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 Different numerical approaches have been proposed in the past to solve the Navier-Stokes 
equations. Conventional methods have often relied on finite-difference, finite-element, and 
boundary-element techniques. Multi-grid methods have been recently introduced because 
they help promote a faster convergence rate of the error residual. A difficulty plaguing 
numerical methods today is the inability to treat singularities at or near boundaries. Such 
difficulties become even more pronounced when coupled with the need to handle semi-
infinite and infinite domains. Sinc-based numerical algorithms have the advantage of 
handling singularities, boundary layers, and semi-infinite domains very effectively. In 
addition, they typically require fewer nodal points while providing an exponential 
convergence rate in solving linear differential equations. This study involves a first step in 
applying the Sinc-based algorithm to solve a nonlinear set of partial differential equations. 
The example we consider arises in the context of a driven-cavity flow in two space 
dimensions. As such, the steady and incompressible Navier-Stokes equations are solved by 
means of two-dimensional Sinc collocation in conjunction with the primitive variable method 
and a pressure correction algorithm based on artificial compressibility. Simulations are also 
carried out using forward differences, central differences, and a commercial code. Results 
are compared with one another and with the Sinc-collocation approximation. It is found that 
the error in the Sinc-collocation approximation outperforms other solutions, especially near 
the singular corners of the cavity.  

 

I. Introduction  
HE purpose of this article is to present a novel 
application of the Sinc-collocation method to the 

nonlinear Navier-Stokes equations in two space 
dimensions. The Sinc-collocation method is a spectral 
decomposition technique whose computational 
algorithm resembles trigonometric interpolation by 
Fourier series. By comparison to traditional finite-
difference, finite-element, and boundary-element 
methods, the Sinc-collocation approach has been shown 
to be more suitable in handling singularities and semi-
infinite domains. Furthermore, the residual error 
entailed in the Sinc-collocation approach is known to 
exhibit an exponential convergence rate, even in the 
presence of singularities. When these features are added 
to the requirement by a Sinc-collocation algorithm for 
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fewer nodal points in the solution domain, this spectral 
technique becomes an attractive alternative which, in 
some cases, can become superior to traditional multi-
grid and modern high-speed computational methods. 
 Since its inception by Stenger,1 the notion of a Sinc 
expansion has appeared in diverse physical settings 
including interpolations, integrations and solutions of 
both ordinary and partial differential equations.2-4 For 
example, in performing accurate interpolations of 
discrete signals, geometrical transforms, and test 
measurements, the Sinc approximation has been used 
extensively by Jeng,5 Schanze,6 and Kober, Unser and 
Yaroslavsky.7 The latter have demonstrated that Sinc-
interpolation methods can significantly outperform 
conventional methods of nearest neighbor. 
 In evaluating the homogeneous Lame equations, 
Stenger8 has presented two integral formulations 
through Sinc convolution. In evaluating Cauchy-type 
integral equations, Bialecki and Keast9 have shown that 
a numerical method based on a truncated sum of Sinc 
functions could yield excellent approximations for 
analytic functions with endpoint singularities. In fact, 
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Sinc methods have been found to be particularly useful 
in the treatment of ordinary and partial differential 
equations with singularities. This is evidenced 
throughout the work of Bowers and Lund,10 therein, the 
Galerkin method has been successfully used in 
conjunction with Sinc functions to approximate the 
solution of the Poisson problem. In the same context, 
Lewis, Lund and Bowers11 have applied the space-time 
Sinc-Galerkin method for the numerical solution of the 
parabolic class of partial differential equations in one 
spatial dimension. Later, in Smith et al.12, the Sinc-
Galerkin method has been extended to handle fourth-
order ordinary differential equations. Even at this high 
order, the consistency of the method in exhibiting an 
exponential convergence rate could be shown. In a 
subsequent study, Smith, Bowers and Lund13 have 
applied the Sinc-Galerkin method to several examples 
involving fourth-order time-dependent partial 
differential equations in both space and time.  
 In his 1997 review of Sinc methods, Stenger14 has 
presented a novel procedure, based on Sinc-convolution 
matrices, for solving the Poisson problem. This 
innovative method has been successfully applied by 
Stenger and O’Reilly15 in three types of medical 
applications involving optimal controls, reconstruction 
of X-ray tomography, and inversion of ultrasonic 
tomography. 
 For a second-order, two-point boundary-value 
problem with multiple domains, Morlet, Lybeck and 
Bowers16,17 have combined the Sinc-collocation domain 
decomposition method with the Schwarz alternating 
technique to overcome the problem’s singularities. In 
their work, the exponential convergence property was 
proven for a problem with subdomains. In the same 
context, the Poisson equation was solved using domain 
decomposition by Lybeck and Bowers.18,19 
 For the purpose of achieving higher-order precision, 
the Sinc-function approximation has also been used in 
heat transfer problems by Narasimhan, Chen and 
Stenger,20,21 Lippke,22 and others. In Chen and 
Stenger,20 the two-dimensional, steady-state heat 
conduction problems in both a square and a semi-
infinite rectangular cavity were considered. For the 
square geometry, the Sinc approximation was shown to 
outperform both the finite-difference and multi-grid 
methods uniformly across the computational domain.  
 In an effort to solve by Sinc collocation the initial-
boundary value problems for the nonlinear evolution 
equations in one and two space dimensions, recent 
interest in applying Sinc methods to nonlinear problems 
has received favor in the work of Bellomo, Ridolfi and 
co-workers.23-25 Recent studies by Bowers and co-
workers26 have also applied the Sinc technique to the 
modeling of biofilms and wind-driven currents. The 
current study constitutes one such example whose main 
purpose is to determine a viable algorithm for applying 

