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Nonlinear Rocket Motor Stability Prediction:
Limit Amplitude, Triggering, and Mean Pressure Shift

Gary A. Flandro*, Sean R. Fischbach,† and Joseph Majdalani‡
University of Tennessee Space Institute, Tullahoma, TN 37388

and
Jonathan C. French§

Software and Engineering Associates, Inc., Carson City, NV 89701

High-amplitude pressure oscillations in solid propellant rocket motor combustion cham-
bers display nonlinear effects including:  1) limit cycle behavior in which the fluctuations may
dwell for a considerable period of time near their peak amplitude, 2) elevated mean chamber
pressure (DC shift), and 3) a triggering amplitude above which pulsing will cause an appar-
ently stable system to transition to violent oscillations.  Along with the obvious undesirable
vibrations, these features constitute the most damaging impact of combustion instability on
system reliability and structural integrity.  The physical mechanisms behind these phenom-
ena and their relationship to motor geometry and physical parameters must, therefore, be
fully understood if instability is to be avoided in the design process, or if effective corrective
measures must be devised during system development.  Predictive algorithms now in use
have limited ability to characterize the actual time evolution of the oscillations, and they do
not supply the motor designer with information regarding peak amplitudes or the associated
critical triggering amplitudes.  A pivotal missing element is the ability to predict the mean
pressure shift; clearly, the designer requires information regarding the maximum chamber
pressure that might be experienced during motor operation.  In this paper, a comprehensive
nonlinear combustion instability model is described that supplies vital information.  The cen-
tral role played by steep-fronted waves is emphasized.  The resulting algorithm provides
both detailed physical models of nonlinear instability phenomena and the critically needed
predictive capability.  In particular, the true origin of the DC shift is revealed.

Nomenclature 

  
a0 Mean speed of sound

 e Oscillatory energy density

 E Time-averaged oscillatory system energy

  
Em

2 Normalization constant for mode m

 
km Wave number for axial mode m

 L Chamber length
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 m Mode number

 M Reference Mach number in chamber
 n Outward pointing unit normal vector

 p Oscillatory Pressure

 P Mean chamber pressure
 r Radial position
 R Chamber radius

 S Strouhal Number 
/mbkM

 t Time
 u Oscillatory velocity vector
 z Axial position

Greek
! Growth rate
! Inverse square root of the acoustic Reynolds

number, 
  
! / a0R

! Ratio of specific heats
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! Wave amplitude
! Kinematic viscosity,  µ / !
! Density

! Unsteady vorticity amplitude
! Mean vorticity amplitude

Subscripts

 b Combustion zone
 m Mode number

Superscripts
* Dimensional quantity
~ Vortical (rotational) part
^ Acoustic (irrotational) part
( r ), ( i ) Real and imaginary parts
(1) Indicates first-order accuracy

 I. Introduction
OMBUSTION instability in solid propellant rocket
motors is frequently associated with sonic waves,

since measured frequencies are closely approximated
by simple acoustic theory. For this reason, analytical
work aimed at providing physical insight into the phe-
nomenon is, quite naturally, founded upon the notion of
perturbed acoustic waves.1-10 All predictive codes are
built upon these concepts.2-4,7-20 This includes the SSP
(Standard Stability Prediction program) now used al-
most universally in treating instability problems.  Most
such predictive algorithms represent only the linear
features of the instability, and provide no information
regarding important nonlinear features of great practical
significance.

A typical SSP calculation yields only a set of growth
rates based on the underlying linear theory.  Usually
these are net growth rates for each acoustic mode and
burn time selected by the analyst.  If, for example, all of
these are found to be negative, then the system is
deemed to be stable.  If one (or more) is positive, the
user interprets this to mean that there is a potential in-
stability problem.  That is, there may be a tendency for
the motor to oscillate.  No information is forthcoming
regarding what amplitude such oscillations are likely to
attain, or whether or not the system is susceptible to
triggered instability initiated by random or deliberate
pulsing.

The limit cycle, or peak amplitude reached by the
oscillations, is obviously an important quantity since it
reflects the vibration environment produced by the in-
stability.  Attempts have been made to understand this
limiting behavior of the wave system by including non-
linear corrections that extend the linear acoustic insta-
bility theories.5,6,8,21-26 These efforts have been useful in
demonstrating certain essential physical phenomena,
such as the natural steepening mechanism that causes
initially low-amplitude acoustic waves to transition into

shock-like structures.6,21,23,24,27-29 The central role played
by shock waves in nonlinear longitudinal mode com-
bustion instability has also been convincingly demon-
strated experimentally.30

More importantly, no information is provided re-
garding the much dreaded DC shift, or mean pressure
excursion that often accompanies finite-amplitude os-
cillations.  It is curious that although the DC shift was,
historically, the first observed sign of combustion insta-
bility, its true origin and its exact nature have never
been successfully established.14,31,32 Therefore, consid-
erable attention is devoted in this paper to rectifying
this situation.  In particular we seek to understand in
detail its obvious connection to the oscillatory gas mo-
tions and the controlling factors in terms of chamber
geometry and physical parameters.

In this paper we apply a new set of analytical tools
that have evolved from many decades of struggle with
the solid propellant rocket combustion instability prob-
lem.  Recent work by the present authors has led to
considerable progress in the development and refine-
ment of predictive capability. To be useful, such tools
must go far beyond the usual linear growth rate calcu-
lations.  To be complete, the analysis must account for:

• Steep-fronted, shocked pressure waves

• Effects of rotational flow interactions

• Combustion coupling effects

• Mean pressure shift and its coupling with the
oscillatory flow field.

Each of these elements receives due consideration
in the approach detailed in this and companion pa-
pers.33,34 Application of the new analysis in prediction,
diagnosis and correction of solid rocket motor behavior
is described in detail.  Its validity will be tested by
comparing results to experimental data from several
previous studies14,31,32,35-38 to be described in the next
section.

