and
Flandro (4 to 6), or Majdalani and Van Moorhem (7), and express the momentum equation in the
streamwise direction. The result is

∂ṽ

∂t
+ V

h
u

[
∂ṽ

∂x
+ ∂

∂y
(ṽv)

]
− ν

h2

∂2ṽ

∂x2
= 0, (2.5)

where ν is the kinematic viscosity. For equal permeability at the walls, symmetry enables us to
reduce the domain to 0 � x � 1 and 0 � y � L/h. This self-imposed condition prevents our model
from accommodating asymmetrical mean-flow solutions. In the case of transpiring walls, however,
only unique and stable symmetrical solutions exist for the entire range of the injection Reynolds
number. This conclusion was first drawn by Skalak and Wang (20) and later proved rigorously
by Shih (21). For suction flows with R < −6·0014, multiple solutions can exist including those
exhibiting asymmetrical behaviour. For a thorough investigation of all possible solution patterns
that accompany flow withdrawal, the reader is referred to the comprehensive work by Zaturska
et al. (22). For two-dimensional and three-dimensional considerations, the reader may also find
interesting the studies by Cox (23) and Taylor et al. (24).

In addition to the geometric symmetry that is imposed, the no-slip condition at the wall requires
that v̂ + ṽ = 0. Thus, one must have

ṽ(1, y, t) = −i sin(ky) exp(−iωt),
∂ṽ

∂x
(0, y, t) = 0. (2.6)

Setting ṽ = v exp(−iωt) in (2.5) gives

−i Sv + u
∂v

∂x
+ ∂

∂y
(vv) − 1

R

∂2v

∂x2
= 0; v(1, y) = −i sin(ky),

∂v

∂x
(0, y) = 0,

S ≡ ωh

V
, R ≡ V h

ν
.

(2.7)

Here S and R are the Strouhal and cross-flow Reynolds numbers, respectively. The reciprocal of
R, namely ε ≡ R−1, is taken, henceforward, to be the primary perturbation parameter. Due to
practical limitations on viscosity and frequency, meaningful physical settings correspond to R > 10
(cf. Yuan (11)). Furthermore, for non-trivial injection the convection speed at the transpiring walls
must exceed the molecular diffusion speed

√
ων. Since S/R = ων/V 2, imposing V � √

ων

requires that S � R. The possible equality (V = √
ων, S = R) corresponds to the case for which

the walls behave as if they were impermeable. In that limiting process of insignificant injection, one
can choose (for both physical and perturbation reasons) S = R = 10 to set the lower bounds of the
physical domain. This limit is partly inspired by the fact that a value of S < 10 is uncommon in
oscillatory systems. Practical applications will hence correspond to R > S > 10.

The value of R (here positive for influx) has been the basis for mean-flow velocity assessments
that have received considerable attention in the past. In fact, one may enumerate a great number of
studies concerned with the mean-flow structure, uniqueness, and stability (cf. (9 to 11, 20 to 31)).

Presuming a separable solution of the form v(x, y) = f (x)g(y) and using the known profile
u = (−x, y) for flow inside a cavity (32), (2.7) becomes

1

R f

d2 f

dx2
+ x

f

d f

dx
+ (i S − 1) = y

g

dg

dy
= λn, (2.8)
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where λn must be strictly positive for a non-trivial formulation. Linear summation over λn gives

v(x, y) =
∑
λn

cn fn(x)yλn . (2.9)

Furthermore, satisfaction of the boundary conditions in (2.7) yields λn = 2n+1, n = 0, 1, . . . , cn =
−i(−1)nk2n+1/(2n + 1)!, fn(1) = 1 and f ′

n(0) = 0. The separated solution fn is left to be
determined from the cross-flow boundary-layer equation

ε f ′′
n + x f ′

n + [−(2n + 2) + i S] fn = 0. (2.10)

Once fn is known, the rotational component of the velocity can be constructed via (2.9). One
obtains

ṽ(x, y, t) = −i exp(−iωt)
∞∑

n=0

(−1)n(ky)2n+1 fn(x)/(2n + 1)!. (2.11)

Fortuitously, the cross-flow boundary-layer equation (2.10) can be solved both exactly and
asymptotically. However, for more sophisticated mean-flow profiles that are solutions to Berman’s
equation (10), the resulting boundary-layer equations can be solved asymptotically only. In what
follows, two fundamental asymptotic solutions are constructed for the class of ODEs to which (2.10)
belongs.

3. Fundamental formulation

When coupling exists inside an enclosure between a mean-flow structure and small-amplitude
pressure perturbations, the linearized momentum equation has been shown in several studies to
be reducible by separation of variables (cf. Flandro (4 to 6), Majdalani and Van Moorhem (7)
and Majdalani (33)). As outlined in the previous section, former studies have demonstrated that a
successful outcome relies on resolving the separated cross-flow boundary-layer equation. The latter
contains two perturbation parameters and exhibits the fundamental form

ε
d2 f

dx2
+ a(x)

d f

dx
+ [b(x) + iλc(x)] f = 0; a(α) = 0, (3.1)

where x is defined over a closed interval, α � x � β; a(x), b(x) and c(x) are real coefficients,
i = √−1 and ε is the primary perturbation parameter associated with small viscosity. For influx at
the walls, a(x) > 0. The Strouhal number is represented by the secondary perturbation parameter
λ, which is a measure of unsteadiness. Typically, R > λ > 10 for non-trivial oscillations and flow
influx. Because of symmetry about the core, a(α) = 0 satisfies the physical need for a vanishing
transverse component of the velocity (10). Boundary conditions accompanying (3.1) consist of

d f

dx
(α) = 0, f (β) = γ . (3.2)

