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Improved Mean-Flow Solution for Slab
Rocket Motors with Regressing Walls

Chong Zhou¤ and Joseph Majdalani†

Marquette University, Milwaukee, Wisconsin 53233

The Navier–Stokes equations are solved to obtain an approximate description of the mean � ow in a slab rocket
motor with two evenly regressing walls. The scope is limited to two-dimensional incompressible and chemically
nonreactive viscous � ow. The transformed governing equation is solved numerically, using � nite differences, and
asymptotically, using variation of parameters and small parameter perturbations in the blowing Reynolds num-
ber R. Results are correlated and compared via variations in R and the dimensionless wall regression rate. For
hard blowing and moderate regression rates the effect of wall motion on the velocity is found to be small. Con-
versely, for fast-burning propellants, such as those being developed for high-acceleration vehicles, regression effects
seem in� uential. Inclusion of viscous dissipation is also found to be important in assessing the total � ow vorticity,
especially when R < 102. The current geometric con� guration is relevant to motor simulations using ducted chan-
nels with porous walls. For validation purposes comparisons with numerical solutions are carried out alongside
end-process veri� cations. Because the resulting model incorporates viscosity and wall motion, it allows for an
improved description of the unsteady acoustico-vortica l solution whose assessment is strongly in� uenced by the
mean � ow.

Nomenclature
A = wall permeability coef� cient, vw=Pa
Ab = burning, porous, or sublimating area, 2W x¤

Ac = � ow cross section normal to the walls, 2aW
Ap = dimensional oscillatory pressure amplitude
Pa = dimensional wall regression speed
as = speed of sound
a.t/ = half-height of simulated motor chamber
F = mean � ow function, Ã=x D f=R
I .x/ = integral function

Z µ

0

Á csc Á dÁ

k = dimensionless wave number, !a=as

L = internal chamber length
M = blowing Mach number, vw=as

m = acoustic oscillation mode number
p = normalized pressure, p¤=.½v2

w/
R = blowing Reynolds number, vwa=º
r½ = solid-to-gas density ratio at the wall, ½S=½
Sr = Strouhal number, !a=vw

t = dimensional time
.u; v/ = axial and normal velocities, (u¤=vw; v¤=vw/
vb = blowing velocity relative to the wall
vw = absolute blowing velocity at the wall
W = motor width
x; y = dimensionless coordinates, .x¤=a; y¤=a/
® = wall regression ratio, Paa=º
" = reciprocal of the blowing Reynolds number, R¡1

"p = pressure wave amplitude, Ap=.½a2
s /
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³ = mean-� ow vorticity, a³ ¤=vw

µ = characteristic variable, .¼=2/y
º = kinematic viscosity
Ã = mean-� ow stream function, x F
! = circular frequency, .m ¡ 1

2 /¼as=L

Subscripts

a; n = axial and normal directions
b = blowing/burning relative to the wall
h = homogeneous part
m = spatial mean
S = solid phase
s = stagnation condition
tot = total, combines mean and unsteady parts
w = absolute wall condition
x; y = differentiation in x; y
0 = initial condition
¤ = dimensional variable

I. Introduction

M ATHEMATICAL models of internal gas dynamics in solid
rocket motors have relied on subdividing the � eld variables

into mean and time-dependent parts. Recent analyses by Flandro1¡3

and Majdalani et al.4¡13 have been helpful in providing time-
dependent solutions that incorporate both viscous and rotational
effects. In light of these � ndings, both viscous and rotational ef-
fects were shown to play important roles in prescribing the unsteady
� ow character. In particular, viscous dissipation was found to be a
chief contributor to the damping of unsteady vorticity waves.2¡13

Its inclusion seemed clearly necessary for the correct assessment
of time-dependent vorticity generation and evolution. These studies
have also shown that unsteady vorticity could constitute a signi� -
cant portion of the total � ow vorticity and, as such, could play an
important role in prescribing the global gas dynamics. This conclu-
sion was � rst reached by Flandro2;3 and was later reported by other
investigators. It has been recently con� rmed in the computational
studies carried out by Apte and Yang14¡16 using nozzeless rocket
motors. In fact, it will be further explored in this work.

The hydrodynamic stability of such � ows has also received spe-
cial treatment by Beddini,17 Sabnis and Eagar,18 Avalon et al.,19

Casalis et al.,20 and Griffond and Casalis.21;22 The latter have used an
original approach founded on linear instability theory. Accordingly,
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the evolution of Taylor’s solution to turbulence could be examined.
In particular, their efforts have provided an alternative source of in-
stability whose omission in classic analyses leads to discrepancies
between theory and measurements. Hydrodynamic instabilities and
the route to turbulence have also been numerically simulated by
Liou and Lien23 and Liou et al.24;25 These recent studies have con-
� rmed the presence of laminar conditions in elongated chambers
not exceeding 20 in dimensionless length. They have also reported
laminar segments in the head-end portions of longer chambers sim-
ilar to those observed by other investigators (See Apte and Yang,14

pp. 802, 803).
So far theoretical mean � ow studies have only considered ideal-

ized motor chambers with stationary walls. In keeping pace with re-
cent simulations of propellant burning, the need arises for a method-
ology that can lead to a regression-sensitive mean-� ow solution.
The current interest in developing fast-burning propellants for use in
high-acceleration interceptor vehicles is one such example. The ded-
icated numerical simulations of propellant regression is another26;27

(see also Fiedler, R. A., private communication, Center for Simu-
lation of Advanced Rockets, Univ. of Illinois, Urbana–Champaign,
2001). The quest for a basic analytical solution is inspired, in part,
by the desire for a theoretical element in a full-scale investigation.
It is also motivated by modern developments of high-burn, high-
energy propellants that lead to enhanced regression rates.28 These
trends to improve regression rates are also brought into perspective
in the development of hybrid rocket engines. While the search for
more suitable techniques to increase propellant burn rates contin-
ues, this article will present a basic methodology that permits the
incorporation of wall regression in internal � ow models.

