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 This article focuses on the viscous core of the bidirectional flowfield arising in a swirl-
driven thrust chamber. By regularizing the momentum equation in the tangential direction, 
the boundary layer equation that controls the forced vortex near the chamber axis is 
obtained. After identifying the coordinate transformation needed to resolve the rapid 
changes near the core, an inner expansion is arrived at. This expansion is then matched with 
the outer solution associated with the free vortex; the latter is known to prevail in the outer 
region. By combining inner and outer expansions, uniformly valid approximations are 
obtained for the swirl velocity, vorticity, and pressure. These are shown to be strongly 
influenced by a dynamic similarity parameter that combines the mean flow Reynolds 
number and the chamber aspect ratio. Referred to as the vortex Reynolds number V, this 
dimensionless grouping enables us to quantify the characteristic features of the bidirectional 
vortex. Among them is the thickness of the viscous core which is found to decrease with the 
square root of V. The converse can be said of the maximum swirl velocity. In the same vein, 
the angular frequency of the rigid-body rotation of the forced vortex near the core is found 
to be linearly proportional to V. The form of the swirl velocity is reminiscent of the Burgers 
vortex; here, it is based on the aspect ratio of the thrust chamber. The resulting theoretical 
predictions compare favorably with experimental measurements and computational results 
over the length of the chamber.  

 

Nomenclature  
a   = chamber radius 

iA  = inlet area 
b   = chamber discharge radius 
l   = chamber aspect ratio, /L a  
p  = normalized pressure, 2/( )p Uρ  

iQ  = inlet volumetric flow rate 
iQ  = normalized volumetric flow rate, 2 1/( )iQ Ua σ −=  

Re  = injection Reynolds number, / 1/Ua ν ε=  
r   = normalized radial coordinate, /r a  
S  = swirl number, / iab Aπ πβσ=  
u   = normalized velocity ( ru , zu , uθ )/U  
uθ  = normalized swirl/spin/tangential velocity, /u Uθ  
U  = mean inflow velocity, ( , )u a Lθ  
V  = vortex Reynolds number, 1( / ) ( )iQ Re a L lεσ −=  
z   = normalized axial coordinate, /z a  
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β  = normalized discharge radius, /b a  
δ  = radius of the viscous core 
δ  = normalized core radius, / aδ  
ε   = perturbation parameter, 1/ /( )Re Uaν=  
κ  = inflow parameter, 1/(2 ) (2 )iQ l lπ πσ −=  
ν   = kinematic viscosity, /µ ρ  
ρ  = density 
σ  = modified swirl number, 1 /( )iQ S πβ− =  
 
Subscripts 
i   = inlet property 
r   = radial component or partial derivative 
z   = axial component or partial derivative 
θ   = azimuthal component or partial derivative 