 II. Experimental Observations
This section highlights nonlinear combustion insta-

bility attributes as they appear in experimental data.
The shortcomings of the linearized analytical tools will
become quite apparent.  Research teams have almost
universally understood the importance of the nonlinear
features so clearly portrayed in test data.  This has mo-
tivated some excellent work in extending the analytical
basis and also in devising improved experimental tech-
niques to take advantage of the richer set of data when
nonlinearity is present.  What is presented here is of
necessity limited to a few key cases; there have, of
course, been major contributions by many other inves-
tigators.

C



 –3–
American Institute of Aeronautics and Astronautics.

Figure 1 depicts typical nonlinear combustion in-
stability effects in a combustor undergoing high-
amplitude pressure fluctuations.  Data from a pressure
gauge with low frequency resolution is depicted in Fig.
2a); both the DC pressure rise and the limit cycle are
clearly in evidence. Figure 2b shows the corresponding
waveform measured by high-frequency instrumenta-
tion. The steep-fronted nature of the wave is evident.
Although this is a shock-like unsteady flow, the meas-
ured frequency is closely matched by the first longitu-
dinal acoustic mode. The spectrum is illustrated in Fig.
2c.  The first peak is the 1L (first longitudinal) acoustic
frequency, and subsequent peaks correspond to the
harmonics.  The practiced solid motor combustion in-
stability analyst could easily be convinced that the data
shown is from an unstable tactical motor firing.  How-
ever, it happens that this data is from an unstable liquid
engine preburner.34  It is used here to point out the im-
portant fact that all of the nonlinear features we seek to
understand can be found in many types of combustors
and industrial burners.  Companion papers39,40 describe
the nonlinear behavior observed in liquid rocket en-
gines.  The reader should note that there is much poten-
tial benefit in a parallel treatment of these difficult
problems since there is so much commonality.  Unfor-
tunately there has been little transfer of knowledge be-
tween the liquid, solid, and jet engine research commu-
nities that deal with combustion instability development
problems.

Fig. 1  Nonlinear instability effects.39

A. Nonlinear T-Burner Experiments

We begin with a short description of some excel-
lent work conducted by Jensen and Beckstead35 in their
attempt to better characterize nonlinear features seen in
T-burner test results. Curiously, this very promising
technique was never adopted by the solid rocket indus-
try, and even more distressing, with but one notable
exception,23 the combustion instability research com-
munity seems to have overlooked it completely.

The reader is reminded that a crucial parameter in
the analysis of solid motor instability is the burning
surface response function or admittance function.  Due
to the complexity of the unsteady combustion processes
in solid propellants, it is still necessary to determine the
response function experimentally.  Thus, any predictive
effort is only as good as the burner data and data reduc-
tion used to characterize the propellant.  The T-burner
has been the most successful device used for securing
this vital information.  However, the data is usually
reduced using only the linear stability model although,
as we shall demonstrate, there is much evidence that
nonlinear effects are present that render the linear inter-
pretation suspect.

Jensen35 focused on the limit cycle behavior seen in
burner data, and attempted to take it into account when
extracting response function data.  Little was known at
the time of mechanisms leading to amplitude limiting,
so Jensen assumed that nonlinear particle damping
might account for the observations.  Figure 2 shows
typical pressure data taken in the experimental program.
The most successful approach to representing this data
was to assume that the rate of change of the fluctuating
pressure amplitude, dR/dt, is a simple nonlinear func-
tion of the amplitude, R.  Jensen wrote:

  

1

R

dR

dt
= ! + "R (1)

where ! is the linear growth rate, and "  represents the

Fig. 2  Transition to limit cycle in T-burner.35
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effects of nonlinear damping.  The solid line in Fig. 2 is
a plot of an optimized curve fit of Eq. (1) to the data
points shown.  The fit is excellent, apparently indicating
that although Eq. (1) was based on an ad hoc “nonlinear
oscillator” analytical approach, it clearly reflects the
actual nonlinear mechanisms governing the system be-
havior.  Note that a distinct limit amplitude appears,
and this is related to the coefficients by means of the
simple correlation

 
! =

" f

R# P
= $ P

f
(2)

which is found from Eq. (1) by assuming that limiting
takes place when the amplitude no longer changes with
time.  The frequency f and mean pressure  P  are used to
nondimensionalize the several groups of terms.  It was
found that the quantity !  (symbol # used in Ref. 35)
was very nearly a constant for many sets of data.  Its
numerical value was in the neighborhood of 0.5.  Please
note that in this model, both the linear growth rate !
and nonlinear coefficient "  are regarded as unknown
parameters to be found from the experimental data as
described.  Assuming that the linear growth rate is cor-
rectly represented in this way, its value could then be
used to deduce the propellant response function.

In a later study Flandro23 demonstrated that the !
correlation agreed very well with an explicit nonlinear
damping mechanism representing a shock-limited non-
linear wave.  The energy loss due to a steep wave front
was found to be the major nonlinear damping effect
rather than particle damping or nonlinear combustion.
It was discovered that this shock mechanism agreed
quite well with the measurements; the equivalent of the
parameter " was calculated explicitly by using only the
gas properties and the chamber speed of sound.  This
convergence of analysis and experiment guides much of
what will be described in later sections of this paper.
The following subsections describe additional observa-
tions that demonstrate in several other ways the central
importance of shock waves in nonlinear instability.

B. Resonating Gas Columns with Shock Waves

In a classical experiment, Saenger41 demonstrated
in a simple laboratory device every feature of solid
rocket motor instability.  A piston oscillating at the first
mode acoustic frequency drove a periodic shock wave
traveling back and forth in a tube.  The tube length was
11 ft. and the piston displacement was only 1/8 in.
Pressure measurements established that although the
frequency agreed with acoustic standing wave theory,
the wave was steep-fronted.  For the present discussion,
the most important feature of this experiment was the
observation of a net change in the pressure in the closed
pipe.  This is in every respect analogous to the DC shift
accompanying resonant oscillations in unstable rockets.