the Sinc method to the set of nonlinear Navier-Stokes 
equations (NSE). To the authors’ knowledge, such an 
attempt represents a first step towards better 
understanding the manner in which Sinc methods could 
be effectively extended to full solutions of the NSE 
system. To illustrate the process, the algorithm will be 
applied to the cavity-driven problem. For comparison 
purposes, the problem will also be solved with finite 
differences (both forward and central) and using a 
known commercial code.27 Unlike Bellomo et al.23-25 
who have applied the Sinc collocation on an equispaced 
domain, we shall follow conventional Sinc practices of 
clustering more Sinc points near edges in order to more 
effectively handle singularities. 

II. Methodology 
 In seeking a solution for the incompressible NSE 
system, it may be safe to say that the two most popular 
strategies consist of using either the vorticity stream-
function approach or the primitive variable approach. In 
this study, the primitive variable approach will be 
adopted. 

A. The Primitive Variable Approach 
 Using the asterisk to denote dimensional variables, 
the two-dimensional incompressible Navier-Stokes 
equations can be written as 

   
* *

* * 0
u v
x y

∂ ∂
∂ ∂
+ =  (1) 

2 2

* * * * 2 * 2 *
* *

* * * * * *

1u u u p u u
u v

t x y x x y
∂ ∂ ∂ ∂ ∂ ∂ν
∂ ∂ ∂ ρ ∂ ∂ ∂

  + + = − + +   
 (2) 

2 2

* * * * 2 * 2 *
* *

* * * * * *

1v v v p v vu v
t x y y x y

∂ ∂ ∂ ∂ ∂ ∂ν
∂ ∂ ∂ ρ ∂ ∂ ∂

  + + =− + +   
 (3) 

where *x , *y , *t , *u , *v , and *p  represent the 
streamwise and cross-streamwise space coordinates, 
time, the streamwise and cross-streamwise velocities, 
and pressure. The density and kinematic viscosities are 
given by ρ  and ν . The foregoing set can be made 
dimensionless via 

** *
ref

ref ref ref

, , ,
t Vx yx y t

L L L
= = =

* * *

2
ref ref ref

, , ,
u v p

u v p
V V Vρ
= = =  

and   ref refRe
V L

ν
=  (4) 

The ensuing non-dimensional NSE system becomes 

   0
u v
x y

∂ ∂
∂ ∂
+ =  (5) 

  
2 2

2 2
1
Re

u u u p u v
u v

t x y x x y
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

  + + = − + +    
 (6) 

  
2 2

2 2

1
Re

v v v p v v
u v

t x y y x y
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

  + + = − + +    
 (7) 

 Different methods have been followed in the past for 
the solution of the incompressible NSE system 
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expressed in primitive variable form. One method 
involves introducing an artificial compressibility term 
into the continuity equation. This artificial 
compressibility term is then used as a pressure 
correction factor that will eventually vanish when the 
steady-state is reached. Another method involves 
considering a separate Poisson equation for pressure in 
lieu of the continuity equation. The artificial 
compressibility artifact will be employed here in unison 
with the Sinc-collocation method. 