 = overbars denote dimensional variables 

I. Introduction 
T has long been recognized that the free vortex 
assumption used to model the swirl velocity in 

columnar vortices deteriorates in the vicinity of the core 
(see Harvey1 and Leibovich2,3). This is owed to the 
tangential (or swirl) velocity in a free vortex being 
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inversely proportional to the distance measured from 
the vortex axis. At the outset, a free vortex is known to 
overpredict both the swirl velocity and the radial 
pressure gradients in the vicinity of the centerline. In 
fact, a similar difficulty has been encountered by Long4 
in his classic study of the flow toward a rotating sink. 
  Despite the adequacy of inviscid formulations in 
describing the genesis of unidirectional vortices, they 
have fallen short in capturing important phenomena 
associated with vortex stability and breakdown. The 
remedy has been in rescaling the governing equations in 
order to incorporate the rapid variations that evolve 
near the core. In the absence of three-dimensional 
asymmetries, disregarding the wall boundary layer has 
been shown to be a less important restriction. Near the 
wall, viscous forces are sufficiently weak that the axial 
gradient of a flow variable becomes very small in 
comparison to the radial gradient. Near the core, 
however, the rescaled equations reveal a forced vortex 
exhibiting the form suggested by Burgers5 or Oseen and 
Hamel.6 Accordingly, the complete solution must 
consist of, first, an outer free vortex and, second, an 
inner forced vortex whose motion resembles solid-body 
rotation in the core region. This forced vortex 
incorporates viscous stresses that become important 
near the axis of the chamber. As a result, the swirl 
velocity will be led to vanish along the vortex axis 
instead of growing indefinitely large. 
  Naturally, bidirectional flows in cyclone separators 
and combustors have been shown to exhibit analogous 
core vortex regions (see Lewellen7). The bipolar motion 
is further complicated by the presence of thin Ekman 
boundary layers at the endwalls (both top and bottom) 
where the swirl velocity is expected to peak and then 
decay to zero.7,8 These layers are often omitted in 
theoretical analyses due to their small relative sizes and 
weak impact on the bulk flow motion. 
  Evidence of a forced vortex near the core of 
cyclone chambers has actually been reported in the 
experimental and theoretical studies of Kelsall,9 
Smith,10,11 Reydon and Gauvin,12 Ogawa,13 Lin and 
Kwok,14 and Vatistas.8 More recent contributory 
experiments and numerical simulations have confirmed 
the presence of a viscous core using laser-doppler 
velocimetry (LDV) and computational fluid dynamics 
(CFD).15 These studies have shown that the swirl 
velocity reaches a maximum at a small distance δ  from 
the chamber axis along which it later vanishes. This 
radial distance is viewed as a representative lengthscale 
reflecting the size of the core region delineating the 
forced vortex. Furthermore, δ  is found to be invariant 
along the chamber length. Being observant of 
conventional boundary layer theory, δ  diminishes with 
successive increases in the Reynolds number.  

  In a recent theoretical study of the bidirectional 
flow in a liquid thrust chamber, an (exact) inviscid 
solution was advanced by Vyas, Majdalani and 
Chiaverini.16 This solution was advantageous in its 
ability to incorporate the axial dependence along the 
chamber length. It also retained the proper inlet and 
outlet boundary conditions. Insofar as the thrust 
chamber resembled an inverted cyclone, the analytical 
solution agreed favorably with both experimental and 
numerical predictions of cyclonic flows. It also agreed 
with previous empirical or semi-analytical correlations 
that either neglected the axial dependence or relied on 
basic regression fits. Nonetheless, the analytical 
solution presented by Vyas, Majdalani and Chiaverini16 
lacked one important ingredient: viscosity. Although 
viscous interactions did not alter the essential flow 
character near the sidewalls and endwalls, they 
mitigated the genesis of a forced vortex near the core. 
As a result, the swirl velocity and radial pressure 
gradients became unbounded along the chamber 
centerline. The extra complication in analyzing this 
region precluded an exact solution. As suggested by 
Riley,17 the ensuing problem could be more efficiently 
solved numerically. 
  In this article, a boundary layer treatment of the 
core region will be pursued. Our analysis will be based 
on rescaling the momentum equation in the tangential 
direction. Being the source of singularity, this equation 
will be, first, regularized by retaining the second order 
viscous term. Subsequently, it will be solved using the 
tools of matched asymptotic expansions. In the process 
of matching, the free vortex will constitute the outer 
solution. Based on the resulting composite solution, the 
fundamental flow variables will be re-examined. This 
will permit the construction of a uniformly valid 
approximation for the problem at hand. In the process, 
the swirl velocity and pressure will be made non-
singular and the character of the forced vortex will be 
elucidated.   