3.1 Motivation

As illustrated in (2.10), a(α) = 0 gives rise to a regular singularity. This singularity is of a
logarithmic type that demands a careful application of perturbation tools. Since an exact solution
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is always desirable, the forthcoming conceptual solution will be later compared with the exact
solution of (2.10). When the undisturbed state is taken to correspond to more elaborate mean-
flow solutions of the Berman equation (10), more complicated expressions for a(x), b(x) and c(x)

will arise. The fundamental asymptotic formulations that will be developed below can then be used
to obtain closed-form temporal solutions for specific mean-flow patterns. The conceptual solutions
can also reveal the characteristic length scales and dynamic parameters that control the rotational
wave behaviour (amplitude, phase and depth of penetration) for an arbitrary mean-flow profile.

3.2 Fundamental WKB solution

Consider the singular, boundary-value, double-perturbation problem expressed by (3.1), (3.2).
Conventional WKB theory (cf. Bender and Orszag (34)) proposes setting

f (x) = γ exp(δ−1S0 + S1 + δS2 + δ2S3 + δ3S4 + · · · ), (3.3)

where δ is a small parameter and S j (x) ( j � 0) must be determined in succession. Following
substitution into (3.1) and normalization, the distinguished limit for λ < ε−1 is found to be δ = √

ε.
Collecting terms of the same order in ε produces the defining equations. Provided that λ ∼ ε−1/2,
the zeroth-order equation for S0 at O(ε−1/2) is aε−1/2S′

0 + iλc = 0. Therefore,

S0 = −iλ
√

ε

∫ x

β

a−1c dt . (3.4)

Similarly, the companion equation at O(1) can be written as aS′
1 + S′2

o + b = 0. Hence,

S1 = −
∫ x

β

a−1(b + S′2
0 ) dt = −

∫ x

β

a−1(b − ελ2c2a−2) dt . (3.5)

Next, the O(
√

ε) equation can be obtained via aS′
2 + S′′

0 + 2S′
0S′

1 = 0. The result is

S2 = −
∫ x

β

a−1(S′′
0 + 2S′

0S′
1) dt = iλ

√
ε

∫ x

β

[(ac′ − ca′ − 2bc)a−3 + 2ελ2c3a−5] dt . (3.6)

Higher-order terms can be found from aS′
3+S′′

1 +S′2
1 +2S′

0S′
2 = 0 and aS′

4+S′′
2 +2S′

0S′
3+2S′

1S′
2 = 0.

One finds

S3 =
∫ x

β

[(ab′ − ba′ − b2)a−3 + ελ2(6c2b + 5c2a′ − 4acc′)a−5 − 5ε2λ4c4a−7] dt, (3.7)

S4 = iλ
√

ε

∫ x

β

[(4acb′ − 10bca′ + 4abc′ − 6b2c − a2c′′ − 3ca′2 + caa′′ + 3aa′c′)a−5

− 14ε2λ4c5a−9 + ελ2(22c3a′ − 16ac2c′ + 20bc3)a−7] dt . (3.8)
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The same can be applied to any desired order. For example, one can write

S5 = −
∫ x

β

a−1(S′′
3 + 2S′

0S′
4 + 2S′

1S′
3 + S′2

2 ) dt, (3.9)

S6 = −
∫ x

β

a−1(S′′
4 + 2S′

0S′
5 + 2S′

1S′
4 + 2S′

2S′
3) dt, (3.10)

S7 = −
∫ x

β

a−1(S′′
5 + 2S′

0S′
6 + 2S′

1S′
5 + 2S′

2S′
4 + S′2

3 ) dt, (3.11)

S8 = −
∫ x

β

a−1(S′′
6 + 2S′

0S′
7 + 2S′

1S′
6 + 2S′

2S′
5 + 2S′

3S′
4) dt . (3.12)

In general, two recurrence formulae based on S0 and S1 can yield S j for all j � 2; these formulae
can be defined for r = 0, 1, . . . such that

S2r+2 = −
∫ x

β

a−1

(
S′′

2r + 2
r∑

k=0

S′
k S′

2r+1−k

)
dt, (3.13)

S2r+3 = −
∫ x

β

a−1

(
S′′

2r+1 + 2
r∑

k=0

S′
k S′

2r+2−k + S′2
r+1

)
dt . (3.14)

Since δ = √
ε, it follows that S0, S1 and S2 are required to determine the solution at O(ε). Two

additional corrective terms will be needed to arrive, each time, at the next integral order in ε. For
example, letting w(x) ≡ − ∫ x

(b + iλc)a−1dt , the leading-order WKB solution can be expressed
as

f (0)(x) = γ exp

[
w(x) − w(β) + ελ2

∫ x

β

c2a−3 dt + ε1/2S2

]
+ O(ε)

= γ exp

(
w(x) − w(β) + ελ2

∫ x

β

{c2a−3 + iλ−1[(ac′ − ca′ − 2bc)a−3 + 2ελ2c3a−5]} dt

)
+ O(ε). (3.15)

The basic solution indicates that results can be expressed, everywhere, as functions of λ and the
viscous parameter ξ ≡ ελ2. In like fashion, higher-order expressions can be represented by

f (1)(x) = γ exp

[
w(x) − w(β) + ελ2

∫ x

β

c2a−3 dt + ε1/2S2 + εS3 + ε3/2S4

]
+ O(ε2), (3.16)

f (2)(x) = γ exp

[
w(x) − w(β) + ελ2

∫ x

β

c2a−3 dt + ε1/2S2 + εS3 + ε3/2S4 + ε2S5 + ε5/2S6

]