B. Sinc Collocation in One Dimension 
 The Sinc collocation is similar to the Fourier spectral 
technique for approximating functions and derivatives. 
Before applying the approach to the NSE system, it 
may be helpful to illustrate the procedure with a simple 
example in one space dimension. The purpose of the 
example is to explain how functions can be 
approximated with Sinc collocation. On that account, 
we consider the cubic polynomial 
   2 3( ) 2 3f x x x x= + − , 0 1x≤ ≤  (8) 
Clearly, ( )f x  vanishes at both ends of the interval. In 
order to approximate this function, we invoke, for a 
function extending over an interval a x b≤ ≤ , the 
logarithmic transformation3 

   ( ) log log
1

x a x
x

b x x
φ −     = =       − −

 (9) 

Subsequently, the Sinc points are defined by  

   
1

kh

khk

ex
e

=
+

; dh
N
π
β

=  (10) 

where d π= , 1β = , and N  is the number of Sinc 
points (left and right) that will be used in the ( )f x  
approximation.28 Based on Eqs. (9)-(10), the 
collocation expansion can be expressed as 

   [ ]( ) ( ),
k N

k
k N

f x C S x khφ
=

=−
≅ ∑  (11) 

where the Sinc function ( ( ), )S x khφ is given by 

 [ ] [ ]{ }
[ ]

sin ( ) /
( ),

( ) /
x kh h

S x kh
x kh h

π φ
φ

π φ
−

=
−

; 

   , 1, , 1,0,1, , 1,k N N N N= − − + − −… …  (12) 
When the Sinc function is approximated at the (2 1)N +  
nodal points, one may express the results in matrix 
form. Using [ ]I  to represent the identity matrix, one 
may write 
   [ ](2 1)(2 1) (2 1)(1) (2 1)(1)

( )N N k kN N
I C f x+ + + +

   =        (13) 

At the outset, the 2 1N +  collocation constants [ ]kC  can 
be evaluated from the function at the nodal points. Once 
these constants are determined, Eq. (11) can be used to 
evaluate the function at any intermediate point. Figure 
1a compares true and approximate values obtained with 

10N = . In the interest of clarity, the corresponding 
absolute error in the Sinc approximation is calculated 

and tabulated in Table 1 at several values of N . Note 
that the error drops rapidly as N  is increased. 
However, for 160N ≥ , one notices a flattening in the 
error. This is due to inevitable limitations in machine 
precision leading to the accumulation of round-off 
errors. 
 By virtue of Eqs. (11), (12), and (9), Sinc expansions 
always vanish at the endpoints. As such, the scheme 
needs to be modified for functions not exhibiting this 
property. This notion will be illustrated by considering 
a polynomial that has non-zero values at the ends. For 
simplicity, let us consider 
   2 3( ) 2 3 3f x x x x= + − +  (14) 
which has a value of 3 at 0,1x = . To overcome this 
difficulty, the Sinc approximation of Eq. (14) must be 
augmented by two splines at either ends. This can be 
accomplished by setting 

  [ ]1 1( ) ( ), (1 )
k N

N k N
k N

f x C x C S x kh C xφ
=

− − +
=−

≅ + + −∑  (15) 