The ability to incorporate viscous diffusion in mathematical ide-
alizations of the injection-driven � eld constitutes another goal of
this study. The reason is this. In the recent numerical simulations
of nozzleless rocket motors, Apte and Yang14¡16 have determined
that Taylor’s inviscid mean-� ow begins to degrade for R < 500 and
becomes grossly in error for R < 100. According to Yuan29 (p. 267),
there are problems of real interest that exhibit cross� ow Reynolds
numbers of order 10. Under such circumstances, the use of Taylor’s
pro� le becomes inadequate. Another important motivation stems
from the need to provide consistency in evaluating both mean and
unsteady components of the � ow� eld developed by Flandro1¡3 and
Majdalani et al.4¡6;9¡13 In recent work by Majdalani,8 a general-
ized higher-order approximation for the time-dependent � eld was
presented; being of higher order, this formulation had the potential
of increasing the precision of combustion stability predictions in
use today. It also had the advantage of incorporating an arbitrary
mean-� ow function. Because the mean-� ow expression must be fed
into the time-dependent solution, it became logical to retain viscous
and rotational effects in both mean and unsteady components of the
� ow. This could be attributed, in part, to the importance of viscous
effects on the unsteady � eld (see Apte and Yang14;15 or Majdalani4

and Majdalani and Roh10). In that spirit the current paper will fo-
cus on presenting a rotational mean-� ow solution that incorporates
both viscosity and wall regression. The outcome should be a � eld
that is consistently rotational and viscous in both its mean and time-
dependent components.

Regarding the choice of geometry, ours corresponds to that of a
slab rocket motor. Here the slab motor will be idealized as a long
and nozzleless viscous channel with regressing porous walls. The
same geometry has been used in the numerical studies reported by
Apte and Yang14 Despite the desire to account for common geo-
metrical irregularities (such as inhibitors, igniters, submerged noz-
zles, interface gaps, conocyls, and slots),18 the added mathematical
complexities that accompany these items preclude closed-form so-
lutions. One can only hope that analytical formulations of the type
under investigation remain useful in unraveling basic physical as-
pects of the problem while helping to validate numerical simula-
tions of more elaborate models (Fiedler, R. A., private communica-
tion, Center for Simulation of Advanced Rockets, Univ. of Illinois,
Urbana–Champaign, 2001).

The article is organized as follows. The Navier–Stokes equations
are � rst reduced to one fourth-order differential equation. The anal-

ysis then proceeds by applying similarity transformations in both
space and time. These transformations evolve from the works of
Berman,30 Yuan and Finkelstein,31 and Goto and Uchida.32 On one
hand, the spatial transformation takes advantage of � ow similarity
by presuming a linearly varying axial velocity. This spatial behav-
ior is deduced from a mass balance in which the linear variation
of the mean-� ow axial velocity is proven. On the other hand, the
temporal transformation assumes a constant dimensionless expan-
sion ratio that corresponds to porous walls whose expansion speed
diminishes with the distance from the core. Such a choice is con-
sistent with a slab rocket motor undergoing a regressive burn. A
regressive burn is expected of homogeneous propellants as a result
of the expansion of the internal chamber volume with the passage
of time. Under these auspices the two-dimensional Navier–Stokes
equations collapse into a nonlinear differential equation that can be
solved both numerically and asymptotically.

The equation obtained will be shown to reduce to the known
Berman form when the porous walls are made motionless.30 Ad-
ditionally, the asymptotic solution will be shown to reduce to
Taylor’s33 or Yuan’s29 for large injection inporous channels with sta-
tionary walls. From the analytical solution closed-form expressions
will then be obtained for the velocity, vorticity, pressure, and shear
at the wall. These will be used to characterize the � ow. Subsequent
comparisons with the numerical solution will gauge the accuracy
of the analytical formulations over a range of moderate-to-high
Reynolds numbers. In the process our original application of the
method of variation of parameters will be validated.

II. Mathematical Model
The slab rocket motor is modeled as a channel with porous walls.

One side of the cross section, representing the distance (2a/ between
the porous walls is taken to be smaller than the other two (W and L ).
This enables us to treat the problem as a case of two-dimensional
� ow. Both sidewalls are assumed to have equal permeability and
to expand uniformly at a time-dependent rate Pa. Inasmuch as the
forthcoming similarity solution obviates the need to specify a � -
nite body length L , one has the liberty of assuming a semi-in� nite
length.34 To accommodate expanding boundaries, the head end is
closed by a compliant membrane that is allowed to stretch with
channel expansion.

As shown inFig. 1, a coordinate system can be chosen with theori-
gin at the center of the channel. Using the asterisk to denote dimen-
sional variables, x¤ and y¤ are used to de� ne the axial and normal
coordinates. The corresponding axial and normal velocity compo-
nents are de� ned by u¤ and v¤. For uniform wall injection symmetry
at y¤ D 0 reduces the domain of investigation to 0 · y¤ · a.

a)

b)

Fig. 1 Schematic of the chamber showing: a) the bulk gas motion using
a standard coordinate system and b) the control volume used in applying
mass conservation.
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A. Governing Equations

For two-dimensional laminar and incompressible � ow with no
body forces, the differential expressions for mass and momentum
conservation can be written as
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given

x ´ x¤=a; y ´ y¤=a; u ´ u¤
¯

vw

v ´ v¤
¯

vw; p ´ p¤̄ ½v2
w; R ´ avw=º (4)

where ½ is the dimensional density. The idealized boundary condi-
tions demand, as usual, no slippage at the wall in the parallel velocity
component. They also require a uniform in� ux in the normal direc-
tion. These conditions translate into

u.x; 1/ D 0 (no slip along the wall/

v.x; 1/ D ¡1 (uniform in� ux) (5)

For even blowing at the opposing walls, symmetry about the mid-
section plane requires that

@u

@y
.x; 0/ D 0; v.x; 0/ D 0 (6)

Furthermore, for no � ow through the head end wall one must have

u.0; y/ D 0 (impervious head end wall/ (7)

Before applying these boundary conditions to the Navier–Stokes
equations, some mass conservation considerations can be instructive
in unravelling useful properties of the � ow variables.

B. Injection and Regression Speeds

At the wall it is assumed that the absolute in� ow velocity vw is
independent of position. One must also realize that the blowing or
burning speed vb with respect to the wall must be uniform along the
length of the chamber because vw ´ vb ¡ Pa, Pa ´ da=dt . The absolute
speed of the injectant vw is slightly reduced as a result of wall
regression. This wall regression rate Pa coincides with the burning
rate in a solid-propellant rocket motor.

Although vw and Pa might be independent in cold-� ow studies,
they are related via the solid-to-gas density ratio owing to mass
conservation at the propellant surface. If Ab D 2Wx¤ represents the
burning surface in a solid propellant (or, alternatively, the sub-
limating surface in a cold-� ow simulation35¡38 ), then conserva-
tion of mass at the burning or sublimating interface requires that
½ Abvb D ½S Ab Pa. The gas velocity with respect to the wall becomes

vb D .½S=½/ Pa ´ r½ Pa (8)

where ½S is the density of the solid phase (before solid-propellant
pyrolysis or hard-wall sublimation). From Eq. (8) the absolute ve-
locity can be seen to be vw D .r½ ¡ 1/ Pa D A Pa, where A D r½ ¡ 1 is
the injection coef� cient.32 Because A ´ vw=Pa, it is a measure of
wall permeability. In rocket motors ½S » 2000 kg m¡3 (Ref. 39),
½ » 20 kg m¡3 (Ref. 40), and A » r½ » 100. For a cold-� ow exper-
iment in which the walls are allowed to expand in the absence of
forced injection (for example, for hard walls), vb will be zero, and
one obtains vw D ¡Pa or A D ¡1.