+ O(ε3), (3.17)

so that, for all j , the solution can be written as

f ( j)(x) = γ exp

[
w(x) − w(β) + ελ2

∫ x

β

c2a−3 dt +
2 j∑

r=0

δr+1Sr+2

]
+ O(ε j+1). (3.18)
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Splitting the summation into even and odd powers of δ, one obtains

f ( j)(x) = γ exp

(
w(x) − w(β) + ελ2

∫ x

β

c2a−3 dt +
j∑

r=0

δ2r+1S2r+2 +
j−1∑
r=0

δ2r+2S2r+3

)

+ O(ε j+1). (3.19)

The recurrence formulae given by (3.13), (3.14) can now be substituted into (3.19). One finds that

f ( j)(x) = γ exp

{
w(x) − w(β) +

∫ x

β

[
ελ2c2a−3 −

j∑
r=0

εr+1/2a−1

(
S′′

2r + 2
r∑

k=0

S′
k S′

2r+1−k

)

−
j−1∑
r=0

εr+1a−1

(
S′′

2r+1 + 2
r∑

k=0

S′
k S′

2r+2−k + S′2
r+1

)]
dt

}
+ O(ε j+1). (3.20)

The above generalization enables us to determine the WKB solution to any desired order j . In
the forthcoming analysis, we shall define our basic WKB solution to be f W = f (0) + O(ε). In
order to determine the model’s characteristic length scale and for the purpose of gaining a better
understanding of the inner scaling constitution, the method of multiple scales will be employed
next.

3.3 Two-variable multiple-scales expansion

A two-variable multiple-scales procedure requires specifying two fictitious coordinates, an outer
scale x0, which is routinely taken to be the unmodified independent variable, and an inner scale
x1, that can capture rapidly changing behaviour. Traditional inner-scale choices include linear
transformations of the form

x1 = δ(ε)x or x1 = x/εm, (3.21)

where the function δ(ε) or the stretching exponent m are determined from foreknowledge,
rationalization, order-of-magnitude scaling, or guesswork. We find such linear transformations to
be unproductive in the case at hand. In fact, we find it far more expedient to introduce a nonlinear
variable transformation of the form

x1 = εs(x), (3.22)

where s(x) is a scale function that can accommodate nonlinear scaling assortments. This choice
provides the necessary freedom to achieve a balance in the governing ODE between diffusive,
convective and inertial terms. A similar choice of a nonlinear transformation was determined to be
necessary and thus employed recently by Zhao et al. (35), Staab and Kassoy (36), Majdalani (33),
and Majdalani and Van Moorhem (7). The current study will obviate the need for conjecture because
the correct nonlinear scaling transformation will be derived directly from the problem’s solvability
condition. As one would expect, the corresponding results will be more accurate, uniform, and
widely applicable than those obtained from the use of other scalings.

In the generalized two-variable scheme, we choose x0 = x to be the base, and x1 = εs(x0) to be
the modified coordinate. Substitution into (3.1) yields

ε
∂2 f

∂x2
0

+ a
∂ f

∂x0
+ aεs′ ∂ f

∂x1
+ (b + iλc) f + O(ε2) = 0, (3.23)
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where primes denote differentiation with respect to x . Next, we set f M = f (0) + ε f (1) + O(ε2),
where f (0) is the leading-order term that we propose to find, and f M is the asymptotic formulation
based on multiple scales. Inserting the two-term expansion of f M into (3.23) gives

[
a

∂ f (0)

∂x0
+ (b + iλc) f (0)

]
+ ε

[
a

∂ f (1)

∂x0
+ (b + iλc) f (1) + as′ ∂ f (0)

∂x1
+ ∂2 f (0)

∂x2
0

]
+ O(ε2) ≡ 0.

(3.24)

Quantities between brackets must vanish independently, for all ε. Following standard multiple-
scales arguments, the leading-order equation, namely

a
∂ f (0)

∂x0
+ (b + iλc) f (0) = 0, (3.25)

gives

f (0)(x0, x1) = C1(x1) ew(x0), w(x0) ≡ −
∫ x0

(b + iλc)a−1 dt . (3.26)

At the outset, the first-order equation in ε becomes

a
∂ f (1)

∂x0
+ (b + iλc) f (1) = −as′ ∂ f (0)

∂x1
− ∂2 f (0)

∂x2
0

. (3.27)

The procedure needed to arrive at a uniformly valid f (1) can be used to provide the additional
information necessary to specify C1. However, in order to determine C1, it is not necessary
to determine f (1) fully. It is sufficient to formulate a solvability condition for which a
solution for (3.27) exists in a manner to ensure an asymptotic series expansion of the form
f (0) + ε f (1) + o(ε). Clearly, the goal is to find a solution f (1) that does not grow such that ε f (1)

and f (0) become comparable. For this, it is convenient to introduce the ratio

h(x0) = f (1)(x0, x1)

f (0)(x0, x1)
. (3.28)

In order to determine h, it is expedient to first multiply (3.25) by a−1 f (1)[ f (0)]−2 and subtract the
outcome from (3.27) multiplied by [a f (0)]−1. Forthwith, terms containing (b + iλc) cancel out.
One is left with

1

f (0)

∂ f (1)

∂x0
− f (1)

[ f (0)]2

∂ f (0)

∂x0
= − s′

f (0)

∂ f (0)