II. Mathematical Model 
  Our physical model, nomenclature, normalization, 
and coordinate system are identical to those adopted by 
Vyas, Majdalani and Chiaverini.16 While the overall 
boundary conditions remain essentially unchanged, the 
tangential momentum equation is regularized following 
standard practice (see Balachandar, Buckmaster and 
Short18). 
  Since ( , )u u zθ θ θ≠ , uθ  does not affect the 
continuity equation. The axial and radial velocity 
components zu  and ru  remain as before,16 related via 

  
( )1 0r zru u

r r z
∂ ∂

+ =
∂ ∂

 (continuity) (1) 
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( ) ( )

0r zu u
r z

θ θΩ Ω∂ ∂
+ =

∂ ∂
 (vorticity transport) (2) 

  r zu u
z r θΩ

∂ ∂
− =

∂ ∂
 (vorticity) (3) 

with boundary conditions 

 
0

0,  ,  0; 0,  ,  0  

1,  ,  0; ,  2 d

z r

r o z i

z r u r z u

r z u z l Q u r r Q
β

π

= ∀ = = ∀ =


= ∀ = = = = ∫
 (4) 

As shown before, the solution of this set can be 
expressed by16 

 
2sin( ) ( )r θ

r u r
r θ
πκ= − +u e e 22 cos( ) zz rπκ π+ e ; 

  
2

2
1 1 1

2 2 2 2 2 2
i iQ A c a
l aL L la Sl

κ
π π πσ

≡ = = = =  (5) 

  In order to suppress the singular behavior exhibited 
by the swirl velocity, the second order viscous term 
must be retained in the tangential momentum equation. 
The resulting dimensionless relation can be written as 

  
( )1 1 ;   r

r

ruu u u Uau Re
r r Re r r r

θθ θ

ν
∂ ∂ ∂

+ = ≡ ∂ ∂ ∂ 
 (6) 

where Re  is the mean flow Reynolds number. In 
cyclone separators and combustors, Re  is of order 510 . 
Recalling that ( )u u rθ θ= , Eq. (6) reduces to an 
ordinary differential equation (ODE), namely, 

  
( )dd d 1 1;  

d d d
r

r

ruu u u
u

r r r r r Re
θθ θ ε ε

 
+ = ≡ 

 
 (7) 

The two boundary conditions are due to the forced 
vortex requirement at the core and to the tangential 
inflow at entry.  These translate into 

   
0,  ,  0
1,  ,  1

r z u
r z l u

θ

θ

= ∀ =
 = = =

 (8) 

Based on Eq. (5), one can put 
2 2

2

d d( )d 1sin( ) sin( )
d d d
u ru

r r u
r r r r rr

θ θ
θ

κ κπ π ε  − − =   
 (9) 

and so 

  2
2

d( ) d( )d 1 sin( ) 0
d d d

ru ru
r

r r r rr
θ θκε π  + =  

 (10) 

Both terms can now be divided by r ; one gets 

 2
2

d( ) d( )1 d 1 1sin( ) 0
d d d

ru ru
r

r r r r r rr
θ θκε π   + =      

 (11) 

Equation (11) can be shortened using 

   21
2 rη ≡ ;    ruθξ ≡  (12) 

thus yielding, 

   
2

2

d sin(2 ) d 0
2 dd

ξ πη ξε κ
η ηη

+ =  (13) 

III. Solution 
  In practical applications, the mean flow Reynolds 
number is of order 1000 or more. The parameter ε  
arising in Eq. (13) becomes increasingly smaller and 
can hence be used as a perturbation parameter. As ε  
tends to zero, the nature of the equation changes 
drastically. Specifically, it turns into a first order ODE. 
The singularity associated with a small parameter 
multiplying the highest derivative is commensurate 
with a boundary layer type behavior. Accordingly, the 
solution is expected to behave differently in two distinct 
regions. In the outer region, the role of ε  is expected to 
be small. In the inner region, however, the second order 
diffusion term becomes as large as the convective term 
arising in Eq. (13). Pursuant to conventional asymptotic 
theory, a separate expansion needs to be sought in each 
region. A complete solution could then be arrived at by 
ensuring that the inner expansion would match the outer 
expansion in the overlap region. The uniformly valid 
formulation would then consist of the sum of inner and 
outer expansions minus their common overlap value. 