In other words, the mechanism driving the steep waves
simultaneously leads to a mean pressure shift.  This is
very useful information and, as we will demonstrate,
fully supports the physical mechanism to be set forth in
a later section that illuminates the origin of the DC shift
in nonlinear rocket instability.

C. Brownlee’s Nonlinear Instability Experiments

In several research programs, beginning with his
Ph.D. research work at Caltech (guided by Dr. F. E.
Marble and carried out at the Jet Propulsion Labora-
tory), Brownlee confronted most of the problems we
focus on here.  Motors fired in these tests closely re-
sembled what are now described as “tactical” rocket
motors.16,17,42 The motors were clearly unstable without
pulsing. Oscillations became evident only after what
Brownlee described as a delay time.  Figure 3 shows
typical data with a delay time of about 0.5 seconds.  It
also shows Brownlee’s mysterious break corresponding
to the apparent cessation of growth. We will show later
that the time delay is the time required for the initial
growth of the oscillations from naturally occurring
noise. The “break” simply represents the point at which
the oscillations reach their limit cycle amplitude.

Of great significance was the observation that a DC
pressure rise always accompanied the oscillations when
these grew to measurable amplitude.  Figure 3 shows
typical data.  Notice that both the mean and oscillating
pressure grow and decay in exact correspondence.  This
is an important clue suggesting the intimate connection
between these two nonlinear combustion instability
phenomena.

All observations of type described must be cap-
tured analytically if useful predictive tools are to
emerge.  A task to be accomplished when time permits
will be interpretation of Brownlee’s excellent set of
data using the new analytical methods to be discussed
here.  It would be worthwhile to devote a similar effort
to other combustion instability data archives.

Fig. 3  Mean and oscillating pressure.17
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D. Brownlee’s Shockwave Observations

In several carefully executed experiments, Brown-
lee demonstrated the importance of steep-fronted waves
in solid rocket instability.  Pressure histories measured
in pulsed longitudinal instability clearly indicate that
traveling shock-like waves characterize the nonlinear
gas motions.16 Following up with a later study he suc-
ceeded in photographically capturing the traveling
shock fronts using a windowed motor and the schlieren
optical technique.  A unique feature of the experiments
was that both the propellant burning surface and the
shock front could be photographed simultaneously.
Brownlee felt that “… the interaction of the shock front
with processes local to the burning surface should pro-
duce profound effects.”30 Recent work in liquid rocket
instability by the present writer also suggests effects
akin to detonation-type interactions between the steep
wave system and the combustion processes.39,40

E. Blomshield’s Tactical Motor Tests

An extensive data set employing full-scale pulsed
tactical rockets was secured in a series of highly in-
strumented firings.36 These exhibited the classical at-
tributes of nonlinear combustion instability.  Data re-
duction was accomplished by means of the SSP algo-
rithm.  Figure 4 shows the resulting correlation of the
measured growth rates to SSP predictions.  Data points
on the left represent decaying pulses; those on the right
were growing pulses.  Note that exact agreement be-
tween the theory and experimental data is indicated
when the data point lies on the diagonal line.
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Fig. 4  Measured vs. theoretical growth rates.36

It is distressing that instability was never predicted
by SSP; all points are placed in Fig. 4 on the negative
side in terms of predicted growth rate.  When data from
firings that exhibited decaying pulses were compared to
the SSP predictions, it was felt that acceptable agree-
ment had been demonstrated.  The authors wrote “…in
all cases the trends in measured instability were con-
firmed by the Standard Stability Program.” However,
the growing pulses indicated extremely poor agreement.
The reason for this discrepancy seems clear: decaying
pulses correspond to tests where negative net growth
rates prevail.  Therefore, as oscillations decay, they
tend to approach amplitudes sufficiently small to be-
have in a nearly linear fashion.  On the other hand,
growing pulses rapidly reach amplitudes dominated by
nonlinearity. It must be pointed out that, even for de-
caying pulses, there is strong evidence that nonlinear
effects control the gas motions.  Predictive capability of
SSP indicated on the left side of Fig. 4 is not accept-
able. Nonlinear data reduction of the sort described in
the work by Jensen and Beckstead35 is called for here.

Of even greater concern is that the linear theory
does not predict the positive growth rates when pulsing
leads to growing disturbances; these are correctly char-
acterized as triggered instabilities.  However, there is a
subtle implication that there must be some basic differ-
ence between motors with growing pulses and those
that decay.  We will show later that this is simply re-
lated to conditions leading to positive linear growth
rates.  That is, these motors are made susceptible to
pulsing because (despite the predictions of stability
from the SSP) they must be linearly unstable systems.
The important message here is that there is something
amiss with SSP.

The Blomshield data displays all of the attributes
of nonlinear behavior that were discussed in the intro-
duction.  The spectra corresponding to growing oscilla-
tions are rich in harmonics indicating a steepened wave
structure.  The DC pressure shift is closely correlated
with the growth in the oscillations, and a distinct limit
cycle is observed.  Clearly, if such nonlinear instability
is to be understood, a prerequisite must be a valid linear
approximation on which to build.  This theme guides
the work described herein.