∂x1
− 1

a f (0)

∂2 f (0)

∂x2
0

. (3.29)

Grouping the left-hand side and using (3.28), equation (3.29) can be simplified to

∂h

∂x0
= − s′

f (0)

∂ f (0)

∂x1
− 1

a f (0)

∂2 f (0)

∂x2
0

. (3.30)
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3.4 Solvability condition

In order to ensure a valid asymptotic series expansion, the ratio of f (1) and f (0) must be bounded.
This can be accomplished by imposing the following solvability condition:

h = f (1)

f (0)
= −

∫ x0
[

s′

f (0)

∂ f (0)

∂x1
+ 1

a f (0)

∂2 f (0)

∂x2
0

]
dt = O(1) ∀x1, x0 = O(ε−1). (3.31)

Since f (0) = C1(x1)ew(x0), (3.31) becomes

h = −
∫ x0

[
s′(t)

C1(x1)

dC1(x1)

dx1
+ w′′(t) + w′2(t)

a(t)

]
dt

= − s(x0)

C1(x1)

dC1(x1)

dx1
−

∫ x0
[
w′′(t) + w′2(t)

a(t)

]
dt = O(1). (3.32)

For general a, b and c, (3.32) can only be true (for all x1, x0 = O(ε−1)) if, and only if,

1

C1(x1)

dC1(x1)

dx1
= K = constant ⇒ C1(x1) = C0 exp(K x1). (3.33)

Here, C0 is a pure constant to be evaluated from (3.2). On the other hand, K is a subsidiary constant
brought about by the introduction of the scale functional s(x). When (3.33) is substituted back
into (3.32), s(x) can be obtained in a manner to ensure that h remains bounded. This yields, in
general,

s(x0) = −K −1h(x0) − K −1
∫ x0

[
w′′(t) + w′2(t)

a(t)

]
dt, (3.34)

where h(x) can be any bounded function. The freedom in selecting s(x) enables us to satisfy (3.34).

3.5 A two-variable multiple-scales solution

After returning to the original variable x , (3.34) can be inserted back into (3.33) and (3.26). As K
cancels out, the leading-order solution becomes

f (0) = C0 exp

[
w(x) − ε

∫ x

(w′′ + w′2)a−1dt − εh(x)

]

= C0 exp

[
w − ε

∫ x

(w′′ + w′2)a−1dt

]
+ O(ε). (3.35)

This is due to h(x) = O(1) and, thereby, exp(−εh) = 1 + O(ε). It transpires that h plays no role
and, therefore, can be omitted at O(ε). After specifying C0 from (3.2), the complete solution can
be combined into

f M(x) = γ exp

{
w(x) − w(β) − ε

∫ x

β

[w′′(t) + w′2(t)]a(t)−1 dt

}
+ O(ε), (3.36)

where

w′′ + w′2 = [(−λ2c2 + b2 + a′b − ab′) + iλ(a′c − ac′ + 2bc)]a−2. (3.37)
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The leading-order multiple-scales solution is, therefore,

f M = γ exp

{
w(x) − w(β)

+ ελ2
∫ x

β

[c2a−3 + λ−2(ab′ − a′b − b2)a−3 + iλ−1(ac′ − ca′ − 2bc)a−3] dt

}
. (3.38)

It should be noted that, for the specific boundary-value problem at hand, f M contains a higher-
order correction of O(ε). This is apparent in the second term of the integrand, namely in
ελ2

∫ x
β

λ−2(ab′ − a′b − b2)a−3 dt . Although this correction can lead, in general, to a higher-order
approximation, it must be suppressed for consistency in the perturbative sequence. The uniformly
valid leading-order solution becomes

f M(x) = γ exp

{
w(x) − w(β) + ελ2

∫ x

β

[c2a−3 + iλ−1(ac′ − ca′ − 2bc)a−3] dt

}
+ O(ε).

(3.39)

By comparison with f W in (3.15), f M shares the same dominant arguments. However,
the imaginary part of the integrand in (3.39) does not contain the secondary correction,
2iε2λ3

∫ x
β

c3a−5 dt , that is present in f W. This leads to a simpler expression that is more likely
to be integrated into a closed form given some arbitrary coefficients c and a. Here again, the
parameter ελ2 appears to be in control of exponential damping (and hence, of penetration depth) of
the rotational wave function. Since w′′ +w′2 is dominated by −λ2c2a−2, it is clear from (3.34) that

s(x) ∼
∫ x

c2a−3 dt . (3.40)

4. Specific example

Consider the example described in section 2 and leading to (2.10). The corresponding problem is
characterized by a = x , b = −(2n + 2), n = 0, 1, . . . , c = 1, ε = R−1, λ = S, α = 0, β = 1
and γ = 1. We propose to solve this equation both exactly and asymptotically. We also propose
to examine its inherently nonlinear scaling composition using both standard methods and the newly
obtained expressions.