III. Reduction of the Flow Equations
A. Development of the Similarity Form

By applying mass conservation to a deformable control volume
extending from x D 0 to an arbitrary downstream position, the av-
erage � ow velocity um D u¤

m=vw can be determined. Based on

@

@t

Z

V

½ dV ¡ ½ Abvb C ½u¤
m Ac D 0 (9)

where V D Acx¤, and Ac D 2aW , one can integrate the temporal
term from 0 to x¤. After some rearrangement one obtains

um D
Ab
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¡
ax

Acvw
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@t
D

x.vb ¡ Pa/

vw

D x (10)

Because the de� ning integral um Ac D
R

u dA is carried out with
respect to y only, it follows that the property um / x can be realized
if, and only if, the axial velocity u is a linear function of x . This
result provides the principal motivation for attempting a similarity
transformation.

B. Vorticity-Stream Function Equations

To apply the correct similarity transformation, it is expedient
to introduce the Stokes stream function and replace both veloc-
ity components by one single variable. This can be accomplished
via .u; v/ D .Ãy ; ¡ Ãx /, where Ã ´ Ã¤=.avw /. Pressure can also
be eliminated from the momentum equation. This can be accom-
plished by taking the curl of the momentum equation. One obtains
the vorticity transport equation, namely,
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where the vorticity is given by
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C. Similar Solution in Space

As explained in Sec. IIIA, a similar solution with respect to
x can be anticipated as a result of mass conservation. Following
Berman’s classic approach,30 this similarity solution can be ini-
tiated by setting41Ã D x f .y; t/=R, where f .y; t/ is independent
of the axial coordinate. Forthwith, the axial and normal velocities
become .u; v/ D .x fy=R; ¡ f=R/, where f y D @ f=@y. As v is in-
dependent of x , the vorticity equation becomes ³ D ¡u y , whereby
Eq. (3) reduces to pyx D 0. Upon substitution into the vorticity trans-
port equation, one collects
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Subsequent application of the chain rule leads to
x

R2
fyyyy C 3

x®
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xy®

R2
f yyy ¡

x

R2
fy fyy

C
x

R2
f fyyy ¡

ºx

v2
w

f yyt D 0 (14)

which simpli� es into

fyyyy C 3® f yy C ®y fyyy ¡ fy fyy C f fyyy ¡ a2º¡1 f yyt D 0 (15)

where ® ´ Paa=º is the wall regression ratio. Physically, this param-
eter represents the Reynolds number based on the normal speed of
the walls. In cold-� ow experiments R and ® can be independent. In
solid rocket motors, however, these two parameters are related by
the injection coef� cient A. Because vw D .r½ ¡ 1/ Pa D A Pa, multipli-
cation by a=º yields R D A®.
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D. Similar Solution in Space and Time

A similar solution with respect to both space and time can now
be developed following Uchida and Aoki.34 Using the transforma-
tion f .y; t/ ! f [y; ®.t/] and assuming constant ®, the last term in
Eq. (15) can be suppressed. To realize this condition, the value of
the regression ratio must be speci� ed by its initial value, namely,

® D Paa=º D Pa0a0=º (16)

where a0 and Pa0 denote the initial chamber half-height and wall re-
gression rate. The temporal similarity transformation can be realized
by integrating Eq. (16) with respect to time. Consequently, a similar
solution for the temporal channel height is identi� ed, namely, a.t/ D
a0

p
.1 C 2º®ta¡2

0 /.

E. Normalized Equations

At this juncture it is convenient to let F ´ f=R. The normalized
equations become

.Ã; ³ / D .x F; ¡x Fyy/; .u; v/ D .x Fy; ¡F /

u=um D u=x D Fy .17/

"Fyyyy C ®".yFyyy C 3Fyy/ C F Fyyy ¡ Fy Fyy D 0; " ´ R¡1

.18/

The exact solution of the problem becomes contingent on � nding a
solution F that satis� es

Fyy .0/ D 0; F.0/ D 0; Fy.1/ D 0; F.1/ D 1 (19)

Note that Berman’s equation30 is a special case of Eq. (18) that can
be restored by suppressing ®.

IV. Analytical Solution
For moderate-to-large values of the Reynolds number, Eq. (18)

can be solved asymptotically following a unique application of the
variation of parameters technique. By virtue of the small parameter "
multiplying the highest derivative, a regular perturbation expansion
of the form F D F0 C "F1 C O."2/ can be attempted. Substitution
into Eq. (18) gives, at O(1),

F0 F0yyy ¡ F0y F0yy D 0 (20)

with F 0
0.1/ D 0; F0.1/ D 1; F0.0/ D 0. The nonlinear form of

Eq. (20) is not susceptible to known integration technique. It must
be obtained by guessing that F0 D sin µ , where µ ´ 1

2 ¼y.

A. First-Order Equation

Terms of O."/ can be gathered and separated. The emerging � rst-
order equation becomes

F0 F1yyy ¡ F0y F1yy ¡ F0yy F1y C F0yyy F1

D ¡F0yyyy ¡ 3®F0yy ¡ ®yF0yyy (21)

This needs to be solved while satisfying

F1y.1/ D 0; F1.1/ D 0; F1.0/ D 0 (22)

Switching to µ as the independent variable and using F0 D sin µ ,
Eq. (21) becomes

sin µ F 000
1 ¡ cos µ F 00

1 C sin µ F 0
1 ¡ cos µ F1

D
¡
6®=¼ ¡ 1

2 ¼
¢

sin µ C .2®=¼/µ cos µ (23)

with

F 0
1

¡
1
2
¼

¢
D 0; F1

¡
1
2
¼

¢
D 0; F1.0/ D 0 (24)

B. Solving by Variation of Parameters

The solution of Eq. (23) must be carefully constructed. First, one
can attempt to solve the homogeneous equation

sin µ F 000
1 ¡ cos µ F 00

1 C sinµ F 0
1 ¡ cos µ F1 D 0 (25)

To that end, one simple solution exhibited by Eq. (25) can be guessed
to be F1h D cos µ . Having determined one independent solution,
the method of variation of parameters can be applied. This requires
setting F1h D C.µ/ cos µ , where C.µ/ is unknown. Differentiation
gives

