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 The purpose of this article is to study the multi-directional vortex fields that can be 
engendered in a liquid-liquid thrust chamber driven by tangential gas injection. The work 
extends a former study whose focus on the fundamental mode of flow reversal has revealed a 
unique bidirectional flow.  In the present article, we investigate the possible existence of 
multiple flow reversals which, in turn, can lead to multi-directional flows.  The resulting 
flowfield will then consist of several co-axial spinning layers that remain separated by non-
translating mantles. The multi-directional flow will hence comprise several sandwiched 
vortex tubes that switch axial direction across each mantle.  Such multi-pass behavior has 
been recently observed in laboratory tests conducted at ORBITEC. In the current study the 
multiple solutions associated with each mode of flow reversal will be derived from Euler’s 
equations. 

 

Nomenclature  
a   = chamber radius 

iA  = inlet area 
b   = chamber discharge radius 

,m nb = radial distance to mantle location 
ed  = discharge diameter 

l   = chamber aspect ratio, /L a  
m  = axial reversal mode number 
n   = integer indicating the order in a sequence 
n̂   = unit vector normal to the surface 
p  = normalized pressure, 2/( )p Uρ  

0p  = normalized pressure at the head end center 
p∆  = normalized pressure difference, 0p p−  
iQ  = total inlet volumetric flow rate 
iQ  = normalized volumetric flow rate, 2 1/( )iQ Ua σ −=  

r   = normalized radial coordinate, /r a  
S  = empirical swirl number, 1

2 /e id a Aπ  
u   = normalized velocity ( ru , zu , uθ )/U  
U  = mean inflow velocity, ( , )u a Lθ  
z   = normalized axial coordinate, /z a  
 
β  = normalized discharge radius, /b a  

,m nβ = nth radial fraction at the mth reversal mode 

                                                           
*Graduate student and Research Associate, Department of 

Mechanical and Industrial Engineering.  Member AIAA. 
†Assistant Professor, Department of Mechanical and 

Industrial Engineering.  Member AIAA.  
 ‡Lead Propulsion Engineer.  Member AIAA.  

 
 
∇  = normalized del operator, a∇  
κ  = inflow parameter, 1/(2 ) (2 )iQ l lπ πσ −=  
ν   = kinematic viscosity, /µ ρ  
ρ  = density 
σ  = modified swirl number, 1 /( )iQ S πβ− =  
 
Subscripts 
i   = inlet property 
r   = radial component or partial derivative 
z   = axial component or partial derivative 
θ   = azimuthal component or partial derivative 

 = overbars denote dimensional variables 

I. Introduction 
N a previous article by Vyas, Majdalani and 
Chiaverini,1 the internal flow of a swirl-driven thrust 

chamber was analyzed. The particular chamber design 
allowed for flow entering upstream of the base to travel 
toward the head end, reverse direction while turning 
inwardly, and then cross the chamber length a second 
time while heading toward the nozzle. The specific 
features associated with the bidirectional flow motion 
are discussed at length in Ref. 1.  The current 
investigation focuses on the higher flow reversal modes 
not considered previously.   
  The existence of a multi-directional flow has been 
suggested by recent test firings that utilize gaseous 
oxygen (GOX) injection. As shown in Fig. 1, a 
photograph taken at the end of the burn period of a 
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swirl-driven, end burning combustor displays more than 
two concentric grooves in the head end cap. These 
grooves are appropriate of a recirculatory flow 
exhibiting multiple reversals. One possible explanation 
for this is that some of the reversed flow is actually 
turning at the base and spiraling outwardly from the 
center of the chamber. In this case, the flow will be 
spinning in the direction of gaseous injection at entry.  
A fraction of the oxygen may be spiraling along the 
bottom of the chamber and up to the head end in the 
central region where it meets the grain surface. The 
ensuing flowfield consists of two interwound spirals in 
the central region of the chamber, with one spinning 
upwardly, and the other spinning downwardly toward 
the nozzle. To the extent that this interesting behavior 
remains under investigation in hybrid and liquid rocket 
engines exhibiting bidirectional swirl, the current study 
attempts to illuminate the origin of multi-directional 
flows based on purely theoretical grounds. 
  To start, the earlier model used to predict the 
bidirectional flow polarity will be re-considered and 
shown mathematically to exhibit multiple discrete 
solutions. Subsequently, the attendant behavior will be 
characterized for several different mode numbers. Each 
mode will be shown to correspond to a given polarity 
level and, thereby, to a fixed number of mantles 
separating the now sandwiched vortex tubes. 
  In principle, the establishment of a multi-
directional flow can have numerous advantages. It is 
well known, for example, that increasing the number of 
flow passes can prolong the particle residence time, 
improve the internal combustion efficiency, and 
increase the chemical energy release. Furthermore, the 
stacking of additional low temperature layers of 
propellant against the chamber sidewall is likely to 
provide a thicker and more resilient thermal barrier. 