As the Sinc function [ ], ( )S kh xφ  goes to zero at the 
boundaries, the constants 1NC− −  and 1NC +  can be 
readily evaluated to be 3 in order to ensure that the 
function itself equals 3 at 0,1x = . After finding 1NC− −  
and 1NC + , the regular collocation constants kC  can be 
evaluated as before. A comparison between the Sinc 
approximation and the true function is given in Fig. 1b. 
The error in this approximation is found to be identical 
to that given in Table 1. Clearly, the inclusion of splines 
does not seem to degrade the Sinc approximation. 
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Fig. 1  Sinc-collocation approximation for a function 
that is a) zero and b) nonzero at the endpoints.
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III. The Driven Cavity Problem 
 The Sinc-collocation scheme described previously is 
now applied to the NSE system in two space 
dimensions. The physical setting considered is that of 
the driven-cavity problem. The corresponding 
governing equations are given by Eqs. (5)-(7). These 
will be solved using the primitive variable method with 
artificial compressibility.  
 In this study, the NSE solution was first attempted 
using the vorticity-stream function approach. As usual, 
the vorticity-stream function approach involved 
calculating second-order derivatives on the boundary. 
To that end, the original Sinc function had to be divided 
by the derivative of the logarithmic transformation 
variable that accompanied the Sinc formulation.28 This 
operation caused the solution matrices to become ill-
conditioned. For this reason, the vorticity-stream 
function approach was no longer pursued. 

A. Domain and Variables 
 As usual, the bottom of the cavity is located at 0y = , 
0 1x≤ ≤ , and the velocity is constant and equal to the 
reference velocity refV  along 1y = , 0 1x≤ ≤ . The 
dimensionless velocity boundary conditions at 1y =  
are hence ( ,1) 1u x =  and ( ,1) 0v x = . The vertical walls 
are rigid at both 0x =  and 1x = , 0 1y≤ < . Due to 

the singularities at (0,1)  and (1,1) , the approximations 
for u  and v  can be written as sums of Sinc expansions 
and splines at the endpoints: 

[ ] [ ]
1 2

1 2

, 1 2( , ) ( ), ( ),
N N

k k
k N k N

u x y C S x k h S y k hφ φ
=− =−

≅ ∑ ∑  

 [ ]
1

1

1(1 ) ( ),
N

k
k N

x x C S x k hφ
=−

+ + − + ∑  

 [ ] [ ]
2 2

2 2

2 2( ), (1 ) ( ),
N N

k k
k N k N

x C S y k h x C S y k hφ φ
=− =−

+ + −∑ ∑  (16) 

[ ] [ ]
1 2

1 2

, 1 2( , ) ( ), ( ),
N N

k k
k N k N

v x y C S x k h S y k hφ φ
=− =−

≅ ∑ ∑  (17) 

In like fashion, the pressure can be approximated by 

[ ] [ ]
1 2

1 2

, 1 2( ), ( ),
N N

k k
k N k N

p C S x k h S y k hφ φ
=− =−

≅ ∑ ∑  

 [ ] [ ]
1 1

1 1

1 1( ), (1 ) ( ),
N N

k k
k N k N

y C S x k h y C S x k hφ φ
=− =−

+ + −∑ ∑  

 [ ] [ ]
2 2

2 2

2 2( ), (1 ) ( ),
N N

k k
k N k N

x C S y k h x C S y k hφ φ
=− =−

+ + −∑ ∑  (18) 

 These approximations can be used in conjunction 
with a pressure correction scheme to develop the 
computational algorithm. 

B. Modified Pressure Correction Scheme 
 The nonlinear convective terms in Eqs. (6) and (7) 
can be linearized by using the velocities stored during a 
preceding iteration. For example, in order to evaluate 

/u u x∂ ∂ , one may use 1 /n nu u x− ∂ ∂ , where nu  
represents the velocity at the current iteration step n . In 
this study, the steady-state Navier-Stokes equations are 
repeatedly solved until the modified continuity equation 
is satisfied. The modified pressure correction algorithm 
requires one to perform the following steps: 
(1) Initialize the velocities and pressure 0u , 0v  and 0p  
in the entire domain. 

(2) Calculate the pressure gradients p
x

∂
∂

− , and p
y

∂
∂

 

using the Sinc-collocation expression (18). 
(3) Update the velocities by using the Sinc-collocation 
equations for u  and v  given by Eqs. (16)-(17) and by 
solving the steady-state Navier-Stokes equations in the 
primitive variable form  

  
2 2

1 1
2 2

1
Re

n n n n n
n nu u u u p
u v

x y x y x
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

− −  + − − =    
  (19) 

  
2 2

1 1
2 2

1
Re

n n n n n
n nv v v v p
u v

x y x y y
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

− −  + − − =    
 (20) 

Note that the convective terms are linearized by using 
the most recently stored values 1nu −  and 1nv − .  