4.1 Exact solution

It is expeditious to apply on (2.10) a Liouville–Green transformation of the form

X = x
√

R, fn(x) = exp(− 1
4 X2)F(X) and p = −3 − 2n + i S. (4.1)

This eliminates the first derivative and converts (2.10) and its boundary conditions into

d2 F

d X2
+ (p + 1

2 − 1
4 X2)F = 0, F(

√
R) = exp( 1

4 R),
d F(0)

d X
= 0. (4.2)
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Equation (4.2) has a standard solution that can be written in terms of the parabolic cylinder function
Dp(X), namely

F(X) = C1 Dp(X) + C2 Dp(−X). (4.3)

It is instructive to note that, since Re(p) < 0, one can use (37, formula 9.241.2)

Dp(X) = [�(−p)]−1 exp(− 1
4 X2)

∫ ∞

0
τ−p−1 exp(−τ X − 1

2τ 2) dτ, (4.4)

where � is Euler’s integral of the second kind. Careful application of boundary conditions renders,
after some effort,

F ′(0) = −2(1+p)/2�[ 1
2 (1 − p)](C1 − C2)/�(−p) = 0, (4.5)

C1 = C2 = 2p/2 exp( 1
2 R)�(−p)/[�(− 1

2 p)�(− 1
2 p, 1

2 , 1
2 R)], (4.6)

where � is Kummer’s confluent hypergeometric function given by

�(a, b; x) = 1 + a

b

x

1! + a(a + 1)

b(b + 1)

x2

2! + a(a + 1)(a + 2)

b(b + 1)(b + 2)

x3

3! + · · · . (4.7)

Finally, using the superscript E for ‘exact,’ one obtains

f E
n (x) = exp[ 1

2 Rx2(x−2 − 1)]�(− 1
2 p, 1

2 , 1
2 Rx2)�−1(− 1

2 p, 1
2 , 1

2 R). (4.8)

By simple rearrangement, the exact solution can be used to reveal the action variables in the problem

f E
n (x) = exp[ 1

2 (ε−1x2)(x−2 − 1)]�(− 1
2 p, 1

2 , 1
2ε−1x2)�−1(− 1

2 p, 1
2 , 1

2ε−1). (4.9)

Clearly, the ε/x2 scale appears explicitly in (4.9).

4.2 WKB solution

In seeking an asymptotic solution for (2.10), it should be noted that two cases must be considered
depending on the order of the secondary perturbation parameter. These two cases correspond to
S = O(1) and S = O(

√
R).

4.2.1 Failure of the traditional outer expansion. For S = O(1), x = O(1), one must derive, at
leading order, the outer solution f o

n from

x f o
n

′ + [i S − (2n + 2)] f o
n = 0, f o

n (1) = 1, or f o
n (x) = x2n+2 exp(−i S ln x). (4.10)

On the one hand, the x2n+2 factor in f o
n decays rapidly as x → 0. As a result, the remaining

boundary condition at the origin is automatically satisfied by the first derivative. This obviates the
need for an inner solution at this order. On the other hand, the exponential term in f o

n represents an
oscillatory behaviour that is rapid for large S. Since S can be large in practice, the rapid oscillations
that occur on a shorter scale preclude the possibility of a uniformly-valid solution. This can be seen
in the expression for the first-order correction when the outer solution is written at O(ε2):

f o
n (x) = x2n+2 exp(−i S ln x){1 + ε[−S2 + 2n(2n + 1) − i(4n + 1)S](x−2 − 1)/2} + O(ε2).

(4.11)

In fact, since the correction term comprises a part of O(εS2), non-uniformity can be expected at
large S. A regular perturbation solution is hence expected to fail when S ∼ √

R.
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4.2.2 The WKB solution. Using (3.15), the leading-order WKB solution can be written as

f (0)
n = x2n+2 exp(− 1

2ξ(x−2 − 1) − i S{ln x + 1
2ξ S−2(x−2 − 1)[3 + 4n + ξ(x−2 + 1)]}) + O(ε).

(4.12)

It is reassuring that both f (0)
n and f o

n reduce to the same expression in the limit as ξ → 0 and
S = O(1). Since ε = ξ S−2, fixing S requires that ε → 0 whenever ξ → 0. The outcome is

lim
ξ→0

S= const

f (0)
n = lim

ε→0
S= const

f o
n = x2n+2 exp(−i S ln x). (4.13)

One may also obtain, after some effort, the first- and second-order WKB solutions from (3.16)
and (3.17). These are

f (1)
n = x2n+2 exp(− 1

2ξ(x−2 − 1)

× {1 − S−2[2(1 + 3n + 2n2) + 1
2ξ(7 + 12n)(x−2 + 1) + 5

3ξ2(x−4 + x−2 + 1)]}
− i S[ln x + 1

2ξ S−2(x−2 − 1)(3 + 4n + ξ(x−2 + 1) − 1
6ξ S−2(x−2 + 1)

× {3(7 + 28n + 24n2) + 4ξ(9 + 20n)[x−2 + (x−2 + 1)−1] + 21ξ2(x−4 + 1)})]) + O(ε2),

(4.14)

f (2)
n = x2n+2 exp(− 1

2ξ(x−2 − 1){1 + S−2[−2(1 + 3n + 2n2) − 1
2ξ(7 + 12n)(x−2 + 1)

− 5
3ξ2(x−4 + x−2 + 1) + ξ S−2(x−2 + 1){(1 + 7n + 14n2 + 8n3)

+ 2
3ξ(10 + 54n + 60n2)[x−2 + (x−2 + 1)−1] + 1

4ξ2(47 + 140n)(x−4 + 1)

+ 42
5 ξ3[x−6 + x−2 + (x−2 + 1)−1]}]}

− i S[ln x + 1
2ξ S−2(x−2 − 1)(3 + 4n + ξ(x−2 + 1) + ξ S−2(x−2 + 1)

× {− 1
2 (7 + 28n + 24n2) − 1

3ξ [2(9 + 20n) − S−2(9 + 80n + 216n2 + 160n3)]
× [x−2 + (x−2 + 1)−1] − 1

2ξ2[7 − S−2(25 + 188n + 280n2)](x−4 + 1)