Clearly, this multi-layered paneling can better protect 
the chamber wall from the hot combustion gases.  
Moreover, the reaction products can now be confined to 
the central core region in which mixing, centrifugal 
action, high speed rotation, and increased shear will 
result in a better conversion of chemical energy into 
mechanical work. Insofar as the built-in thermal 
protection enables us to be more flexible in material 
selection, it may also permit the use of thinner, lighter, 
and less expensive chamber walls. Additionally, the 
multiple particle passes will continue to increase the 
effective chamber length, thus leading to shorter 
engines. The advantages associated with a sandwiched 
flowfield in a multi-directional swirl-burner are clearly 
attractive despite the diverse questions that they raise. 
The current study will seek to provide some answers 
that can help to elucidate the observed flow patterns in 
laboratory experiments. It is also hoped that the 
multiple solutions to be described will be later exploited 
in developing advanced engine concepts that can secure 
the establishment of a technologically advanced, higher 
reversal mode configuration. 

II. Mathematical Model 
  Our idealized chamber is modeled as a cylindrical 
tube of finite length L . The chamber is closed at the 
head end but left partially open at the downstream end  
where the chamber base is attached to one or several 
tubular nozzles. A sketch of the chamber is given in 
Fig. 2 where r  and z  are used to designate the radial 
and axial coordinates. The present study is focused on 
describing the flowfield in the portion of the chamber 
extending from the head end to the base. The fraction of 
the radius that is open to flow at the base is given by 

0 /b aβ β= =  and the chamber’s aspect ratio is 
denoted by / .l L a=   Additional radial fractions that 
will be later introduced are given by , , /m n m nb aβ =  

 
Fig. 1 Grain contour after firing. Magnification 
reveals multiple grooves that may be caused by 
several coaxial vortex tubes.  
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Fig. 2 Idealized chamber parameters. 
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where 1, 2, ,n m= … . These fractions will be shown to 
delimit inner and outer radii of additional open areas 
that are physically required at higher flow reversal 
modes.  
  In the current model, the flow enters the chamber at 
z L=  through one or more injection ports that only 
allow flow in the tangential direction. The solution 
domain is restricted to 0 z L≤ ≤ , notwithstanding the 
thin Ekman layers and boundary layers that are formed 
along the endwalls and sidewalls, respectively.  

A. Equations 
  The main focus here will be to investigate the 
inviscid behavior that can be used to mimic an actual 
flow at a large Reynolds number. For this reason, a 
standard set of assumptions is adopted according to 
which the flow remains (a) steady, (b) axisymmetric, 
(c) inviscid, (d) incompressible, (e) rotational, and (f) 
non-reactive. Furthermore, we normalize all spatial 
coordinates by the chamber radius a  and all velocities 
by the average injection velocity U . Other variables 
are found in the Nomenclature. Under the stated 
assumptions, the mass and momentum conservation 
equations reduce to 

   
0

p
∇ ⋅ =

 ⋅∇ = −∇

u
u u

 (1) 

By introducing the mean flow vorticity ≡ ∇×Ω u , the 
vorticity transport equation can be used after taking the 
curl of Euler’s equation. This operation begets  

   0∇× × =u Ω  (2) 