A. Outer Expansion 
  The behavior in the outer region can be captured at 
leading order by setting 0ε =  and solving the resulting 
differential equation. Using (0) (1)

o o oξ ξ εξ= + +… , one 
obtains 

  
(0)

(0)
0

d
sin(2 ) 0; constant

2 d
o

o C
ξκ πη ξ

η η
= = =  (14) 

where the subscript ‘o’ denotes an outer expansion.  It 
is reassuring to note that the zeroth order solution 
corresponds to the free vortex (0) (0)

0o ru Cθξ = =  
obtained previously.16  

B. Inner Expansion 
  To explore the solution near the core, it is 
necessary to stretch the region around the axis of the 
chamber. This can be accomplished by introducing the 
radial coordinate transformation 

   
( )

s η
δ ε

=  (15) 

Using the subscript ‘i’ to designate the inner solution, 
the spatial distortion associated with Eq. (15) can be 
employed in Eq. (13); one finds, 

   
2

2 2 2

d dsin(2 ) 0
d 2 d

i is
s s s
ξ ξε κ π δ

δ δ
+ =  (16) 

and so  

   
2

2

d dsin(2 ) 0
d 2 d

i is
s s s
ξ ξκ π δ

ε
+ =  (17) 

  Owing to the importance of both diffusive and 
convective acceleration terms near the core, the two 
terms in Eq. (17) will be of the same order if, and only 
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if, the coefficient of the first derivative remains 
bounded for all ε . This statement translates into 

( )3 3 34
3sin(2 ) 2 (1)

2 2
s s s O

s s
κ κπ δ π δ π δ
ε ε

= − + =…  (18) 

The proper scaling transformation must hence be 
chosen such that / (1)Oδ ε = . At the outset, one 
deduces the distinguished limit to be 
   ( ) ~δ ε ε  (19) 
Without loss in generality, one may choose ( )δ ε ε=  
and substitute back into Eq. (18). Forthwith, the 
variable coefficient expressed in the inner variable 
reduces to 

   2sin(2 ) ( )
2

s O
s

πεκ κ π ε
ε

 = +   (20) 

Using a series of the form (0) (1)
i i iξ ξ εξ= + +… , one 

may determine each successive viscous correction after 
revisiting Eq. (17). At leading order, the inner equation 
becomes 

   
2 (0) (0)

2

d d 0
d d

i i

s s
ξ ξπκ+ =  (21) 

Consequently, 

   (0) 1
0 exp( )i

KK sξ πκ
πκ

= − −  (22) 

C. Asymptotic Matching 
  Prandtl’s matching principle can now be utilized to 
reconcile the inner and outer expansions at leading 
order. The matching criterion may be expressed as 

   
(0) (0)lim   =  lim     
        0

i o

s
ξ ξ

η→ ∞ →
 (23) 

hence, 

  1
0 00

lim exp( ) lim  cls

KK s C
η

πκ ξ
πκ→∞ →

− − = =  (24) 

where clξ  represents the common limit. After deducing 
that 0 0cl K Cξ = = , the composite expansion can be 
arrived at by combining 
   c o i clξ ξ ξ ξ= + −  (25) 
After some cancellations, cξ  collapses into 

   1
0 expc

KK ηξ πκ
πκ ε

 = − − 
 

 (26) 

When reverting to original coordinates, cξ  and η  are 
exchanged by ruθ  and 21

2 r , respectively. The 
uniformly valid approximation for uθ  is thus obtained, 
namely, 

   
2

0 1

0

1 exp
2

K K ru
r Kθ πκ

πκ ε
  

= − −  
  

 (27) 

D. Complete Solution 
  As the first boundary condition in Eq. (8) requires a 
zero swirl velocity at the core, one must have 

   1

0

1K
Kπκ

=  or 1
0

KK
πκ

=  (28) 

Substituting this constant into Eq. (27), an expression 
similar to Burger’s vortex is realized. One finds 

   21 1 exp( / 2 )Ku r
rθ πκ ε

πκ
 = − −   (29) 

The last constant 1K  may be determined from the 
velocity boundary condition requiring that the velocity 
at the wall be the same as the injection velocity, 

   ( )1 1 exp / 2 1K πκ ε
πκ

− − =    (30) 

or 
   ( ){ }1 / 1 exp / 2K πκ πκ ε= − −    (31) 