For emphasis, all motor configurations in this test
series were predicted to be stable as indicated by all
points in Fig. 4 lying in the lower half of the graph.
Therefore, it is the opinion of the authors that linear
theory fails in accounting for Blomshield’s measure-
ments.  We are challenged to find the nonlinear ele-
ments needed to explain these discrepancies in an un-
derstandable yet physically and mathematically sound
manner.  What is required is the ability to fully predict
every feature displayed in this excellent set of data.  In
later sections we will demonstrate considerable pro-
gress in this undertaking.
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 III. Analysis
Classical analyses are based on the assumption of a

system of irrotational acoustic waves.  Experimental
data often motivates this approach, since observed os-
cillation frequencies are readily correlated with the
standing acoustic modes of the chamber.  However,
assuming an acoustic basis for an instability theory re-
sults in the inability to accommodate correct boundary
conditions (such as the no-slip condition at chamber
boundaries) and the loss of important flow features such
as unsteady vorticity that can have major impact on the
validity of the results.  It is also difficult to properly
treat finite amplitude waves using an acoustic model.
There is much evidence that the high-amplitude wave
systems in unstable rockets are more akin to traveling
shock fronts.43-46 Early efforts were made to account for
steepened wave effects6-7, but the analytical methods
applied did not lead to practical solutions.  These were
usually based on the method of characteristics; they did
not lend themselves well to generalized computational
techniques of the kind needed for a practical stability
assessment algorithm.

A. Failure of the SSP

The well-known failure of predictive algorithms in
solid rocket analysis is largely the result of neglect of
key features of the unsteady flow of combustion prod-
ucts.  In particular, one must account for effects of vor-
ticity production and propagation, and for the tendency
of initially weak (essentially acoustic) waves to steepen
into shock-like wave motions.

Solid propellant rocket motor analysis as applied in
the SSP computer program, implements Culick’s irro-
tational acoustics based analyses.3-5,8,12,25,47-52 As already
demonstrated, this formulation does not yield satisfac-
tory predictive capability.  This is partly the result of
the assumption that the wave motions are strictly
acoustic (irrotational) in nature.  Recent work by the
writers of the present paper has focused on improving
SSP by inclusion of important mechanisms such as
vorticity generation and shock wave interactions.
These improvements are now described briefly.

B. Rotational Flow Effects

Considerable progress has been made in the last
decade in understanding both the precise source of the
vorticity and the resulting changes in the oscillatory
flow.  Analytical,48,53-60 numerical,61-66 and experimental
investigations67-70 have demonstrated that rotational
flow effects play an important role in the unsteady gas
motions in solid rocket motors.  Much effort has been
directed to constructing the required corrections to the
acoustic model.  This has culminated in a comprehen-
sive picture of the unsteady motions that agrees with
experimental measurements,48,53,54 as well as numerical
simulations.55    

These models were used in carrying out three-
dimensional system stability calculations,48,53 in a first
attempt to account for rotational flow effects by cor-
recting the acoustic instability algorithm.  In this proc-
ess one discovers the origin and the three-dimensional
form of the classical flow-turning correction; related
terms appear that are not accounted for in the SSP algo-
rithm.  In particular, a rotational correction term was
identified that cancels the flow-turning energy loss in a
full-length cylindrical grain.  However, all of these re-
sults must now be questioned because they are founded
on an incomplete representation of the system energy
balance.

Culick’s stability estimation procedure is based on
calculating the exponential growth (or decay) of an
irrotational acoustic wave; the results are equivalent to
energy balance models used earlier by Cantrell and
Hart.71  In all of these calculations the system energy is
represented by the classical Kirchoff (irrotational and
isentropic) acoustic energy density. Consequently, it
does not represent the full unsteady field, which must
include both acoustic and rotational flow effects.  Ki-
netic energy carried by the vorticity waves is thus ig-
nored.  The actual average unsteady energy contained
in the system at a given time is about 25% larger than
the acoustic energy alone.49 Furthermore, representation
of the energy sources and sinks that determine the sta-
bility characteristics of the motor chamber must also be
modified. Attempts to correct the acoustic growth rate
model by retention of rotational flow source terms
only,48,53 preclude a full representation of the effects of
vorticity generation and coupling.

C. Nonlinear Effects

The effects of nonlinear interactions play a major
role in controlling the nonlinear attributes of pressure
oscillations in motor combustion chambers.  Thus,
strictly linearized models are of little value in the pre-
sent situation.  Of crucial importance is the modeling of
the time history of the oscillations, their limiting am-
plitude, and the critical triggering amplitudes at which
an otherwise stable motor is caused to transition to
violent oscillations.  Pulsing of this sort can result from
random disturbances and by the passage of pieces of
liner or insulation through the nozzle leading to a mo-
mentary decrease in the effective throat area.  Thus it is
important to characterize this aspect of motor behavior.

As described in the last section, shock waves are a
major nonlinear attribute of axial mode oscillations in
solid rockets.16,23,24,29 There is no question that shock-
like features dominate the gas motions when waves
grow to finite amplitude.  The steepening process is a
natural feature of nonlinear resonant oscillations of gas
columns.41,72 Recognition of the role played by shock
waves in combustion instability is certainly not wide-
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spread, although many investigators, especially in the
case of liquid engine instability have examined this
possibility.23,24,73-75 However, current liquid engine or
solid rocket motor instability prediction methods do not
recognize this obviously important aspect of the prob-
lem.  It constitutes yet another nonlinear feature that
must be accommodated if a complete theoretical foun-
dation is to be constructed.

D. Formulating a Nonlinear Instability Algorithm

In this section we briefly discuss what is needed
from the theoretical standpoint to provide a useful ana-
lytical framework for combustion instability. It is nec-
essary to accommodate the features we have identified
as key elements for a correct physical representation.
We must discard models based on the acoustic point of
view.  Nonlinear energy losses in steep wave fronts and
energy flow to the wave structure from combustion
must be accommodated. By far, the most effective
method for incorporating this large array of physi-
cal/chemical interactions is by application of a global
nonlinear energy balance.  Methods based on the usual
perturbed acoustic wave equation cannot properly ac-
count for the many interactions that must be captured.