+ 2
5ξ3S−2(59 + 252n)[x−6 + x−2 + (x−2 + 1)−1]

+ 22ξ4S−2(x−8 + x−4 + 1)})]) + O(ε3). (4.15)

4.2.3 Endpoint singularity at even orders of ε. It should be noted that, as x → 0+, the WKB
solution at even orders of ε becomes suddenly unbounded. For example, regardless of S or n, the
real part of the exponential argument in f (1)

n is dominated at the origin by − 1
2ξ(x−2 − 1)(1 −

5
3ξ2S−2x−4) ∼ 5

6ξ3S−2x−6 → ∞ as x → 0+. Since the wave amplitude is prescribed at the
origin by x2n+2 exp( 5

6ξ3S−2x−6), the exponential singularity at x = 0 cannot be overcome by
the vanishing polynomial to any given power of 2n + 2. Interestingly, this unbounded character
alternates between successive orders. In fact, it can be shown that, in the limit as x → 0+, the
WKB solutions at progressive orders are dominated by

f (0)
n ∼ x2n+2 exp(− 1

2ξ x−2), f (1)
n ∼ x2n+2 exp(+ 5

6ξ3S−2x−6),

f (2)
n ∼ x2n+2 exp(− 21

5 ξ5S−4x−10) (4.16)
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so that, at any order j , one has

f ( j)
n ∼ x2n+2 exp

[
(−1) j+1 M2 j+1

2(2 j + 1)

ξ2 j+1S−2 j

x2(2 j+1)

]
, x → 0+. (4.17)

The leading-order asymptotic coefficients are

M0 = M1 = 1, M2 = 2, M3 = 5, M4 = 14, M5 = 42, M6 = 132, M7 = 429, . . . . (4.18)

These numbers form a progression whose first eleven odd coefficients are

{1, 5, 42, 429, 4862, 58 786, 742 900, 9694 845, 129 644 790, 1767 263 190, 24 466 267 020}.
(4.19)

After some effort, one realizes that this progressive sequence can be generated from the recurrence
formula

M0 ≡ 1, M2 j+1 = 2
j−1∑
k=0

Mk M2 j−k + M2
j , j � 0, (4.20)

where the even numbers must be derived from

M2 j = 2
j−1∑
k=0

Mk M2 j−k−1, j � 1. (4.21)

For example, in order to find the asymptotic form of f (3)
n near the origin, M7 must be evaluated

from

M7 = 2
2∑

k=0

Mk M6−k + M2
3 = 2(M0 M6 + M1 M5 + M2 M4) + M2

3 = 429, (4.22)

wherein M6 = 2
∑2

k=0 Mk M5−k = 2(M0 M5 + M1 M4 + M2 M3) = 132. The near-core behaviour
of the solution becomes

f (3)
n ∼ x2n+2 exp( 429

14 ξ7S−6x−14) → ∞ as x → 0+ ∀n, ξ, S. (4.23)

In as much as the singularity at x → 0+ causes the solution to become non-uniformly valid, the
reader is cautioned that f ( j)

n is secular-free for even values of j . The use of f (1)
n , f (3)

n , etc. leads to
an incomplete representation that lacks small boundary-layer corrections that always appear at even
powers of ε. Despite the availability of higher approximations, the main focus in later comparisons
will be placed, nonetheless, on f W

n = f (0)
n + O(ε).

4.3 Multiple-scales solution

4.3.1 Scaling. On the one hand, if x1 = εxm is substituted back into (2.10), one finds a
distinguished limit for m = −2 or s(x) = x−2. This nonlinear scaling structure is depicted in
Fig. 2 where an inner region of relative thickness x = O(ε1/2) is shown. In delineating the solution
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Fig. 2 Inner versus outer scale

domain, the stretched variable x1 is of O(1) near x = 0. This property enables us to capture the
rapid changes in that neighbourhood. From (3.40), one obtains

s(x) ∼
∫ x

t−3 dt = x−2. (4.24)

Clearly, the resulting transformation agrees with the distinguished limit predicted by order-of-
magnitude scaling.

4.3.2 A formal multiple-scales procedure. A formal multiple-scales procedure can be applied
to (2.10) using x0 = x and x1 = εs(x). This transformation leads to the coupled PDEs for the
multiple-scales solution f M

n . Furthermore, letting f M
n = f (0)

n + ε f (1)
n + O(ε2), terms of O(ε0) and

O(ε1) can be gathered. One obtains

ε0 : x0
∂ f (0)

n

∂x0
+ [−(2n + 2) + i S] f (0)

n = 0, (4.25)

ε : x0
∂ f (1)

n

∂x0
+ [−(2n + 2) + i S] f (1)

n = −x0s′ ∂ f (0)
n

∂x1
− ∂2 f (0)

n

∂x2
0

. (4.26)

Partial integration of (4.25) produces

f (0)
n (x0, x1) = C1(x1) exp[(2n + 2 − i S) ln x0]. (4.27)

Following the solvability condition given in (3.31) or using the generalized solution in (3.39), one
finds

f M
n (x) = x2n+2 exp{− 1

2ξ(x−2 − 1) − i S[ln x + 1
2ξ S−2(4n + 3)(x−2 − 1)]}. (4.28)
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Fig. 3 A comparison of exact ( f E) with asymptotic WKB ( f W) and multiple-scales ( f M) solutions. For
ε = 10−2, we vary S from (a) 10, to (b) 20, and (c) 50. Keeping S = 50, decreasing ε by one order of

magnitude to 10−3 in (d) causes results to become hardly discernable. The WKB solution is the least accurate
in (c) due to S being far from 1/

√
ε. Insets are used to show enlargements

5. Discussion

It is a simple exercise to verify that (4.12), the leading-order WKB formulation, shares the same
dominant terms found in (4.28). The distinguishing features of the multiple-scales formulation
are numerous. For example, it can be argued that (a) it is easy to construct, (b) it is sufficiently
accurate over a wide range of physical parameters, (c) it is compact, and (d) it reveals the problem’s
underlying scaling composition.