Substituting 1K  into Eq. (29), and using /(2 )iQ lκ π= , 
one finally gathers 

   
2 2/(4 ) /(4 )

/(4 ) 1/(4 )

1 1
11

i

i

Q r l r l

Q l l

e eu
r er e

ε εσ

θ ε εσ

− −

− −

− −
= =

   −−   
 (32) 

Note that as 0ε → , the swirl velocity associated with a 
free vortex is recovered, namely, 1/u rθ = . Conversely, 
as 0r →  at fixed ε , one can expand Eq. (32) into 

2 4 2 2 21 1
8 96

/(4 )

[1 /( ) /( ) ]
4 1 i

i i i
Q l

Q r Q r l r Q l
u

l eθ ε

ε ε
ε −

− + +
=

 − 

…
 

   
2 4 2 2 21 1

8 96
/(4 )

[1 /( ) /( ) ]
4 1 iQ l

r r l r l
l e ε

εσ ε σ
εσ −

− + +
=

 − 

…
 (33) 

This expansion enables us to restore the forced vortex 
form u rθ ω=  where  

   
/(4 ) 1/(4 )

1
4 14 1 i

i
Q l l

Q
l el e ε εσ

ω
εσε − −

=
   −−   

∼  (34) 

  Clearly, ω  represents the angular speed of the core 
layer which, due to concentrated viscous stresses, is 
compelled to rotate as a rigid body about the chamber 
axis. 

E. A Modified Reynolds Number 
  It may be worthwhile mentioning that the solution 
is markedly controlled by a dynamic similarity 
parameter that combines ε , σ  and the chamber aspect 
ratio l . By virtue of l  being accounted for in this 
study, it appears that the bidirectional flowfield is 
strongly influenced by the ratio of the mean flow 
Reynolds number and the product of the modified swirl 
number and chamber aspect ratio. As suggested by the 
current expression for uθ , the swirl velocity is 
controlled by an effective Reynolds number, 

   2
1 i iQ QRe a aV Re

l L L LUaεσ σ ν
≡ = = =  (35) 

To the extent that the finite chamber length is 
quintessential to the existence of the bidirectional 
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vortex, the modified Reynolds number based on the 
chamber aspect ratio and modified swirl number will be 
referred to, hereafter, as the vortex Reynolds number 
V . When expressed in terms of V , the swirl velocity 
becomes 

   uθ =
21

4

1
4

1
(1 )

Vr

V

e
r e

−

−

−

−
 (36) 

Similarly, the angular speed of the core reduces to 

   1
44(1 )V

V
e

ω
−−

∼  (37) 

F. Uniformly Valid Pressure Distribution 
  Now that the swirl velocity is no longer singular at 
the core, a reassessment of the radial component of the 
pressure gradient is necessary. Forthwith, the pressure 
gradient can be re-derived from the classic Euler 
equation. After some effort, one finds 

( ) ( )2 2 2/ 4 / 4
3

1 1 1Vr Vp e e
r r

−− −∂
= − −

∂
 

  2 3 2 2 2 2sin( ) sin(2 ) 2 cos(2 )r r r r rκ π π π π−  + −   (38) 

  While the axial pressure gradient remains 
unchanged, partial integration of the pressure gradient 
permits obtaining an expression for the pressure 
distribution along the chamber length. After some 
symbolic programming, one finds 

{ 1 1
2 4

1
4

2
2 2 2 2

2
0 2 2 2

(1 2 )cos(2 ) 8
4 4 (1 )

V V

V

e er r zp p
r r e

κπ πκ
− −

−

+ −−
= + −

−

}2 21 1
2 4 2 2 21 1

2 42 2 4 Ei( ) Ei( )Vr Vre e r V Vr Vr− −  + + − + − − −   

    (39) 
Here Ei( )x  refers to the second exponential integral 
function given by Abramowitz and Stegun.19 
Specifically, one defines 

   1
!