E. Mathematical Strategy

Since a central concern is the handling of steep
fronted waves, it is necessary to carefully lay out a so-
lution technique that will lead to a practical predictive
algorithm.  To make the mathematical problem tracta-
ble, we choose to avoid fashionable numerical strate-
gies such as the method of characteristics or a full CFD
treatment of the problem.  Either of these techniques
would likely fail in the problem we are attempting to
solve here.

What is required is an approach that bridges the
gap between the earlier perturbation techniques that
limit the solutions to linear gas motions and other ad
hoc methods such as those introduced by Culick to
study nonlinear features of combustion instability.5,21,28

Figure 5 displays a frame from an animation of the de-
velopment of the wave system with time predicted by
Culick’s model.  At the instant shown, the wave has
nearly reached its final limit condition, and the wave
front is moving to the left.  This wave pattern is the
composite of twenty acoustic modes.  Energy from the
lower order modes has cascaded to the higher modes
until the  stationary state shown in the figure has been
reached.  This “mode coupling” effect clearly repre-
sents the natural steepening process.  What began as a
set of standing acoustic modes has transitioned into a
single traveling steep-fronted wave.  Once limiting has
occurred, the wave simply bounces back and forth be-
tween the ends of the chamber  The period of oscilla-
tion corresponds to

steep wave front
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Fig. 5  Culick’s fully steepened wave.

the first longitudinal acoustic mode.  What is shown
here agrees in every respect with the fully steepened
condition described in earlier works by the present
writer.23,24The calculations and animation from which
Fig. 5 was taken were carried out by J. French.  He has
fully implemented Culick’s nonlinear model in the SSP.
It can now be run for longitudinal modes with arbitrary
chamber cross-sectional area distribution.

In the problem of central interest here, we are not
concerned with the steepening process, per se, rather,
we wish to understand the gas motions in the fully
steepened state.  Figure 6 illustrates several aspects of
the problem we must solve.

Fig. 6  Nonlinear evolution of system amplitude.
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This diagram shows in schematic form all features of
combustion instability that appear experimentally.
Furthermore, it provides a useful way to categorize the
various analytical methods by which we attempt to un-
derstand this very complicated physical problem.  Fig-
ure 6 shows that if the waves grow from noise in the
linear fashion, the motion is linear and each acoustic
mode grows individually according to the balance of
energy gains and losses peculiar to that operating fre-
quency.  In general, the lowest order mode grows most
rapidly because it requires less energy to excite.  As the
oscillations grow to finite amplitude, nonlinear effects
appear and there is a phase in which energy is redistrib-
uted from lower to higher modal components; it is this
process that is described in Culick’s nonlinear model.

As the wave steepens, the relative amplitudes of
the constituent acoustic modes reach a frozen state cor-
responding to shock-like behavior.  This is the fully
nonlinear state illustrated in the figure.  In pulse testing
of motors, the steepening process is almost instantane-
ous.  For example, Brownlee16 notes that when the
pulse is fired, “… the injected flow disturbance trav-
ersed the length of the motor, partially reflected at the
nozzle end, and became a steep-fronted shock-like
wave in one cycle.” Thus in modeling such effects, it is
unnecessary to trace the full steepening process.  The
relative wave amplitudes are readily estimated from a
large database of experimental results.  It is readily es-
tablished that precise knowledge of the relative ampli-
tudes is not necessary to achieve an accurate estimate of
the limit cycle and triggering amplitudes.

We must formulate a mathematical strategy that
yields the essential information, namely, the limit am-
plitude reached by the system in the fully steepened
state.  This is the information required by the motor
designer in assessing potential vibration levels, and as
we will show, the severity of heat loads and force levels
on fragile injector components.

The key to simplifying the nonlinear problem is to
assume that the fully steepened traveling wave is a
composite of the chamber normal modes:

   
p r,t( ) = ! t( ) An t( )" n r( )

n=1

#

$ (3)

where   !(t)  is the instantaneous amplitude and n is the

mode integer. This is a proven simplifying strategy23,24

that follows directly as the final form reached in Cu-
lick’s calculations.  It conforms well to all experimental
features that must be accommodated in our solution
algorithm.  Before proceeding with the analysis, let us
first test this model to see if it contains the necessary
features and flexibility.

F. Traveling Shocked Acoustic Waves by Super-
position of Standing Normal Modes

Equation (1) provides a useful tool and a way to
avoid all computational difficulties associated with
modeling of the unsteady flowfield.  In the case of sim-
ple longitudinal oscillations in a chamber of constant
cross section, the functions in the summation are, for
example:
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where L is the chamber length and z is the axial posi-
tion.  If Eq. (1) is evaluated with these parameters, the
waveform illustrated in Fig. 7a is produced.  This
should be compared to a measured waveform in Fig.
7b.  The data shown came from precision pressure
measurements in a liquid rocket preburner undergoing
high-amplitude nonlinear longitudinal oscillations.

It is clear that Eq. (1) yields an excellent model of
the actual waveform.  It can be used to represent any
experimental waveform by fitting a Fourier series to the
data.  It is known that once the wave has reached the
limit cycle conditions, the waveform remains essen-
tially frozen; only the amplitude then changes with
time. This is a powerful computational simplification.

(a) Waveform calculated using Eq. (1) - Twenty Modes

(b) Preburner waveform during severe oscillation

Fig. 7  Measured vs. calculated waveform.



 –9–
American Institute of Aeronautics and Astronautics.