B. Boundary Conditions 
  The normalized boundary conditions that must 
accompany this simplified set can be attributed to: (i) a 
zero axial flow at the head end, (ii) a zero radial flow at 
the walls, (iii) symmetry about the centerline, (iv) a 
fully tangential inflow, and (v) an inflow that matches 
the outflow at the base. These auxiliary conditions are 
expressible by 

  2 1

0 0

( ,0) 0;   (1, ) 0;  (0, ) 0

ˆ(1, ) 1;  d d

z r r

o i

u r u z u z

u l Q r r Q
π

θ θ

= = =


= = ⋅ = ∫ ∫ u n
 (3) 

where ˆ⋅u n  represents the outflow velocity at the base.  

III. Solution 
  Using parallel arguments to those presented by 
Vyas, Majdalani and Chiaverini,1 a direct solution to 
the set above can be pursued. The analysis started by 
considering the θ − momentum equation, namely, 

   0r
u u

u
r r
θ θ∂ + = ∂ 

 (4) 

By inspection, one may infer that, irrespective of ru , 
the spin velocity takes the free vortex form 

   /u K rθ =  (5) 
At the outset, the vorticity transport equation becomes 

   
( ) ( )

0r zu u
r z

θ θΩ Ω∂ ∂ −
− =

∂ ∂
 (6) 

where θΩ  is the only non-zero vorticity component that 
is left in the absence of viscosity. At this juncture, one 
may follow Bloor and Ingham,2 or Beran and Culick3 
and introduce the Stokes stream function ψ . In 
cylindrical coordinates, one can put 

   1 1;    r zu u
r z r r

ψ ψ∂ ∂
= − =

∂ ∂
 (7) 

This transformation changes the vorticity transport 
equation into 

   0
z r r r z r

θ θΩ Ωψ ψ∂ ∂ ∂ ∂   − + =   ∂ ∂ ∂ ∂   
 (8) 

One family of solutions for Eq. (8) can be realized by 
choosing 

   2C rθΩ ψ=  (9) 
  This linear choice permits investigating explicit 
analytical solutions. At the outset, the vorticity equation 
turns into 

   
2 2

2 2
2 2

1 0C r
r rz r

ψ ψ ψ ψ∂ ∂ ∂
+ − + =

∂∂ ∂
 (10) 

with 

   ( ,0) 0r
r

ψ∂
=

∂
 (hard endwall)  (11) 

   (1, ) 0z
z

ψ∂
=

∂
 (hard sidewall) (12) 

   (0, ) 0z
z

ψ∂
=

∂
 (axisymmetry) (13) 

 Proceeding with ( , ) ( ) ( )r z f r g zψ = , Eq. (10) can be 
decomposed into  

  
2 2

2 2 2
2 2

1 d 1 d 1 d
dd d

g f f C r f
g f r rz r

λ
 

− = − + = ± 
 

 (14) 

where λ  is a separation constant. For 0λ = , the 
z − equation yields 1 2( )g z K z K= +  while the 
r − equation turns into the familiar 

   
2

2 2
2

d 1 d 0
dd

f f C r f
r rr

− + =  (15) 

whose solution can be expressed by 

   ( ) ( )2 21 1
3 42 2( ) sin cosf r K Cr K Cr= +  (16) 
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The general form of the stream function becomes 

 ( ) ( ) ( )2 21 1
1 2 3 42 2sin cosK z K K Cr K Crψ  = + +   (17) 

  To find the unknown constants, application of the 
auxiliary conditions is necessary. Using Eq. (11), it can 
be inferred that 2 0K = . Next, using Eq. (12), one 
obtains 

   ( ) ( )1 1
1 3 42 2sin cos 0K K C K C + =   (18) 

A. Solution Multiplicity 
  At this point, Eq. (13) can be used to set 

(0, ) 0ru z =  and, hence, 4 0K = .  At length, one is left 
with 

   ( )1
1 3 2sin 0K K C =  (19) 

From Eq. (19), it is clear that multiple exact solutions 
can exist for   

   2 ; 1,2,3,C m mπ= = …  (20) 
where m  represents the flow reversal mode number. 
For 0m = , one obtains the trivial problem for which 
flow reversal at the head end is prevented.  The 
nontrivial patterns can be summarized through the use 
of 