1
Ei( ) ln m

m m
m

x x xγ
∞

=

= + + ∑  (40) 

where 0.5772156649γ =  is Euler’s constant. 

IV. Discussion 
  Inclusion of viscosity in the tangential momentum 
balance has an appreciable impact on the swirl velocity, 
mean flow vorticity, and radial pressure gradient. 
Viscosity also affects the radial thickness of the forced 
vortex which does not seem to vary along the length of 
the chamber. These features will now be examined, 
starting with the swirl velocity. 

A. Swirl Velocity 
  According to Eq. (32), the tangential component of 
the velocity starts at the wall with a value that matches 

the distributed injection velocity at the base. It then 
increases to a maximum that delimits the envelope 
inside which viscous forces begin to dominate. After 
passing through this maximum max( )uθ , the swirl 
velocity begins to depreciate gradually until it reaches 
zero at the chamber centerline.  
  A plot of uθ  is given in Fig. 1 at three different 
vortex Reynolds numbers of 210 ,  310 ,  and 410 .  Note 
that increasing the chamber aspect ratio is paramount to 
magnifying the role of viscosity due to the impact of the 
chamber aspect ratio on the solution by way of the 
vortex Reynolds number V .  
  As shown on the graph, the radius of the forced 
vortex expands with successive increases in viscosity. It 
is largest at the smallest value of V . As the vortex 
Reynolds number is increased to 410 ,  the point of 
maximum swirl draws nearer to the core. This behavior 
is accompanied by an increase in the magnitude of 

max( )uθ . With further increases in the vortex Reynolds 
number, it is clear that uθ  approaches the inviscid limit 
by becoming very large near the centerline. The 
boundary layer curves shown in Fig. 1 appear to be in 
agreement with experimental measurements acquired 
by Vatistas and co-workers.8,14 They also seem to agree 
fairly well with both CFD and LDV predictions 

0 0.2 0.4 0.6 0.8 1
0

10

20

30

0 0.1 0.2
0

10

20

30

u
θ

r

 V = 102

 V = 103

 V = 104(u
θ
 )max

δ

core

 

 
Fig. 1 Swirl velocity versus /( )iV Q Lν= . 

 

a) r

u
θ
 

b) r
 

Fig. 2 Typical vector plot of the swirl velocity using 
a) the viscous forced vortex model near the core and 
b) the inviscid free vortex model throughout the 
chamber. 
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obtained recently by Hoekstra, Derksen and Van den 
Akker.15  A two-dimensional vector plot of the swirl 
velocity is shown in Figs. 2a and 2b with and without 
viscous corrections, respectively. The breakdown of the 
free vortex model in Fig. 2b leads to unrealistically 
large velocity amplitudes in the vicinity of the core.  

B. Viscous Core Thickness 
  In order to quantify the forced vortex region, it is 
helpful to select a characteristic lengthscale that would 
be commensurate with the size of the rigid-body, 
irrotational flow region in which viscous forces are 
appreciable. For this purpose, we choose the radial 
distance to max( )uθ  as our characteristic length δ . As 
shown in the inset of Fig. 1, this distance extends from 
the chamber axis to the center of the overlap region 
where the outer and inner solutions merge. Since the 
inner region is confined to 0 r δ≤ ≤ , the diameter of 
the forced vortex may be chosen, as usual, to be twice 
this distance, specifically, 2δ . 
  In order to proceed, one must realize that maxrδ =  
where maxr  must be derived from the root of 

   
max

d
0

d r

u
r
θ =  (41) 

Differentiating Eq. (32) yields 

   
21

4

1
4

2

2

max

2 2d 0
d 2 1

Vr

V

r r

Vr eu
r r e
θ

−

−

=

 + − = =
 − 

 (42) 

which, in turn, leaves us with 
   

21
max42

max 2 2 0VrVr e− + − =   (43) 

Fortuitously, an exact root to this transcendental 
relation can be extracted. One finds 

   ( )1
21

max 22 1 2 pln 1, /r e V− = − − − −   (44) 

where pln( , )x y  represents the product log function.  At 
the outset, the radius of the forced vortex is hence 
expressible by 
   