G. Notation

The following dimensionless variables will be used
(star * denotes dimensional quantities; subscript 0 indi-
cates quiescent chamber reference conditions):

    

p = p * P0

! = ! * !0

T = T * T0

u = u * a0

r = r * L
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where F is a body force and e is specific internal en-
ergy.  The dimensionless governing equations are:
Continuity:
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Species mass fraction:
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State:

 p = !T (10)

The Prandtl number Pr and viscous reference lengths
(proportional to inverse square root of appropriate Rey-
nolds numbers) appear naturally.  These are defined as:
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The latter reference length is the reference flame length
needed in regions dominated by combustion heat re-

lease.  Other variables needed in modeling chemical
reactions are:

  

w = w* !0a0 L( )
=Dimensionless reaction rate

hi
o = hi

o( )* a0
2

= Dimensionless heat of combustion

Yi = Mass fraction for species i

"

#

$
$
$$

%

$
$
$
$

(12)

H. Separating Steady and Unsteady Parts

The steady and unsteady parts of the variables are
decomposed in the standard manner by writing

   

! = ! + ! 1( )

p = P + p
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T = T + T
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1( )

" = Mb# $U +# $ u
1( ) = Mb% +" 1( )

&

'

(
(
(
(

)

(
(
(
(

(13)

Since the energy balance is the key to understanding the
system behavior, let us carefully work with it.  In what
follows, we will avoid the common simplifying as-
sumptions such as the isentropic flow limitation.  We
will also carefully include heat transfer and viscosity so
that, in effect, we are modeling a wave system com-
posed of superimposed waves of compressibility, vor-
ticity, and entropy.

Define the system energy density as

    
% ! " e + 1

2
u #u( ) (14)

Then for a calorically perfect gas the energy equation
becomes
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(15)

where a shorthand notation has been adopted for the
heat release in combustion processes.  The body force,
F, is a placeholder for two-phase flow effects such as
particle damping. that will be addressed later.  Note that
the compressive viscous force and conduction heat
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transfer terms are retained.  These are the source of the
important nonlinear energy loss in steep wave fronts.

Using Eq. (13), one can now expand Eq. (15) to give
the equation for the system amplitude.  To accomplish
this, the time-averaged Eq. (15) can be written as
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where
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is the time-averaged oscillatory energy.  Note that this
consists of a “potential” energy proportional to the
pressure fluctuation and a kinetic part proportional to
the square of the particle velocity.  The latter is not the
simple acoustic particle velocity; it is the composite of
the irrotational and rotational parts needed to satisfy
correct boundary conditions at the chamber surfaces.

Equation (17) is similar to the familiar Kirchoff ref-
erence energy density from classical acoustics:76

    

%Kirchoff =
1

2

p
1( )
!

"

#
$
$

%

&
'
'

2

+ 1
2
(u

1( ) )u 1( ) (18)

The differences are largely the result of relaxing the
isentropic flow assumption used in deriving Eq. (16).

I. Spatial Averaging

In order to account for the net behavior of the en-
tire system it is now required to integrate the time-
averaged energy density over the chamber control vol-
ume.  We define the reference system energy as
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where primed variables are defined by factoring out the
slowly changing amplitude.  For example,

  
p 1( ) = ! t( ) "p

Then the rate of change of system amplitude can be
written in the convenient form:

   

d!
dt

= " 1( )! +" 2( )! 2 +" 3( )!3 +L (20)

where  !
1( )  is the linear growth rate for the composite

wave system. The reader should also notice the similar-
ity of this expression to Jensen’s Pi theorem described
in the last section.  This expression emphasizes the im-
portant fact that the nonlinear model is only as good as
the linear representation of the system.

In many ways, achieving a valid linear model is the
most difficult part of the entire combustion instability
problem.  It has in fact been the downfall of numerous
past attempts.  Much time and energy has been ex-
pended on attempts to correct deficiencies in the linear
model by introduction of ad hoc fixes that are often
based on guesswork, misinterpretation, and distortion of
experimental evidence.  The roadway is strewn with the
wreckage of such attempts.  We avoid the temptation to
dwell on the past.  Clearly, the path to success is to
avoid losing any of the crucial physical information that
has been collected in the system energy balance con-
structed here.

J. Linear Growth Rate

The linear part of Eq. (17) becomes
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where only the placeholders for combustion heat re-
lease and two-phase flow interactions are shown.
Please note that we have not assumed that the mean
pressure is constant as is usually done.  The quasi-
steady chamber pressure, P , is a slowly changing pa-
rameter that is clearly linked to the growth of the
waves.  In order to evaluate the linear system stability,
one must know  P , which, as it happens, is an impor-
tant link to the mean (DC) pressure shift.

Careful evaluation of the volume integrals in Eq. (21)
leads to the vanishing of several of the terms shown.
One of these is the Culick flow turning effect, which
has been the source of considerable controversy in the
solid propellant rocket instability research commu-
nity.48,53,77 Unfortunately, this term leads to a damping
effect, which in many motor evaluations is as large as
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other main contributions to the energy balance.  To
illustrate the handling of its source in Eq. (21), we now
examine the specific term from which flow turning
originates:

   

!4
1( ) = MbP

2E2
U " #u $ #% + #u "U $ #%( )dV

V
&&& (22)

The subscript, 4, is an artifact of the numbering system
introduced in Ref. (49) to keep track of the many linear
stability contributions in Eq. (21).  Flow turning was
first identified by Culick3,11 in his one-dimensional cal-
culations as a result of forcing satisfaction of the no-slip
condition (which could not be accomplished in his
three-dimensional model because of the irrotational
flow assumption).  Flandro48,49,53,78 later showed that the
actual source of the flow turning was the irrotational
part of the second term in Eq. (22).  None of the earlier
stability calculations incorporated all of the rotational
terms represented in Eq. (22).  These appear because
we have now used the complete energy balance equa-
tion.  When all of the terms are properly accounted for,
then application of the familiar scalar triple product
identity

 
A ! B "C( ) = B ! C " A( )

leads to

  

U ! "u # "$ + "u !U # "$

= % "u !U # "$ + "u !U # "$ = 0
(23)

Flow turning has now vanished.  This result agrees with
considerable experimental evidence and with other
analyses.79,80

This correction to the linear growth rate leads to
major improvements in correspondence with experi-
mental data.  The lesson here is that only by accounting
for all unsteady energy gains and losses can a correct
linear stability theory be constructed.  Other terms in
Eq. (21) once thought to have important stability impli-
cations do not appear when the integrals are carefully
evaluated.