F 0
1h D C 0 cos µ ¡ C sin µ

F 00
1h D C 00 cos µ ¡ 2C 0 sin µ ¡ C cos µ

F 000
1h D C 000 cos µ ¡ 3C 00 sin µ ¡ 3C 0 cos µ C C sin µ (26)

Subsequent substitution into Eq. (25) yields C 000 sinµ cos µ ¡
2C 00 sin2 µ ¡ C 00 D 0. Thus C can be determined to be C.µ/ D
P0 tan µ C P1µ C P2, where P0; P1, and P2 are integration param-
eters. This completes the expression for the general homogeneous
solution

F1h D P0 sin µ C P1µ cos µ C P2 cos µ (27)

To make headway, a second-level parametric variation of P0; P1,
and P2 must be allowed. At the outset Eq. (27) becomes

F1.µ/ D P0.µ/ sinµ C P1.µ /µ cos µ C P2.µ/ cos µ

´ P0.µ/F1A.µ/ C P1.µ/F1B .µ/ C P2.µ/F1C .µ/ (28)

This term needs to be differentiated thrice before substitution into
Eq. (23). The � rst differentiation yields

F 0
1 D P 0

0 F1A C P0 F 0
1A C P 0

1 F1B C P1 F 0
1B C P 0

2 F1C C P2 F 0
1C (29)

A procedural constraint binding the derivatives is P 0
0 F1A C P 0

1 F1B C
P 0

2 F1C D 0. Hence, by virtue of P 0
0 sin µ C P 0

1µ cos µ C P 0
2 cos µ D 0,

Eq. (29) becomes

F 0
1 D P0 F 0

1A C P1 F 0
1B C P2 F 0

1C

D P0 cos µ C P1.cos µ ¡ µ sin µ/ ¡ P2 sin µ (30)

Differentiating a second time renders

F 00
1 D P 0

0 F 0
1A C P0 F 00

1A C P 0
1 F 0

1B C P1 F 00
1B C P 0

2 F 0
1C C P2 F 00

1C (31)

Letting P 0
0 F 0

1A C P 0
1 F 0

1B C P 0
2 F 0

1C D 0 gives another constraint:
P 0

0 cos µ C P 0
1.cos µ ¡ µ sin µ / ¡ P 0

2 sin µ D 0. Equation (31)
becomes

F 00
1 D P0 F 00

1A C P1 F 00
1B C P2 F 00

1C

D ¡P0 sin µ ¡ P1.2 sin µ C µ cos µ/ ¡ P2 cos µ (32)

Finally, differentiating a third time brings about

F 000
1 D ¡P 0

0 sinµ ¡ P0 cos µ ¡ P 0
1.2 sinµ C µ cos µ/

¡ P1.3 cos µ ¡ µ sin µ / ¡ P 0
2 cos µ C P2 sin µ (33)

We now substitute F1 and its derivatives, given by Eqs. (28), (30),
(32), and (33), back into the complete � rst-order equation, given by
Eq. (23). The result is

¡P 0
0 sin2 µ ¡ 2P 0

1 sin2 µ ¡ P 0
1µ sin µ cos µ ¡ P 0

2 sin µ cos µ

D .6®=¼ ¡ ¼=2/ sin µ C .2®=¼/µ cos µ (34)

Equation (34) contains three unspeci� ed functions P 0
0; P 0

1, and P 0
2.

To obtain closure, the two procedural constraints introduced earlier
must be employed alongside Eq. (34). One � nds
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Integrating for the variable parameters, one gathers, after some
algebra,

P0.µ/ D ¡
®

¼
.µ=sin µ C µ sin µ/ C .2®=¼ ¡ ¼=4/ cos µ

C .4®=¼ ¡ ¼=4/ tan.µ=2/ C K0

P1.µ/ D .¼=4 ¡ 4®=¼/ tan.µ=2/ C .®=¼/.µ=sin µ/ C K1

P2.µ/ D .¼=4 ¡ 2®=¼/ sin µ ¡
®
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C .4®=¼ ¡ ¼=4/I .µ/ C K2 (36)

where K0; K1, and K2 are constants and
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Inserting Eq. (36) into Eq. (28) yields, at length,

F1 D ¡.2®=¼/µ C .4®=¼ ¡ ¼=4/
£
.sin µ ¡ µ cos µ/ tan 1

2 µ

C cos µ I .µ/
¤

C K0 sin µ C K1µ cos µ C K2 cos µ (38)

Applying the three boundary conditions given by Eq. (24) and
making use of I .0/ D 0, the three constants K0; K1 , and K2 can be
determined. These are

K0 D ®; K1 D
¡

1
2 ¡ 8®¼¡2

¢
I
¡

1
2 ¼

¢
C 4®¼¡2 ¡ 1

2

K2 D 0 (39)

The � rst-order solution is, at last,

F1 D ¡.2®=¼/µ C .¼=4 ¡ 4®=¼/
£
.µ cos µ ¡ sin µ/ tan 1
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2

¤
µ cos µ (40)

C. Complete Solution

The � rst-order corrections appearing in Eq. (40) can be added
to the leading-order solution. In the interest of clarity, the resulting
function and its derivatives are reproduced next. Written at O."2/,
one can put

F.µ/ D sin µ C "f¡.2®=¼/µ C .¼=4 ¡ 4®=¼/

£
£
.µ cos µ ¡ sin µ/ tan 1

2 µ C cos µ I .µ/
¤

C ® sin µ

C
£¡

1
2 ¡ 8®¼¡2

¢
I
¡

1
2 ¼

¢
C 4®¼¡2 ¡ 1

2

¤
µ cos µ

ª
(41)

F 0.µ/ D cos µ C "
©
2®=¼ ¡ ¼=4 C

¡
¼=4 ¡ 4®=¼

¢£
sin µ I .µ/

¡ µ sinµ tan 1
2 µ

¤
C ® cos µ C

£¡
1
2 ¡ 8®¼¡2

¢
I
¡

1
2 ¼

¢

C 4®¼¡2 ¡ 1
2

¤
.cos µ ¡ µ sinµ /

ª
(42)

F 00.µ / D ¡ sin µ C "f.¼=4 ¡ 4®=¼/

£
£

cos µ I .µ/ ¡ .sin µ C µ cos µ/ tan 1
2
µ
¤

¡ ® sin µ

¡
£¡

1
2

¡ 8®¼ ¡2
¢
I
¡

1
2
¼
¢

C 4®¼¡2 ¡ 1
2

¤
.2 sin µ C µ cos µ /

ª

(43)