(4) Obtain the velocity gradients u
x

∂
∂

 and v
y

∂
∂

 from the 

current velocity field. 

Table 1  Error in the Sinc approximation for the test 
functions given in Fig. 1 using increasing values of 
N.  Errors are identical for both cases a) and b) in 
Fig. 1. 

 

\x N  5  10  20  40  80  160  320  640  

 0.00 0 0 0 0 0 0 0 0 
0.05 2.4E-3 8.7E-5 1.3E-5 2.7E-8 5.6E-11 6.1E-16 1.6E-16 1.5E-16
0.10 9.5E-3 5.7E-4 1.1E-5 1.4E-7 5.4E-11 4.4E-16 2.1E-16 1.5E-16
0.15 7.2E-3 7.3E-4 3.0E-5 1.7E-7 1.6E-11 8.3E-17 3.3E-16 1.7E-16
0.20 4.8E-4 1.0E-3 2.7E-6 1.1E-7 1.5E-11 1.6E-15 2.8E-16 6.1E-16
0.25 7.5E-3 3.7E-4 3.3E-5 1.2E-7 3.8E-11 1.1E-15 1.7E-16 6.1E-16
0.30 1.1E-2 5.2E-4 2.1E-5 1.6E-7 9.6E-11 1.9E-15 6.1E-16 1.7E-16
0.35 1.2E-2 1.1E-3 1.3E-5 1.4E-7 6.9E-11 1.8E-15 3.9E-16 4.4E-16
0.40 9.4E-3 1.1E-3 3.5E-5 1.1E-7 4.8E-11 1.4E-15 2.2E-16 2.2E-16
0.45 5.1E-3 6.9E-4 2.8E-5 1.9E-7 1.0E-10 5.6E-16 1.2E-15 0 
0.50 0 0 0 0 0 0 0 0 
0.55 4.6E-3 6.5E-4 2.6E-5 1.9E-7 9.8E-11 7.8E-16 1.1E-16 0 
0.60 7.8E-3 9.9E-4 3.2E-5 1.0E-7 4.6E-11 7.8E-16 8.9E-16 1.1E-16
0.65 8.9E-3 8.9E-4 1.1E-5 1.3E-7 6.4E-11 1.3E-15 1.1E-16 5.6E-16
0.70 7.6E-3 3.9E-4 1.7E-5 1.4E-7 8.7E-11 8.9E-16 5.6E-16 8.9E-16
0.75 4.4E-3 2.6E-4 2.6E-5 9.7E-8 3.3E-11 2.2E-15 1.1E-15 1.1E-16
0.80 2.3E-4 6.4E-4 1.9E-6 8.7E-8 1.3E-11 2.0E-15 7.8E-16 1.1E-15
0.85 2.8E-3 3.9E-4 2.0E-5 1.2E-7 1.3E-11 0 3.3E-16 1.1E-16
0.90 2.6E-3 2.5E-4 6.0E-6 9.8E-8 4.1E-11 3.3E-16 3.9E-16 7.2E-16
0.95 2.5E-4 2.6E-5 5.7E-6 1.6E-8 3.9E-11 4.2E-16 7.2E-16 5.6E-16
1.00 0 0 0 0 0 0 0 0 
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(5) Define the artificial compressibility u v
D

x y
∂ ∂
∂ ∂

= + . 

(6) Calculate the pressure correction term corrp Dλ= −  
where λ  is a small number. 
(7) Update the pressure field by using 1

corr
n np p p−= +  

(8) Repeat steps 1 through 7 until satisfied. This 
condition will typically occur when D  becomes so 
small that the continuity equation becomes virtually 
satisfied and when both velocity and pressure fields 
would have reached their steady-state values. 