   2sin( );z m rψ κ π=      1 3K Kκ =  (21) 
Consequently, the velocity field can be expressed for 
each flow reversal mode number by writing 

 2 2sin( ) 2 cos( )r θ z
Km r z m r

r r
κ π πκ π= − + +u e e e  (22) 

  The next step is to determine the remaining 
constants, K  and κ ; this can be accomplished by 
invoking the last two conditions in Eq. (3).  
  First, the tangential inflow (1, ) 1u lθ =  requires that 

(1, ) 1u l Kθ = = ; hence,  

   1K =  (23) 
  Second, the remaining constant κ  can be 
determined in a manner to accommodate a global mass 
balance. Accordingly, the mass flowing into the 
chamber must be discharged at the base through the 
ports of dimensionless radii ,m nβ . Based on the form of 

zu  in Eq. (22), one can expect m  internal mantles for a 
given flow reversal mode number m ; the radial 
location of these mantles can be specified by 

   , ; 1, 2, ,m nr n mβ= = …  (24) 
Given a total inlet volumetric flow rate iQ , one can put 

,1 ,3

,20
ˆ ˆ2  d 2  dm m

m
r r r r

β β

β
π π⋅ + ⋅ +∫ ∫u n u n …  

  ,

, 1

ˆ2  dm n

m n
r r

β

β
π

−

+ ⋅∫ u n
,

1
ˆ2  d

m m
ir r Q

β
π+ + ⋅ =∫ u n…  (25) 

where 

   1
, 2( ) / ,    1, 2,3,...,m n n m n mβ = − =  (26) 

Equation (25) is obtained by ensuring that the inflow 
matches the outflow. It represents the total volumetric 
flow rate leaving the chamber at the nozzle exit. For 

1m = , the single mantle associated with the classic 
bidirectional flow is recovered as 1,1 1/ 2β = . For 

2m = , two internal mantles emerge at  

   2,1 1/ 2β =   and  2,2 3 / 2β =  (27) 
  Because these locations delineate the radial 
distance at which flow polarity changes, they are listed 
in Table 1 for the first four flow reversal mode 
configurations.  

B. Flow Characteristics 
  The radial location of the multiple mantles can be 
discerned graphically in the theoretical vector plots 
shown in Fig. 3 for 2m =  and 3 . Streamlines 
corresponding to these vector plots are also shown in 
Fig. 4 for 2m = , 3  and 4 . Both vector plots and 
streamline patterns suggest the possible co-existence of 
multidirectional flows with two or three passes spiraling 
co-axially within annular regions that span the length of 
the chamber. It may be speculated that a higher flow 
reversal configuration will require more energy to 
trigger and, hence, will form progressively at 
sufficiently large Reynolds numbers. 
  By virtue of ˆ z=n e , the mass balance equations for 
uni-, bi-, and tri-directional flowfields allow for the 
calculation of κ ; one finds 

   1
2 2 2

i iQ A
l l aL

κ
π πσ π

= = =  (28) 

  Note that κ  is not expressed as function of the 
traditional, albeit empirical, swirl number S . When 
multidirectional flows are considered, the traditional 
swirl number S  ceases to apply, being based on the 
product of the exit diameter and the chamber diameter. 
It becomes indeterminate in the presence of multiple 
exit diameters. Unsurprisingly, the modified swirl 

Table 1 Matrix of mantle locations  
 

m 1n =  2n =  3n =  4n =  

1 1,1 1/ 2β =    

2 2,1 1/ 2β =  2,2 3 / 2β =   

3 3,1 1/ 6β = 3,2 1/ 2β = 3,3 5 / 6β =   

4 4,1 2 / 4β = 4,2 6 / 4β =  4,3 10 / 4β =  4,4 14 / 4β =
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number σ  continues to apply. This peculiar behavior 
may be attributed to the rigorous derivation of σ  from 
the fundamental Euler equations. Essentially, σ  is 
identified by the underlying physics to be the key 
similarity parameter –directly from the exact solution 
for this problem; S , on the other hand, does not stem 
from any existing exact or asymptotic solution. 
Historically, S  was formerly posited, following careful 
rationalization, as a meaningful scaling parameter based 
on which useful empirical correlations could be 
developed. Despite their dissimilar origins, it is 
gratifying to see that S  and σ  differ by a constant 
when applied to the bidirectional flow.1 