F 000.µ/ D ¡ cos µ C "
©¡

¼=4 ¡ 4®=¼
¢

£
£
¡ sin µ I .µ/ ¡ .2 cos µ ¡ µ sin µ/ tan 1

2 µ ¡ 1
¤

¡ ® cos µ

¡
£¡

1
2

¡ 8®¼ ¡2
¢
I
¡

1
2
¼
¢

C 4®¼¡2 ¡ 1
2

¤
.3 cos µ ¡ µ sin µ/

ª

(44)

Following Eq. (23), primes have been used to denote dif-
ferentiation with respect to µ . When reverting back to y,
one must use F D F. 1

2 ¼y/; Fy D 1
2 ¼ F 0.µ/; Fyy D 1

4 ¼ 2 F 00.µ/, and
Fyyy D 1

8 ¼ 3 F 000.µ /.
The current mean-� ow solution can be inserted directly into

the recent oscillatory velocity and vorticity formulations obtained
by Majdalani and Van Moorhem.11 Theirs take into consideration
the possible inception of oscillatory disturbances inside the porous
chamber. On that account, when internal oscillations of amplitude
Ap and circular frequency ! are to be accounted for the Strouhal
number Sr D !a=vw becomes an important parameter. As shown
previously,11 the total dimensional velocity and vorticity compo-
nents that include oscillatory waves can be written in the form

u¤
tot D vw.x¤=a/Fy C [Ap=.½as/]

£
sin

¡
!x¤

¯
as

¢
sin.!t/

¡ F sin
¡
!x¤ F

¯
as

¢
exp Â sin.!t C 8/

¤
(45)

³ ¤
tot D ¡

¡
vw x¤

¯
a2

¢
Fyy

C [!Ap=.vw½as /] sin
¡
!x¤ F

¯
as

¢
exp Â cos.!t C 8/ (46)

where

Â.y/ D "Sr 2

Z y

1

F¡3.z/ dz

8.y/ D Sr

Z y

1

F¡1.z/ dz C "Sr

"
3

2
.F ¡2 ¡ 1/ ¡ 2"Sr 2

Z y

1

F ¡5 dz

#

.47/

For a nozzleless con� guration the oscillation frequency trig-
gered by acoustic waves is given by ! D .m ¡ 1=2/¼as =L , where
m D 1; 2; : : : designates the oscillation mode shape number.6;9 For
better clarity it is useful to express Eqs. (45) and (46) in terms of
the familiar pressure wave amplitude "p D Ap=.½a2

s /, the wall Mach
number M D vw=as , the dimensionless wave number k D !a=as , and
normalized space coordinates. The outcome is

u tot ´ u¤
tot

¯
vw D x Fy C ."p=M/[sin.kx/ sin.!t/

¡ F sin.kx/ exp Â sin.!t C 8/] (48)

³tot ´ ³ ¤
totvw

¯
a D ¡x Fyy C k

¡
"p

¯
M 2

¢
sin.kx F/ exp Â cos.!t C 8/

(49)

At this point it should be emphasized that the second term in
Eq. (49) is seen to be of comparable size to the mean-� ow vor-
ticity because "p M¡2 > 1 and k D .m ¡ 1

2 /¼a=L D O.1/. This ex-
pectation stems from the fundamental asymptotic ordering that has
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been used repeatedly in aeroacoustic stability studies to linearize
the Navier–Stokes equations.1¡13 This result can also be veri� ed by
recalling the classic order M 2 < "p < M that leads to "p M¡2 > 1.
We thus realize that, while the oscillatory velocity remains small
in comparison to the mean-� ow contribution, the unsteady vorticity
can be larger than its mean counterpart. This study also suggests that
viscous dissipation constitutes an important contribution to the over-
all vortical � eld and that unsteady vorticity must not be discounted
in the analysis of viscous � ows in porous tubes.

V. Discussion
From the characteristic function F all � ow variables can be evalu-

ated analytically, from the foregoing formulations, and numerically,
from a Runge–Kutta solver. Our numerical results use a suf� ciently
small tolerance to the point of making them accurate in seven signif-
icant digits. We thus consider the numerical error to be negligible.

A. Comparison at Constant Regression Ratio

Using a constant regression ratio of ® D 10, numerical and an-
alytical solutions for F (or ¡v) and u=x (or u=um ) are illustrated
in Fig. 2. From Fig. 2a it can be inferred that Eq. (41) matches
the numerical solution quite well, especially for R > 100. In fact,
for R ¸ 500 asymptotics and numerics become indistinguishable.
Clearly, the analytical solution remains practical near an injection
Reynolds number that is as low as 50. Similar trends are observed
in Fig. 2b where the normalized axial velocities are compared. It
appears that Eq. (42) is an adequate approximation to the exact so-
lution. In all cases shown the largest asymptotic error occurs in the
vicinity of the core and for relatively smaller values of R. These
results are reassuring because they indicate an improvement in the
precision of the analytical expressions at larger values of R. They
become ideally suited to model the hard-blowing process in cold-
� ow experiments or slab rocket motorswith large injection Reynolds
numbers.

B. Comparison at Constant Reynolds Number

Keeping the Reynolds number � xed at several discrete values (of
100, 500, and 1000), the regression ratio is now varied from ® D 0
to a large value. Numerical and analytical solutions for u=x are de-
picted in Fig. 3. Figure 3a indicates that, at a low value of R D 100,
the solution is more sensitive to the wall regression ratio than at

a)

b)

Fig. 2 Comparison between numerical (——) and analytical (– – –)
solutions for a) F and b) u/x at ® = 10 and 50 <– R <– 1000.

a)

b)

c)

Fig. 3 Comparison between normalized axial velocities obtained from
numerical (——) and analytical (– – –) solutions over a range of wall
regression rates (0 <– ® <– 100). Here, the blowing Reynolds numbers
are a) 100, b) 500, and c) 1000.

higher Reynolds numbers. In fact, for R D 1000 only small differ-
ences appear to exist between the ® D 0 and 100 cases. This justi� es
ignoring the wall regression rate in high-Reynolds-number applica-
tions. Because a value of R in excess of 1000 is not uncommon in
reactive rocket motors, the assumption of a � xed boundary seems
reasonable. However, for moderate R Fig. 3a indicates that notice-
able differences caused by regression can occur. These differences
need to be carefully accounted for by using, for instance, Eq. (42)
in unison with Eq. (17).