C. Special Treatment at the Boundaries 
 The pressure correction near the endpoints requires 
evaluating the derivatives /u x∂ ∂  and /v y∂ ∂ . These, 
in turn, require evaluating the derivatives of the Sinc 
functions at the boundaries. This is rendered difficult by 
the fact that the derivatives of the Sinc functions can 
lead to a numerical overflow near the boundaries. One 
reason can be attributed to the tight grid spacing near 
the boundaries where Sinc points become clustered in a 
geometric fashion.  
 A variety of plausible approaches were tried in this 
study in order to improve the convergence history for 
the NSE system. The first approach was based on a 
revised definition of the Sinc function within the series. 
This revised definition consists of dividing the original 
Sinc function by the first derivative of the logarithmic 
transformation function raised to the power of the order 
of the derivative to be approximated.28 For example, if 
we were to approximate a second-order derivative, we 
would have to raise the first derivative of the 
transformation function (φ′ ) to the second power. The 
revised definition would read, in that case, 

   [ ]
2

( ) ( ),
( )

( )

N

k N

f kh S x kh
f x

x

φ
φ=−

≅
 ′ 

∑  (21) 

 The main disadvantage of this approach lies in the ill-
conditioning of the solution matrix stemming from Eq. 
(13). In fact, the condition number of the resulting 
matrix becomes enormous. This, of course, defeats 
practical attempts to make progress towards a solution. 
Unfortunately, a more convenient technique to handle 
derivatives at boundaries has yet to be developed. It is 
hoped that future research with Sinc methods will be 
successful in devising a scheme that is capable of 
overcoming similar difficulties. 
 The second approach that was attempted consisted of 
approximating each endpoint derivative by its adjacent 
value. The latter could be determined from the closest 
nodal point near the boundary. This approximation was 
possible here because of the fine grid resolution near 
the boundaries where derivatives changed very slowly. 

In the driven-cavity problem, this approach led to a 
diverging solution. As a result, it was abandoned. 
 The third approach we used was to calculate the 
derivatives on the boundaries using finite differences. 
For example, boundary gradients of u  and v  were 
evaluated using first-order operators such as 

   , 1,i j i ju uu
x x

∂
∂

−−
≅

∆
  (22) 

   , , 1i j i jv vv
y y

∂
∂

−−
≅

∆
 (23) 

 These approximations worked very well and led to a 
rapidly converging solution. 

IV. Results and Discussion 
 The Sinc-collocation method along with the modified 
pressure correction algorithm and the finite difference 
method for calculating derivatives near boundaries have 
given rise to a well-behaved solution algorithm. In this 
study, simulations were carried out at different 
Reynolds numbers. For brevity, they will be illustrated 
for Re 25=  and 0.0001λ = . Simulations were also 
carried out independently with a finite-difference 
algorithm using central differencing without upwinding 
as well as first-order upwinding for the nonlinear terms. 
For further reassurance, numerical results were also 
acquired from a commercially available Computational 
Fluid Dynamics (CFD) package.27 The computational 
meshes that were used are shown in Fig. 2. Both finite 
difference and Fluent codes utilized a uniform 
resolution of 100×100 steps. In the Sinc collocation, a 
value of 10N =  resulted in (2 1) 21N + =  steps in both 
x  and y  directions. As such, the total number of cells 
used by the Sinc collocation was approximately 4.4% 
of the cells considered by the other routines. 
 In Fig. 3a, a comparison is presented showing the 
results of the Sinc collocation, Fluent, finite difference 
with central differencing, and finite difference with 
upwinding for the u  profile along the vertical 
centerline of the cavity ( ½x = , 0 1y≤ ≤ ). Clearly, 
the agreement is satisfactory. In the same context, Fig. 
3b compares profiles for v  along the horizontal 
centerline of the cavity ( ½y = , 0 1x≤ ≤ ). Here too, 
profiles seem to compare reasonably well except for 
some small discrepancies in magnitudes. Figures 4 and 
5 give the iso-velocity contour plots of u  and v  within 
the entire cavity using all four numerical schemes. At 
the outset, a favorable agreement is found between the 
Sinc approach and Fluent. By the same token, the least 
accuracy is realized with the finite-difference approach 
based on central differencing.  
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 In addition to these plots, an error analysis that uses 
Fluent as a benchmark has indicated that the absolute 
errors in evaluating u  and v  increase as the singular 
corners at the top are approached (i.e., near 
1, 0,1y x= = ). The error with the Sinc method was 

found to be the smallest. This may be attributed to the 
inherent capacity of a Sinc-generated grid to better cope 
with singularities at the top corners of the cavity where 
more points are automatically distributed.  