  Having determined all the constants of integration, 
the multi-directional flowfield can be fully evaluated. 
We now have 

   2 21sin( ) sin( )
2

zz m r m r
l

ψ κ π π
πσ

= =  (29) 

in conjunction with 
2sin( ) 1

r θ
m r
r r

κ π
= − +u e e 22 cos( ) zm z m rπ κ π+ e  

 
21 sin( ) 1

2 r θ
m r

l r r
π

πσ
= − +e e

2cos( )
z

mz m r
l

π
σ

+ e  (30) 

  Plots of the axial and radial velocity distributions 
are furnished in Fig. 5 for the first four flow reversal 
mode numbers. In Fig. 5a, it can be seen that the 
number of zero crossings marked by the axial velocity 
curves coincides precisely with the flow reversal mode 
number. Clearly, the intersections of the zu  curves with 
the zero axis delineate regions of opposing axial flow. 
As the mode number is increased, the radial location of 
the first mantle moves closer to the core. For the first 
four modes, one finds 

  ,1 {0.707,0.5,0.408,0.3535}mβ = ; 1, 2,3, 4m =  (31) 
Conversely, the last point of flow reversal moves closer 
to the sidewall with each successive increase in m . One 
enumerates 

 , {0.707,0.866,0.913,0.935}m mβ = ; 1, 2,3, 4m =  (32) 
  It should be noted that, whenever m  is quadrupled, 
the radial distance to the first internal mantle is halved. 
This result can be inferred from Eq. (26). 
  Figure 5a clearly indicates that, for odd values of 
m , the outermost vortex first spirals upwardly, 

    
                     a)                                           b) 

 
Fig. 3 Vector plot at two flow reversal modes 
corresponding to a) 2m =  and b) 3 . 
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Fig. 4 Streamlines for 5
2l =  and three reversal 

modes corresponding to a) 2m = , b) 3 , and c) 4 .  
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reverses at the head end, and then returns to the base. 
The same reversal process is repeated at the base at 
progressively higher mode numbers. The results so 
obtained seem to concur well with the recent 
experimental and numerical findings of Anderson and 
co-workers4 see Table 2). However, the set of operating 
conditions that begets the onset of multiple mantles is 
still a subject of investigation. The existence of positive 
radial velocity in Fig. 5b suggests that, for a 
sandwiched layer, both outward and inward cross flows 
are possible in the radial direction. This can be 
attributed to the fact that cross flow can originate from 
both the outer and inner vortex tubes that surround a 
given sandwiched layer. 
 
  Figure 5 also indicates that, for even mode 
numbers, the outermost vortex will be directed toward 
the nozzle. In practice, securing such a flow reversal 
pattern may require the addition of secondary outlet 
sections at the base. In spite of being theoretically 
plausible, the existence of 1m −  outflow segments 
along the base may require additional outlet partitions 
that may be difficult to implement. From a practical 
standpoint, such partitions are likely to involve complex 
manifolding whose detail requires further inquiry.   

C. Pressure Field 
  Having exacted the velocity field, the pressure 
gradients in the radial and axial directions can be 
obtained as well. From Eq. (1), one finds 

 { }2 2 2 2 2
3

1 1 sin ( ) sin(2 )p m r m r r
r r

κ π π π∂  = + − ∂
  (33) 

and 

   2 2 24p m z
z

π κ∂
= −

∂
 (34) 

Note that the radial pressure gradient is very weakly 
sensitive to the flow reversal mode configuration 
number. At leading order, it is inversely proportional to 
the cubic distance from the core. From Eq. (33), it is 
clear that  

   ( )2
3

1 1p O
r r

κ∂  = + ∂
 (35) 