It is clear from Fig. 3 that the accuracy of the analytical for-
mulation deteriorates when the Reynolds number is small and the
regression ratio is large. Such a physical setting is less likely to
occur by virtue of ®=R D 1=A ¿ 1 and the discussion presented in
Sec. II. This feature can also be explained by referring the reader
to the coef� cient of the second term in Eq. (18). In that regard, one
must recall that the relevant perturbation solution was based implic-
itly on the condition that ®" ¿ 1. Thus, as long as ® ¿ R one can
expect the solution to be reasonably accurate. Conversely, for the
impractical case of ® ! R the analytical formulation is expected to
deteriorate.

C. Flow Streamlines

To better visualize the resulting � ow motion, streamlines ema-
nating from several discrete points are shown in Figs. 4 and 5 for
several values of R and ®. In Fig. 4 increasing the Reynolds number
at constant regression rate is seen to increase the � ow turning speed.
This can be explained by resorting to mass conservation. As mass is
injected more rapidly into the chamber, removal of added mass near
the head end requires an increasingly larger axial velocity compo-
nent. Hence, to produce the necessary downstream convection the
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a)

b)

Fig. 4 Comparison between a)numerical and b)analytical streamlines
for ® = 10 and R = 20 (——), 50 (– – –), and 1000 (¢ ¢ ¢ ).

Fig. 5 Mean-� ow streamlines for R = 50 and ® = 0 (——), 10 (- - -), and
20 (¢ ¢ ¢ ).

relative magnitude of the axial vs normal velocity must grow pro-
portionately larger with successive increases in R. Because of the
perturbative constraint, the agreement between Fig. 4a and Fig. 4b
is excellent for R D 1000, but deteriorates as R is reduced to 20. An
opposite effect is observed when ® is varied while � xing R.

The streamline sensitivity to ® is illustrated in Fig. 5. There, it can
be observed that the � ow turning becomes delayed when the wall
regression rate is increased. This can be attributed to the fact that,
when the walls expand more rapidly, the ratio of axial to normal
mean-� ow velocities is reduced. In theory, the diminution in axial
velocity can continue until this ratio has vanished. That hypothetical
case takes place when the relative � uid velocity at the wall is exactly
offset by the speed of the expanding walls.

VI. Additional Flow Properties
Having characterized the velocity � eld, the remaining � ow

properties, such as pressure and stress distributions, can now be
examined.

A. Normal Pressure Distribution

The normal pressure gradient can be obtained by substituting the
velocity components into Eq. (3). Because of the dependence of
the normalized variables on time, one must proceed carefully with
the chain derivatives. These include

a

vw

@v

@t
D ¡

a

vw

Ft D "®.F C yFy/;
@v

@x
D 0

@2v

@x2
D 0; v

@v

@y
D F Fy;

@2v

@y2
D ¡Fyy (50)

Following substitution into Eq. (3), a simple rearrangement yields

py D ¡["Fyy C F Fy C ®".F C y Fy /] (51)

The normal pressure distribution can now be determined by inte-
grating Eq. (51) while observing the boundary conditions given by
Eq. (19). Letting pc be the centerline pressure, one can proceed from

Z p

pc

dp D
Z y

0

¡["Fyy C F Fy C ®".F C yFy /] dy (52)

a)

b)

Fig. 6 Comparison between numerical (——) and analytical (– – –)
pressure drops in the normal direction for a) R = 50 and b) R = 1000.
Enlargements are shown in the inset.

Using FF y D 1
2
.F2/y and .F C yFy/ D .yF/y , one can integrate

Eq. (52) directly into

1pn D "Fy .0/ ¡
¡
"Fy C 1

2 F 2 C ®"yF
¢

(53)

Figure 6 illustrates the pressure distribution for several levels of
injection and regression. For every level of injection, the absolute
pressure drop is largest near the walls. Increasing the regression ratio
also increases the pressure drop. Comparing Fig. 6a to Fig. 6b, the
sensitivity of the pressure to variations in wall expansion appears to
be less signi� cant at high Reynolds numbers. Because of the uniform
agreement between numerics and asymptotics, the two types can be
hardly discerned except for small R and large ® (Fig. 6a). Also, for
small "® the normal pressure gradient is near zero at the wall.

B. Axial Pressure Distribution

Similar substitutions into Eq. (2) give rise to a closed-form ex-
pression for the axial pressure gradient. Using

@y

@t
D ¡

Pay

a

a

vw

u t D
a

vw

.x Fy/t D ¡x"®.yFyy C 2Fy / (54)

the pressure gradient can be derived from the axial momentum
equation

px D x
£
"Fyyy C F Fyy ¡ .Fy /2 C ®".2Fy C yFyy/

¤
(55)

Equation (55) can, in turn, be integrated to obtain an axial pressure
distribution at any spatial location:

1pa D 1
2 x2

£
"Fyyy C F Fyy ¡ .Fy/

2 C ®".2Fy C yFyy /
¤

(56)

The character of the axial pressure distribution is similar to that
of Eq. (53).

C. Shear Stress and Vorticity Distributions

Starting with Newton’s equation for shear stress, one can sub-
stitute the velocity and write ¿ D ¿ ¤=.½v2

w/ D "x Fyy D ¡"³ , where
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Fig. 7 Comparison between numerical (——) and analytical (– – –)
wall shear stresses for ® = 10 and a range of R.

Eq. (17) has been used for the mean-� ow vorticity. The proportion-
ality constant that exists between shear and vorticity is ¡". At the
wall the stress becomes ¿w D "x Fyy.1/ D ¡"³.1/.

A plot of the wall shear stress is shown in Fig. 7 for a � xed value
of ® and a range of R. As the Reynolds number becomes very large,
the role of viscosity diminishes, and the shear (or vorticity) at the
wall becomes less appreciable. The agreement between asymptotics
and numerics also improves with increasing R.