In hindsight, the unique variable transformation x1 = εx−2 is justified. In fact, it can be verified
that traditional choices reminiscent of (3.21) do not lead to uniformly-valid expansions. Despite the
solution’s oscillatory behaviour, it appears that the asymptotic formulation is a good approximation
to the exact solution over a wide range of physical parameters. For n = 0, the similarity between
f M
n and f E

n is apparent in Fig. 3 where an order-of-magnitude variation in ε and S is illustrated.
For ε � 10−3, it becomes difficult to distinguish between exact and asymptotic solutions. Such
agreement improves as R → ∞ or ε → 0. Note that the current WKB approximation deteriorates
(at large ε) when S ∼ R. The multiple-scales solution remains, however, more robust. This is
illustrated in Fig. 3c for the case of S = 50 and R = 100. A comparison between WKB and
multiple-scales solutions is furnished in Table 1 for typical values of the physical parameters. It is
gratifying to observe the agreement, often to several decimal places, between f E

n and asymptotic
predictions. For better clarity, the absolute differences between exact and asymptotic results are
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Table 1 Exact and asymptotic solutions for S = 20, ε = 10−4 and n = 1. Here f M
n and f W

n
represent the basic multiple-scales and WKB solutions of order 1 in ε

x f E
n (4·9) f (2)

n (4·15) f (1)
n (4·14) f W

n (4·12) f M
n (4·28)

0·25 −0·002 3143 −0·002 3143 −0·002 3147 −0·002 2796 −0·002 2977
0·30 0·002 8565 0·002 8565 0·002 8567 0·002 8294 0·002 8587
0·35 −0·006 5377 −0·006 5377 −0·006 5378 −0·006 4985 −0·006 5281
0·40 0·019 5808 0·019 5808 0·019 5810 0·019 5031 0·019 5218
0·45 −0·036 9735 −0·036 9735 −0·036 9737 −0·036 8701 −0·036 8619
0·50 0·017 1925 0·017 1925 0·017 1926 0·017 1594 0·017 1256
0·55 0·070 9172 0·070 9172 0·070 9173 0·070 8040 0·070 8243
0·60 −0·089 1067 −0·089 1067 −0·089 1068 −0·089 0021 −0·088 9785
0·65 −0·118 7495 −0·118 7495 −0·118 7497 −0·118 6399 −0·118 6632
0·70 0·156 5531 0·156 5531 0·156 5532 0·156 4476 0·156 4254
0·75 0·268 1183 0·268 1183 0·268 1185 0·267 9811 0·267 9949
0·80 −0·101 6164 −0·101 6164 −0·101 6164 −0·101 5810 −0·101 5584
0·85 −0·515 2285 −0·515 2285 −0·515 2286 −0·515 1009 −0·515 0989
0·90 −0·332 8523 −0·332 8523 −0·332 8523 −0·332 8012 −0·332 8130
0·95 0·421 8556 0·421 8556 0·421 8556 0·421 8269 0·421 8205

shown in Fig. 4. Therein, the comparable level of precision associated with f M
n and f W

n can be

discerned. Unsurprisingly, the first-order WKB solution f (1)
n is seen to diverge near the origin, as

predicted by (4.17); the corresponding region of non-uniformity is visible in the range x � 0·07.
This sudden singularity near the core is illusive because f (1)

n remains well behaved and of O(ε2)

everywhere else. In contrast, f M
n , f W

n and f (2)
n maintain uniformity over the entire domain.

It can be verified that the asymptotic agreement with f E
n is retained at higher eigenvalues when

a faster attenuation in the wave amplitude is noted. Since f M
n comprises an x2n+2 factor in the

wave amplitude, it can be inferred that, as x → 0, x2n+2 → 0 more rapidly at elevated powers.
The most surprising result is, perhaps, the persistent agreement between f M

n and f E
n at the multiple

wave peaks. These are typically difficult to match asymptotically.

5.1 Penetration depths

In order to ensure that the asymptotic agreement remains uniformly valid over a substantial range of
parameters, we focus our attention on the penetration depth of the wave. We define the latter to be
the distance from the solid boundary (x = 1) to the point at which 99 per cent of the wave amplitude
would have vanished. Clearly, the penetration depth can be evaluated from either f E

n or f M
n , and

is then compared in Fig. 5 over a range of parameters. As predicted by the fundamental solution
of f M

n , the penetration depth is strongly dependent on the damping parameter ξ . This motivates
plotting depths versus ξ at various Reynolds numbers. By inspection, it can be seen in Fig. 5 that the
penetration depths of f E

n and f M
n approach the same limit as ε → 0. In fact, we find the penetration
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Fig. 4 Error between exact and asymptotic entries given in Table 1 for S = 20, ε = 10−4 and n = 1. Lines
correspond to — f M, - - - f W, · · · · f (1), − · − · − f (2)

Fig. 5 Penetration depths of exact and asymptotic solutions for (a) n = 0 and (b) n = 1

depth of f M
n to be a function of ξ only. The same can be said of the exact solution for R > 1000. In

addition, as n is increased, the convergence between exact and asymptotic predictions is accelerated.
Regardless of n, when R > 1000, the discrepancy between exact and asymptotic depths becomes
too minuscule to be discerned graphically. In that range, f M

n can practically reproduce f E
n .