This behavior is identical to the one exhibited by the 
single mantle case. The difference here is that the axial 
pressure gradient along the centerline increases at 
higher mode numbers. It rises from 2 24 zπ κ−  at 1m =  
to 2 216 zπ κ−  at 2m = .  
  Having determined the pressure gradients, the 
actual pressure drop along the length of the chamber 
can be immediately evaluated by partial integration of 
Eqs. (33)–(34). This operation yields 

 { }2 2 2 2 2 21
22

1 1 8 1 cos(2 )
2

p m r z m r
r

κ π π ∆ = − + + −   

    (36) 
where 0p p p∆ = −  represents the pressure referenced 
to the core value at the head end. For 1m = , one 
recovers the result obtained by Vyas, Majdalani and 
Chiaverini.1 As in the case of a single mantle, the 
pressure drop appears to be weakly dependent on the 
flow reversal mode number. Due to the small size of κ , 
one can put 
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 m = 4

σ uz
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Fig. 5 Axial and radial velocity distributions along 
the chamber radius for the first four flow reversal 
modes. The axial velocity is plotted at the base. 

Table 2 Comparison to the results of Anderson and 
co-workers4 (2003)  

 

expβ  analyticβ  CFDβ  analytic expβ β−  CFD expβ β−  

0.296 0.354 0.305 0.058 0.009 

0.594 0.612 0.385 0.018 0.209 
0.803 0.791 0.787 0.012 0.016 
0.955 0.935 1.000 0.020 0.045 
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   ( )2 2 2 2 2
2

1 1 2
2

p O m z
r

κ π κ ∆ = − + −   (37) 

  Equation (37) indicates that the quadratic 
dependence on z  can become appreciable at high flow 
reversal mode numbers. In practice, it remains of 
marginal importance due to the small size of 2 2m κ  at 
realistically low mode numbers . 

D. Vorticity Field 
  Vorticity can be similarly calculated. One obtains 

   2 24 sin( )r zu u m rz m r
z rθΩ π κ π∂ ∂

= − =
∂ ∂

 (38) 

  As shown in Fig. 6, the vorticity vector switches 
sign while sweeping radially from one flow region to 
another. Both radial velocity and vorticity vanish along 
the centerline and the sidewall; they change their sense 
of direction when r γ=  and 2m jπγ π=  where 

1, 2, , 1j m= −… . The corresponding zeros may be 
obtained from 

 1, /m j j mγ − = ; 1,2, , 1j m= −… , 2,3,m = …  (39) 

The points of zero vorticity and radial velocity are 
given in Table 3 for the first five flow reversal mode 
numbers. 

IV. Conclusions 
  Based on theoretical considerations, a multi-
directional flow solution is shown to exist inside an 
idealized, swirl-driven thrust chamber. The multi-
directional flow satisfies the steady Euler equations and 
their attendant boundary conditions. For a given flow 
reversal mode number, an identical number of internal 
mantles is observed. These mantles subdivide the 
chamber volume into axisymmetric annuli in which 
coaxial vortex tubes are established. These vortex tubes 
switch axial direction as the radial distance is increased. 
At higher flow reversal modes, the innermost mantle 
shifts toward the chamber axis while the outermost 
moves closer to the sidewall. The complex patterns 
evolving at higher modes may be difficult to reproduce 
physically. Nonetheless, their theoretical existence 
lends support to recent tests in which multiple annular 
flows were reported. Due to the increased efficiency 
and desirable heat transfer characteristics associated 
with multi-layering, it is hoped that the solutions 
presented here be further explored in physical 
applications involving swirl burners, cyclonic 
separators, and other vortex driven flows. 
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Table 3 Internal zeros of vorticity and radial speed 
 

m  1j =  2j =  3j =  4j =  

1  – –     

2  1,1 1/ 2γ =     

3  2,1 1/ 3γ =  2,2 2 /3γ =    

4  3,1 1/ 2γ =  3,2 1/ 2γ =  3,3 3 / 2γ =   

5  4,1 1/ 5γ =  4,2 2 /5γ =  4,3 3/5γ =  4,4 2 / 5γ =
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Fig. 6 Tangential vorticity distribution along the 
chamber radius for the first four flow reversal 
modes. 
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