VII. Conclusions
In this paper an exact similarity solution to the Navier–Stokes

equations is presented. The problem arises in the context of an
injection-driven � ow inside a porous chamber with regressing walls.
The similarity transformations in space and time turn the momentum
equations into a single, nonlinear, differential equation. The result-
ing equation reduces to the classic Berman formula for a channel
with stationary walls. Closed-form expressions obtained using reg-
ular perturbations and the method of variation of parameters are
shown to coincide with the numerical solution over a useful range
of parameters. Because of their adequate accuracy, these explicit for-
mulations are practically equivalent to the exact solution, especially
when the ratio of regression and injection parameters (®=R/ is small.
Clearly, when injection is increased the effect of varying the regres-
sion rate becomes less pronounced. Larger values of R also improve
the accuracy of the analytical expressions. Their improved precision
makes them suitable for modeling the hard-blowing process and
hydrodynamic instability in slab rocket motors and cold-� ow ex-
periments. When inserted into the oscillatory vortico-acoustic wave
solution for rocket chambers, a consistently rotational and viscous
� eld is realized in both mean and time-dependent components. This
leads to a more precise assessment of the unsteady vorticity � eld
that is strongly in� uenced by the amount of viscous dissipation. Our
study also suggests that both unsteady and inviscid-� ow vorticity
components must be retained in a full-scale analysis because of their
comparable orders. It is hoped that the complete solution can be later
used, instead of the inviscid pro� le, to investigate hydrodynamic in-
stability and transition to turbulence. In what regards streamline
behavior, it is found that increasing the Reynolds number accel-
erates � ow turning and leads to a larger � ow energy consumption.
Conversely, increasing wall regression promotes a delayed response
that can be associated with a smaller � ow turning loss. Because the
traditional � ow turning mechanism is considered a sink of acous-
tic energy, this study suggests that faster burning propellants are
prone to a larger destabilizing energy. Regarding the sensitivity of
the viscous solution to regression rates up to 100, it is found that,
for Reynolds numbers in excess of 1000, the mean-� ow velocity be-
comes practically equivalent to Taylor’s inviscid pro� le irrespective
of the regression rate. This justi� es the traditional use of Taylor’s so-
lution in certain applications. However, for R < 1000 discrepancies
with the inviscid pro� le begin to appear. These deviations become
appreciable for R < 500 and intolerable for R < 100. Under such
conditions the viscous mean-� ow solution ought to be substituted.
Aside from the technical merit in modeling chamber gas dynam-
ics, the solutions precipitated from this study are hoped to increase
our repertory of known approximations for laminar � ows in porous
channels and tubes.

References
1Flandro, G. A., “Effects of Vorticity on Rocket Combustion Stability,”

Journal of Propulsion and Power, Vol. 11, No. 4, 1995, pp. 607–625.
2Flandro, G. A., “On Flow Turning,” AIAA Paper 95-2530, July 1995.
3Flandro, G. A., “Effects of Vorticity Transport on Axial Acoustic Waves

in a Solid Propellant Rocket Chamber,” Combustion Instabilities Driven by
Thermo-Chemical Acoustic Sources, NCA, Vol. 4, HTD Vol. 128, American
Society of Mechanical Engineers, New York, 1989, pp. 53–61.

4Majdalani, J., “The Boundary Layer Structure in Cylindrical Rocket
Motors,” AIAA Journal, Vol. 37, No. 4, 1999, pp. 505–508.

5Majdalani, J., “Vortical and Acoustical Mode Coupling Inside a Two-
Dimensional Cavity with Transpiring Walls,” Journal of the Acoustical So-
ciety of America, Vol. 106, No. 1, 1999, pp. 46–56.

6Majdalani, J., “Vorticity Dynamics in Isobarically Closed Porous Chan-
nels. Pt 1: Standard Perturbations,” Journal of PropulsionandPower, Vol. 17,
No. 2, 2001, pp. 355–362.

7Majdalani, J., “Asymptotic Formulation for an Acoustically Driven Field
Inside a Rectangular Cavity with a Well-De� ned Convective Mean Flow
Motion,” Journal of Sound and Vibration, Vol. 223, No. 1, 1999, pp. 73–95.

8Majdalani, J., “The Oscillatory Channel Flow with Arbitrary Wall In-
jection,” Journal of Applied Mathematics and Physics, Vol. 52, No. 1, 2001,
pp. 33–61.

9Majdalani, J., and Roh, T. S., “Vorticity Dynamics in Isobarically Closed
Porous Channels. Pt 2: Space-Reductive Perturbations,” Journal of Propul-
sion and Power, Vol. 17, No. 2, 2001, pp. 363–370.

10Majdalani, J., and Roh, T. S., “The Oscillatory Channel Flow with
Large Wall Injection,” Proceedings of the Royal Society, Series A, Vol. 456,
No. 1999, 2000, pp. 1625–1657.

11Majdalani, J., and Van Moorhem, W. K., “Laminar Cold-Flow Model
for the Internal Gas Dynamics of a SlabRocket Motor,” Journal of Aerospace
Science and Technology, Vol. 5, No. 3, 2001, pp. 193–207.

12Majdalani, J., and Van Moorhem, W. K., “Improved Time-Dependent
Flow� eld Solution for Solid Rocket Motors,” AIAA Journal, Vol. 36, No. 2,
1998, pp. 241–248.

13Majdalani, J., and Van Moorhem, W. K., “A Multiple-Scales Solution to
the AcousticBoundaryLayer inSolidRocket Motors,”Journal of Propulsion
and Power, Vol. 13, No. 2, 1997, pp. 186–193.

14Apte, S., andYang, V., “Effect of Acoustic Oscillationon Flow Develop-
ment in a Simulated Nozzleless Rocket Motor,” Solid Propellant Chemistry,
Combustion, and Motor Interior Ballistics, edited by V. Yang, T. B. Brill,
and W.-Z. Ren, Progress in Astronautics and Aeronautics, Vol. 185, AIAA,
Reston, VA, 2000, pp. 791–822.

15Apte, S., and Yang, V., “Unsteady Flow Evolution in Porous Chamber
with Surface Mass Injection. Pt 1: Free Oscillation,” AIAA Journal, Vol. 39,
No. 8, 2001, pp. 1577–1586.

16Apte, S., and Yang, V., “Unsteady Flow Evolution in Porous Cham-
ber with Surface Mass Injection. Pt 2: Acoustic Excitation,” AIAA Journal,
Vol. 40, No. 2, 2002, pp. 244–253.

17Beddini, R. A., “Injection-Induced Flows in Porous-Walled Ducts,”
AIAA Journal, Vol. 24, No. 11, 1986, pp. 1766–1773.

18Sabnis, J. S., and Eagar, M. A., “Evolution of Internal Flow in a Solid
Rocket Motor with Radial Slots,” Journal of Propulsion and Power, Vol. 12,
No. 4, 1996, pp. 632–637.

19Avalon, G., Casalis, G., and Griffond, J., “Flow Instabilities and Acous-
tic Resonance of Channels with Wall Injection,” AIAA Paper 98-3218, July
1998.

20Casalis, G., Avalon, G., and Pineau, J.-P., “Spatial Instability of Planar
Channel Flow with Fluid Injection through Porous Walls,” Physics of Fluids,
Vol. 10, No. 10, 1998, pp. 2558–2568.

21Griffond, J., and Casalis, G., “On the Dependence on the Formulation
of Some Nonparallel Stability Approaches Applied to the Taylor Flow,”
Physics of Fluids, Vol. 12, No. 2, 2000, pp. 466–468.

22Griffond, J., and Casalis, G., “On the Nonparallel Stability of the In-
jection Induced Two-Dimensional Taylor Flow,” Physics of Fluids, Vol. 13,
No. 6, 2001, pp. 1635–1644.