One chief advantage of the asymptotic solution stands in its ability to better predict the transparent
characteristics of the wave. For example, the strong connection between the penetration depth and
the damping coefficient ξ cannot be inferred from the exact solution. In fact, none of the arguments
of the Kummer functions in (4.9) contains the product εS2. In contrast, it is evident from (4.28)
that the wave amplitude is dictated by x2n+2 exp[− 1

2ξ(x−2 − 1)]. As such, the asymptotic solution
clearly establishes the important role exerted by ξ on the wave envelope.
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5.2 Closure: the rotational velocity expression

From (4.28) an approximate expression v̄M can be obtained. Since the error associated with n � 1
terms is at O(ε2), quantities of O(S−2) can be safely ignored in all n � 1 terms. In fact, dismissal
of O(S−2) corrections at n � 1 produces, from (2.11), a formulation at O(ε):

v̄M = −i xe−iωt exp{− 1
2ξ(x−2 − 1) − i S[ln x + 3

2ξ S−2(x−2 − 1)]}
∞∑

n=0

(−1)n(ky)2n+1x2n+1

(2n + 1)! .

(5.1)

As the summation factor is a known power-series expansion, (5.1) can be put in a closed form:

v̄M = −i x sin(kxy) exp{− 1
2ξ(x−2 − 1) − i S[ln x + 3

2ξ S−2(x−2 − 1)] − iωt} + O(ε). (5.2)

Similarly, one may use (4.12) to obtain

ṽW = −i x sin(kxy) exp(− 1
2ξ(x−2 − 1) − i S{ln x + 1

2ξ S−2(x−2 − 1)[3 + ξ(x−2 + 1)]} − iωt)

+ O(ε). (5.3)

The last two equations offer convenient, closed-form approximations to the exact v̄ expressed,
via (2.11), as a sum of Kummer functions. The difficulty in evaluating the result, namely

ṽE = −i exp[ 1
2 Rx2(x−2 − 1) − iωt]

∞∑
n=0

(−1)n(ky)2n+1�(− 1
2 p, 1

2 , 1
2 Rx2)

(2n + 1)!�(− 1
2 p, 1

2 , 1
2 R)

, (5.4)

can be relegated to a symbolic program. The remaining ũE can be obtained from continuity, viz.

ũE = −
∫

∂ṽE

∂y
dx = i exp( 1

2 R − iωt)kx
∞∑

n=0

(−1)n(ky)2n�( 1
2 p + 1

2 , 3
2 , − 1

2 Rx2)

(2n)!�(− 1
2 p, 1

2 , 1
2 R)

. (5.5)

The derivation of ũE and ṽE completes the time-dependent flow assessment and constitutes an
extension to the findings presented in (2,3). Having provided one exact and two asymptotic solutions
to the problem at hand, a parametric analysis of ṽE that parallels our study of f E

n is now possible.

6. Concluding remarks

In this article, two general asymptotic formulations are derived as practical alternatives to the exact
solutions (which may not exist in closed form) for a class of singular ODEs that exhibit a nonlinear
scaling structure. Both formulations provide useful technical features associated with the exact
solution, including the strong wave dependence on the viscous similarity parameter, ξ = ελ2.
The multiple-scales solution displays the underlying scaling transformation x1 = εs(x) needed
to obtain uniformly valid expressions. It also discloses the relationship between s(x) and the
problem’s characteristic coefficients. Instead of applying trial and error methods to identify the
inner coordinate, the problem’s solvability condition is used here. The resulting multiple-scales
solution is found to contain the dominant constituents of the WKB approximation. In this work,
one WKB solution is derived to an arbitrary order j . In the process, it is shown that an endpoint
singularity can arise unless the solution is expressed at odd orders of ε. The spurious non-uniformity
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is restricted to a very thin region near the core wherein the WKB solution can diverge. Outside this
region, the solution remains well behaved and accurate. The non-uniformity can be attributed to
the presence of a thin shear layer near the core whose physical inclusion requires the mathematical
retention of small exponential corrections in even powers of ε. The absence of singularity at odd
orders of ε is consistent with the manner in which small exponential corrections are added with
each successive term in a WKB expansion. The movement of the shear layer to the core is also
consistent with conventional theory of injection-driven flows. Accordingly, the viscous layer that
would otherwise form above the wall is pushed to the core due to surface injection. Aside from being
useful in verifying the accuracy of the generalized formulations, the special example that we evoke
serves a practical purpose. It provides one exact and two asymptotic solutions to an applied study
described previously in (2,3). Since the former work could only produce approximate solutions, the
advantages of an exact solution include increased accuracy and independence of parametric size.
From a perturbation standpoint, the current work reinforces the ideas presented in (33) regarding
the manner in which scales can be selected. For example, the freedom in the present selection of the
inner variable transformation increases our repertory of scaling choices. We hope that the rigorous
specification of the undetermined scale functional may be used in similar boundary-value problems.
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internal flow, J. Fluid Mech. 413 (2000) 247–285.

36. P. L. Staab and D. R. Kassoy, Three-dimensional, unsteady, acoustic-shear flow dynamics in a
cylinder with sidewall mass addition, Phys. Fluids B 9 (1997) 3753–3763.

37. I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series and Products, 5th edn (Academic
Press, Boston 1994) 1084–1096.