 While 10,000 cells were employed in both finite 
difference and CFD codes, the Sinc algorithm only 
necessitated 441 cells. Despite this 23:1 gain in spatial 
discretization, the Sinc matrices were dense and hence 
demanded longer computation time. The advantage of 
the Sinc approach in improving accuracy with fewer 
collocation points (than needed in the corresponding 
finite difference or finite element methods) appears to 
be offset by the dense matrices that become inevitable 
by virtue of the global approximation nature of the Sinc 
method. This problem becomes quite pronounced in the 
iterative solution of the nonlinear NSE system where 
repeated matrix operations must precede the steady-
state solution. This is one area where the use of parallel 
computing and message passing interface (MPI) could 
be very helpful. 
 Another important functionality that has to be 
introduced within the Sinc function scheme is a better 
way to approximate derivatives at the boundaries. The 
traditional Sinc approach has relied on approximating 
the endpoint derivatives by using a modified definition 
of the Sinc function.3 This has led, in our problem, to 
ill-conditioned matrices. To overcome this 
complication, a different approach, namely, one that 
was based on finite differencing had to be resorted to. It 
is hoped that a better way of approximating the 
derivative will be later developed in order to extend the 
application of Sinc collocations to more complex 
engineering problems.  
 Suggestions for future developments include methods 
to transform the Navier-Stokes equations into integral 
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Fig. 2  Grid resolution inside the square cavity using 
a) 101×101 nodal points in both finite difference and 
Fluent computations, and b) 23×23 nodes in the Sinc 
collocation.  The inset in b) magnifies the geometric 
grid resolution near the upper right corner. 
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Fig. 3  Comparison of velocity profiles for a) u
along the cavity’s vertical centerline, and b) v  along 
the cavity’s horizontal centerline.  
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equations (which can be more easily solved). An 
attempt could also be made to assign certain weights to 
the coefficients within the Sinc expansion. These 
weighing or relaxation factors could be related to the 
neighboring velocities in a manner to introduce 
artificial upwinding into the Sinc-collocation method. 
The fact remains that Sinc collocation is a global 
spectral approximation method and not a localized 
pointwise approximation. Unlike finite difference or 
finite element methods where localized approximations 
are inherent, upwinding remains, at present, more 
difficult to accommodate into a Sinc-collocation 
scheme. As such, it needs to be carefully addressed. 

V. Conclusions 
 In this article, the Sinc-collocation expansion was 
applied to the two-dimensional Navier-Stokes equations 
to solve the driven-cavity flow problem. The primitive 
variable method was used in conjunction with a 
modified pressure correction algorithm based on 

artificial compressibility. Calculations of the velocity 
and pressure distributions were repeated until the mass 
balance was satisfied and the velocity profiles no longer 
changed. The flow profiles obtained from Sinc 
collocation were compared with the results obtained 
from central differences, forward differences, and a 
commercial CFD code. Comparisons indicated that the 
profiles agreed well with each other except for some 
discrepancies near the left and right hand side corners 
of the cavity. In the neighborhood of those singular 
endpoints, the Sinc algorithm appeared to outperform 
other methods by spreading an increasingly larger 
number of points as the corners were approached. In the 
cavity-driven problem, more accuracy was uniformly 
obtained with the Sinc results than with finite-
difference methods that employed 23 times more 
computation cells. However, the improved accuracy 
with fewer nodes was hampered by the need to 
repeatedly solve dense matrices. Another difficulty was 
encountered in evaluating the derivatives near the 

a)   central differencing 

b)   upwinding 

c)   Sinc collocation 

d)  Fluent 
 

Fig. 4  Iso-velocity contours of u  profiles using a) 
central differencing, b) upwinding, c) Sinc 
collocation, and d) Fluent. 
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Fig. 5  Iso-velocity contours of v  profiles using a) 
central differencing, b) upwinding, c) Sinc 
collocation, and d) Fluent. 
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boundaries where singularities occurred. In order to 
avoid ill-conditioning, a better methodology to define 
endpoint derivatives than prescribed by conventional 
Sinc practices is deemed necessary. In addition to 
proposing a more suitable scheme for calculating 
derivatives, we suggest a careful combination of 
upwinding with Sinc collocation and the use of parallel 
computing to reduce the time needed for convergence. 
The problem described in this study illustrates a 
successful application of Sinc collocation to the 
treatment of nonlinear partial differential equations.  
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