23Liou, T.-M., and Lien, W.-Y., “Numerical Simulations of Injection-
Driven Flows in a Two-Dimensional Nozzleless Solid-Rocket Motor,” Jour-
nal of Propulsion and Power, Vol. 11, No. 4, 1995, pp. 600–606.

24Liou, T. M., Lien, W. Y., and Hwang, P. W., “Large-Eddy Simulations
of Turbulent Reacting Flows in a Chamber with Gaseous Ethylene Injecting
Through the Porous Wall,” Combustion and Flame, Vol. 99, No. 3–4, 1994,
pp. 591–600.

25Liou, T. M., Lien, W. Y., and Hwang, P. W., “Transition Characteristics
of Flow� eld in a Simulated Solid-Rocket Motor,” Journal of Propulsion and
Power, Vol. 14, No. 3, 1998, pp. 282–289.

26Buckmaster, J., Jackson, T. L., and Ulrich, M., “Numerical Model-
ing of Heterogeneous Propellant Combustion,” AIAA Paper 2001-3579,
July 2001.

http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1452^281999^2937:4L.505[aid=4556]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0748-4658^282001^2917:2L.355[aid=979058]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-460X^281999^29223:1L.73[aid=1776769]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0044-2275^282001^2952:1L.33[aid=2452278]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0748-4658^282001^2917:2L.363[aid=2452279]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1364-5021^282000^29456:1999L.1625[aid=2452280]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1270-9638^282001^295:3L.193[aid=2452281]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0748-4658^281997^2913:2L.186[aid=979056]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1452^282001^2939:8L.1577[aid=2003674]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1452^282002^2940:2L.244[aid=2452282]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1070-6631^281998^2910:10L.2558[aid=979052]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1070-6631^282000^2912:2L.466[aid=2452284]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1070-6631^282001^2913:6L.1635[aid=2262411]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0748-4658^281998^2914:3L.282[aid=1411003]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0748-4658^282001^2917:2L.355[aid=979058]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0044-2275^282001^2952:1L.33[aid=2452278]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0748-4658^282001^2917:2L.363[aid=2452279]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1364-5021^282000^29456:1999L.1625[aid=2452280]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1270-9638^282001^295:3L.193[aid=2452281]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0748-4658^281997^2913:2L.186[aid=979056]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1452^282001^2939:8L.1577[aid=2003674]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-1452^282002^2940:2L.244[aid=2452282]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1070-6631^281998^2910:10L.2558[aid=979052]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1070-6631^282001^2913:6L.1635[aid=2262411]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0748-4658^281998^2914:3L.282[aid=1411003]


ZHOU AND MAJDALANI 711

27Jackson, T. L., Buckmaster, J., Campbell, M., Kochevets, S., and Massa,
L., “The Burning of 3d Random-Pack Heterogeneous Propellants,” AIAA
Paper 2001-3952 , July 2001.

28Beckstead, M., “Overview of Combustion Mechanisms and Flame
Structures for Advanced Solid Propellants,” Solid Propellant Chemistry,
Combustion, and Motor Interior Ballistics, edited by V. Yang, T. B. Brill,
and W.-Z. Ren, Progress in Astronautics and Aeronautics, Vol. 185, Reston,
VA, 2000, pp. 267–285.

29Yuan, S. W., “Further Investigation of Laminar Flow in Channels with
Porous Walls,” Journal of Applied Physics, Vol. 27, No. 3, 1956, pp. 267–

269.
30Berman, A. S., “Laminar Flow in Channels with Porous Walls,” Journal

of Applied Physics, Vol. 24, No. 9, 1953, pp. 1232–1235.
31Yuan, S. W., and Finkelstein, A. B., “Laminar Pipe Flow with Injection

and Suction Through a Porous Wall,” Transactions of the American Society
of Mechanical Engineers: Journal of Applied Mechanics, Series E, Vol. 78,
No. 3, 1956, pp. 719–724.

32Goto, M., and Uchida, S., “Unsteady Flows in a Semi-In� nite Expand-
ing Pipe with Injection through Wall,” Transactions of the Japan Society for
Aeronautical and Space Sciences, Vol. 33, No. 9, 1990, pp. 14–27.

33Taylor, G. I., “Fluid Flow in Regions Bounded by Porous Surfaces,”
Proceedings of the Royal Society, London, Series A, Vol. 234, No. 1199,
1956, pp. 456–475.

34Uchida, S., and Aoki, H., “Unsteady Flows in a Semi-In� nite Contract-

ing or Expanding Pipe,” Journal of Fluid Mechanics, Vol. 82, No. 2, 1977,
pp. 371–387.

35Barron, J., Majdalani, J., and Van Moorhem, W. K., “A Novel Investi-
gation of the Oscillatory Field over a Transpiring Surface,” Journal of Sound
and Vibration, Vol. 235, No. 2, 2000, pp. 281–297.

36Majdalani, J., Barron, J., and Van Moorhem, W. K., “Experimental
Classi� cation of Turbulence in an OscillatoryChannel Flow with Transpiring
Walls,” American Society of Mechanical Engineers FEDSM Paper 2001-
1881, May–June 2001.

37Ma, Y., Van Moorhem, W. K., and Shorthill, R. W., “Innovative Method
of Investigating the Role of Turbulence in the Velocity Coupling Phe-
nomenon,” Journal of Vibration and Acoustics, Vol. 112, No. 4, 1990,
pp. 550–555.

38Ma, Y., Van Moorhem, W. K., and Shorthill, R. W., “Experimental
Investigation of Velocity Coupling in Combustion Instability,” Journal of
Propulsion and Power, Vol. 7, No. 5, 1991, pp. 692–699.

39Sutton, G. P., Rocket Propulsion Elements, 6th ed., Wiley, New York,
1992, p. 418.

40Reid, R. C., Prausnitz, J. M., and Poling, B. E., The Properties of Gases
and Liquids , 4th ed., McGraw–Hill, New York, 1987, pp. 388–490.

41Goto, M., and Uchida, S., “Unsteady Flow in a Semi-In� nite Contract-
ing or Expanding Pipe with a Porous Wall,” Proceedings of the 40th Japan
National Congress for Applied Mechanics, Vol. NCTAM-40, Japan National
Congress for Applied Mechanics, Tokyo, Japan, 1990, pp. 163–172.

http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-460X^282000^29235:2L.281[aid=1769410]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0748-4658^281991^297:5L.692[aid=1587]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-460X^282000^29235:2L.281[aid=1769410]
http://giorgio.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0748-4658^281991^297:5L.692[aid=1587]