K. Linear Driving Mechanisms

Equation (21) reflects all potentially important lin-
ear sources of unsteady energy as well as damping ef-
fects.  Many years of experience have shown that the
first pair of terms represented by the surface integral
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play a central role in driving acoustic waves.  They are
also the origin of the important nozzle damping effect.
In cases where the combustion energy release occurs
close to the surface (as in a burning solid propellant) or
near the injector surface (in liquid rockets), this term is
the primary source of unsteady energy.  At first glance,
it appears that Eq. (21) should represent zero contribu-

tion since for acoustic motions the pressure and velocity
fluctuations are 90o out of phase.  However, one must
account for the phase shift in the combustion zone re-
gion of nonuniformity.  This is done in the solid pro-
pellant case by introducing the admittance function
accounting for myriad chemical and physical processes
within the flame zone.  For example, one defines

   
n ! û = "Mb Ab

r( ) #p

$
(25)

expressing the normal velocity fluctuation in terms of
the pressure disturbance that creates it.  Major effort is
expended in the solid rocket community in character-
izing the admittance function.  This is a familiar sce-
nario and need not be reviewed in depth.  The solid
rocket literature is replete with discussion of this im-
portant concept.  A lucid treatment can be found in Ref.
8.  The associated nozzle damping is also described in
detail in this and many other documents.

The first term in Eq. (21) is also a potent source of
energy liquid rocket instability analysis.  If 

   
!p n " û is

evaluated at the injection surface accounting for the
phase difference between fluctuations in the incoming
oxidizer and fuel velocities and the pressure oscillations
at the interface, it will be seen that a powerful analog to
the solid rocket pressure coupling is identified.  Exami-
nation of experimental data shows that indeed the pres-
sures in the oxidizer and fuel feed lines upstream of the
injector reflect the pressure fluctuations in the chamber
and exhibit the phase differences needed to explain this
powerful unsteady energy source.  Additional energy is
supplied to the waves via the more traditional distrib-
uted combustion.  However, there can be no doubt that
any energy source located at a pressure antinode (e.g.
the injector surface) is a potent driver of oscillations of
the type observed.  These matters are currently under-
going thorough study by the authors and coworkers.

L. Effects of Nonlinearity

It is now required to examine nonlinear terms
arising from the expansion of Eq. (13). The most im-
portant of these are the energy losses incurred in steep
wave fronts.  Let us focus on the last set of terms in Eq.
(16).  After temporal and spatial averaging, we are left
with

   

! 2

" #1( )Pr
$2T + !d

2 $ %u( )2 dV
V
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Those readers with training in gasdynamics will recog-
nize in this term the source of the entropy gain and as-
sociated energy loss in a steep wave front.  In fact, this
term is usually ignored because it is only significant if
there are very steep gradients in particle velocity and
temperature.  Let us evaluate this term by considering a
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very small portion of the chamber volume that encom-
passes the shock layer formed by a steepened wave
system.  The shock layer can be treated as a region of
nonuniformity as illustrated in Fig. 8.

Fig. 8  Shock layer structure.

Following standard procedures, Eq. (26) can be reduced
to the classical textbook result showing the origin of the
entropy gain in the shockwave.  By manipulations using
the Rankine-Hugoniot equations, we find the formula
for the energy loss in the steep wave to be
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leading to a simple approximation for the nonlinear
stability parameter in Eq. (17), namely
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where !  is a factor dependent upon the assumed wave-

form for the traveling shock wave, and Sport is the area
of the shock front.  In the longitudinal case, this is sim-
ply the cross-sectional area of the duct at a convenient
location.

This nonlinear loss effect is the principal damping
mechanism in both liquid and solid propellant motors,

and is the key element in understanding the limit cycle
behavior so often encountered when finite amplitude
waves appear.  It is tempting to carry the implied per-
turbation series in Eq. (20) to higher than second order
in the system amplitude.  However, such an extension is
not justified in the present situation because we assume
that the unsteady flowfield and mode shape information
for the chamber are accurate only to the first order in
wave amplitude.  Let us now test the results that we
have found against experimental evidence.

M. Limit Cycle Amplitude

In solid propellant rockets one is seldom interested
in tracing the details of the growth of the waves to their
final state.  Such motors usually operate for very long
time on the time scale of the wave motions with very
slow changes in the steady operating parameters.  For
this reason, strictly linear models provide little useful
information in the predictive sense.  There is, however,
a well-known rule of thumb that suggests that large
values of the linear growth rate, estimated for example
by using Eq. (21), correlate with large values of the
limit cycle amplitude.  Clearly it is the latter amplitude
that is of concern, since it is a measure of the vibration
and other impacts on the system due to the oscillations.

What is required is information concerning the
limit amplitude reached as the wave system approaches
a fully steepened form.  Equation (20) provides the re-
quired limit amplitude.  In the fully steepened state, the
wave amplitude is stationary, and it is readily seen that
the limit amplitude is

 

!limit = "
# 1( )

# 2( ) (29)

which is physically meaningful only when  !
2( )  is

negative.  This will always be the case for the shock
loss mechanism described by Eq. (23).  To the knowl-
edge of the authors, there has never been either experi-
mental or theoretical evidence of second order interac-
tions that are not damping effects.  However there may
be nonlinear driving mechanisms of this sort yet to be
discovered.  Equation (29) has been tested for many
solid rocket data sets and has been found to yield an
excellent estimate of the limit amplitude.  Again, note
that good results depend critically on a valid linear sta-
bility estimate.