1
2

max 2.24181/r Vδ = =  (45) 
  Clearly, the thickness of the viscous core is 
inversely proportional to the square root of the vortex 
Reynolds number. This result is typical of boundary 
layers in steady, non-swirling flows. 
  A plot of δ  versus V  is now given in Fig. 3. This 
curve also represents the locus of the maximum swirl 
velocity. Its invariance with the axial coordinate may be 
ascribed to the neglect of thin Ekman-type layers 
forming along the endwalls.  
  Equation (44) permits calculating the maximum 
swirl velocity for an arbitrary inlet area ratio, chamber 
aspect ratio, swirl number, and mean flow Re . In fact, 
backward substitution into Eq. (32) gives 

( ){ }
( )

1
2

1 1
4 2

1 1
2 2

max
1
2

1 exp pln 1,
( )

1 1 2 pln 1,V

e V
u

e e
θ

−

− −

 − + − −  =
  − − − − −    

 

   
1
2

11
44

0.319086 0.3191
(1 )1 VV

V V
ee −−

= ≅
  −− 

 (46) 

  A plot of max( )uθ  versus V  is added to Fig. 3. 
Clearly, the maximum swirl velocity increases with 
successive increases in the vortex Reynolds number. 
This is due to the driving swirl speed at entry being a) 
entirely tangential, and b) directly proportional to the 
vortex Reynolds number. 

C. Vorticity Correction 
  The region corresponding to 0 r δ≤ ≤  is the 
viscous core flanked circumferentially by an outer field 
that is largely inviscid. Flow rotationality in the outer 
region is slightly altered due to viscous interactions 
with the forced vortex. In fact, a reassessment of 
vorticity leads to  

  
21

2 2 4
1
4

exp( )
4 sin( )

2[1 exp( )]
V Vr

rz r
V

π κ π
−

= +
− −θ zΩ e e  (47) 

  By way of verification, it may be helpful to note 
that, as 0ε → , the vorticity of the inviscid solution is 
restored.16 A plot of the axial-to-total vorticity is given 
in Fig. 4 to illustrate the accelerated decay of the 
viscous-induced zΩ  at larger V . These results are 
shown in Fig. 4a across the chamber radius for / 1z l =  
and several values of V  and σ . As illustrated in Fig. 
4b, we find the dependence on /z l  to be marginal 
except for very low V .or when approaching the head 
end. In that vicinity, vorticity is everywhere dominated 
by its axial component. Near the base, however, the 
converse is true, especially as one approaches the 
centerline. 
  In reference to Eq. (33), the near-core motion is 
prescribed by a linear relation between the swirl 
velocity and the radial coordinate as 0r → . Being of 
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Fig. 3 Maximum swirl speed and its locus versus V .
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the form u rθ ω= , the angular speed of the forced 
vortex can be estimated from Eq. (37). Accordingly, so 
long as 10V > , one can put / 4Vω = . 

D. Pressure Correction 
  The pressure distribution and its radial gradient are 
illustrated at the head end in Fig. 5. From the graph, one 
infers that the pressure drop increases with the radial 
coordinate. The pressure distribution in the axial 
direction is almost negligible when compared to the 
rapid radial variations. With the advent of viscous 
corrections, the pressure gradient in Fig. 5a passes 
through a maximum as one approaches the core. This 
peak can be calculated from Eq. (38). The pressure peak 
shown in Fig. 5a increases in magnitude and moves 
closer to the axis of the chamber when V  is increased. 
This behavior is, of course, consistent with a forced 
vortex.  
  When the radial pressure gradient is normalized by 
its inviscid value in Fig. 5b, it is found to be virtually 
independent of l  or σ ; instead, it remains a strong 
function of V . The same can be said of the total 
pressure which is shown in the inset of Fig. 5b.   
  The total pressure can be normalized by its 
maximum radial value (1,0)p  taken at the head-end 
wall. The results are shown in Fig. 6 alongside 
experimental measurements acquired in a cold-flow 

apparatus using water as the working fluid. Despite the 
small variability in the vortex Reynolds number 
employed in the experiment, the data scatter seems to 
be consistent with increasing V . For the small variation 
in V  from 35.23 10×  to 35.50 10 ,×  the analytical 
solution remains graphically the same. The agreement 
with the cold-flow results is reassuring especially that 
the range of V  used in the experiment is typical of that 
associated with industrial cyclones and swirl burners.  
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Fig. 5 Radial variation at select values of V  and l
for a) the pressure gradient, and b) the pressure 
gradient referenced to its inviscid value. The inset in 
b) illustrates the pressure variation at the head end. 
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Fig. 6 Comparison between analytical and 
experimental measurements acquired at the 
chamber head end. The experiment is based on a 
cold-flow set-up using water as the working fluid.  
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  Based on Eq. (38), one can calculate the radial 
distance pδ  corresponding to the point of maximum 

/p r∂ ∂ . Starting with 

   
max

d 0
d r

p
r r

∂  = ∂ 
 (48) 

an asymptotic expression for maxp rδ =  can be obtained, 
specifically 
   

1
21.48351/p Vδ ≅  (49) 

  The relative error associated with Eq. (49) is 
negligible, being less than 0.037 % for 100, 1V σ≥ ≥  
and less than 53.5 10−× % for 100, 25V σ≥ ≥ . This 
error drop precipitously with increasing V  or σ . Note 
that the maximum radial pressure gradient is closer to 
the core than the maximum swirl velocity. This is due 
to 
   / 0.662pδ δ ≅  (50) 
In view of 1/ 2

p Vδ δ −∼ ∼ , the thickness of the viscous 
core is confirmed to be inversely proportional to 1/ 2V . 
  Having determined pδ , the corresponding pressure 
gradient can be evaluated from 

  
3/ 2

3/ 2
21

max 2

0.0548466 0.0548466
[1 exp( )]

p V V
r V

∂
= ≅

∂ − −
 (51) 

The relative error in Eq. (51) is insignificant, namely, 
below 0.137 % for 100, 1V σ≥ ≥  and below 0.069 % 
for 100, 25V σ≥ ≥ . Both pδ  and the maximum radial 
pressure gradient are plotted in Fig. 7. 

V. Concluding Remarks 
  In this article, a viscous correction is applied to the 
bidirectional vortex appropriate of an idealized swirl-
driven liquid propellant thrust chamber. The viscous 
correction prevents the swirl velocity and pressure from 
becoming unbounded along the centerline.  
  Based on the analytical results, the thickness of the 
forced vortex is characterized as function of the 
chamber aspect ratio, the swirl number, and the flow 
Reynolds number. In fact, one finds the viscous core to 

decrease with the square root of the vortex Reynolds 
number, a byproduct of the mean flow Reynolds 
number, the swirl number, and the chamber aspect ratio. 
When the kinematic viscosity or the chamber length are 
increased, the diameter of the forced vortex is 
magnified proportionately with 1/ 2Vδ −∼ . Being 
proportional to 

1 1 1
2 2 2

iL Qν − , the core thickness increases 
when the chamber length is increased, the viscosity is 
increased, and when the injected volumetric flow rate is 
reduced.  
  The inclusion of viscous forces leads to damping of 
the swirl velocity which now reduces to zero at the 
centerline. The same trend is exhibited by the pressure 
and its radial gradient. Friction near the axis also 
engenders a small non-zero axial vorticity component 
that vanishes as the sidewall is approached. Due to the 
tighter packing in the inner region, the viscous core is 
forced to rotate as a solid cylinder with an average 
angular speed of 2 Vω δ −∼ ∼ . Being proportional to 

1 1
iQ Lν − − , the angular frequency of the forced vortex 

increases by increasing the volumetric flow rate. It also 
increases in shorter motors with smaller viscosity. 
These results help illuminate the bidirectional flow 
characteristics and increase our repertory of analytical 
approximations for confined swirling motions.  
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