N. Triggering Amplitude

This is a controversial subject.  If one examines
Fig. 6, in the context of Eq. (20) (extended to higher
orders in the wave amplitude) it is apparent that it is
theoretically possible to raise the amplitude of a system
oscillating in its lowest limit cycle to a yet higher limit
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amplitude by adding sufficient energy in a pulse to raise
the oscillations above a critical triggering level.  This is
what might be termed true triggering.  Careful exami-
nation of solid rocket data has made it clear that this
scenario seldom fits what is actually observed.  In every
case studied by the authors, motors that exhibited “trig-
gering” were linearly unstable motors.  That is, they are
not stable motors that are triggered into a high-
amplitude limit cycle.  When such burners operate
without deliberate pulsing, the wave system grows so
slowly from the always-present random noise, that os-
cillations are barely measurable by the end of the burn.
However, when the motor is disturbed by a sufficiently
large pulse, the broadband energy increment can excite
finite amplitude steep-fronted waves.  The system then
grows rapidly to the limit cycle amplitude.  Calcula-
tions using Eq. (20) agree very well with actual obser-
vations.  We believe that true triggering is seldom, if
ever, observed in actual rocket motors.  Much of the
confusion over this issue has resulted from application
of faulty predictive codes that almost always predict a
linearly stable system.  A classic example can be found
in the Blomshield data.36 Every motor fired in this test
series was predicted by the SSP to be linearly stable.  In
fact there is no doubt that many of the motors were
linearly unstable at least during part of the burn.  Unless
pulsed, only very low level oscillations were present.
Sufficiently strong pulsing during linearly unstable op-
eration led to violent oscillations in several tests.

 IV. The DC Pressure Shift
The mean pressure rise, or DC shift, is an oft-

observed feature of nonlinear instability.  As illustrated
in Fig. 3, it is obviously closely linked to the growth
and limiting of the system of acoustic waves. A test of
the validity of the theory presented in this paper is its
ability to predict this important classical feature of
combustion instability.  What we will demonstrate here
is that the same mechanism that drives the oscillations
(first term in Eq. (21)) is also the source of the DC shift
phenomenon.

Until now, explaining the mean pressure excursion
has required invoking ad hoc flow-reversal, velocity
coupling, burning surface velocity rectification, or
“acoustic erosivity” effects.74 These confusing and of-
ten simply misleading paraphernalia can now be dis-
carded.

Clearly, any attempt to understand one nonlinear
feature without due attention to other closely connected
features does not take full advantage of the experimen-
tal data.  In this section, we demonstrate the benefits of
accommodating all of the key observations in formu-
lating the mathematical approach.

Previous theoretical models have been based on the
assumption that the mean gas properties remain con-
stant.  For example, Culick writes: “…we assume that

the average values do not vary with time.  That is not an
essential assumption, but to correct it requires consider-
able elaboration not justified here.  However, there are
practical situations in which changes in the average
values, particularly the pressure, are important.  No
thorough analysis of such cases has been given.”8 In
what follows we present the missing analysis.

The formulation described in the last section has
been deliberately written without the assumption of
constant mean properties.  Thus we are able to study the
coupling between the unsteady and quasi-steady gas
motions.  It is assumed that the chamber mean tem-
perature is controlled by combustion heat release and is
therefore essentially constant.  Then the state equation
shows that mean pressure and density are slowly
changing functions of time.  The surface reference
Mach number and the wave amplitude are also slow
functions of time as already demonstrated.

A. Formula for Rate of Change of Mean Pressure

The source of the DC shift is readily found if non-
linear terms are retained in the continuity equation.
Expanding Eq. (6) and taking the time average yields
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where the first term on the right represents quasi-steady
mass flux at the chamber boundaries due to combustion
and nozzle outflow.  The similarity of the second term
to the pressure-coupled acoustic driving in Eq. (21) is
intriguing.  Integration over the chamber volume leads
to the equation for the rate of change of the quasi-
steady chamber operating pressure:
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The first term is handled by means of the standard
steady internal ballistics calculations; the second leads
to the mean pressure shift.  Notice that it is proportional
to the second order of the wave amplitude.  Equation
(31) verifies the anticipated close coupling between the
mean pressure rise and the growth and limiting of the
pressure oscillations.

B. Simulating and Predicting Motor Behavior

The results for the nonlinear system growth and the
corresponding mean pressure excursion must be com-
puted simultaneously.  When the several system models
are collected and the integrals are performed, we are
left with a pair of coupled nonlinear, ordinary differen-
tial equations:



 –14–
American Institute of Aeronautics and Astronautics.

   

d!
dt

= " 1( )! +" 2( )!2 +L

dP

dt
= # 1( ) + # 1( )!2

$

%
&&

'
&
&

(32)

These are readily solved using a simple numerical algo-
rithm.  The result is the time history of the growth and
limiting of the pressure oscillation amplitude and the
accompanying growth and limiting of the mean pres-
sure amplitude.  These results agree in every way with
actual motor data.

C. Results

The methods described here are being used to en-
hance the SSP by enabling the motor analyst/designer
to predict the stability of a given system and to diag-
nose sets of experimental data.

We show here some preliminary results from ap-
plication of Eq. (32) in the difficult dilemma repre-
sented by Blomshield’s data set.36-38,81,82 In virtually all
of his motor configurations, the SSP code predicted
stable behavior as depicted in Fig. 4.  Yet, many of the
motors were readily pulsed into high-amplitude oscilla-
tions.  We seek here to understand this triggering phe-
nomenon.  Numerical solutions of Eq. (32) yield the
required information.

Figure 9 shows a pressure vs. time trace for a cy-
lindrical motor from this test series.  The progressive
pressure rise results from the increasing burning surface
area with time.  The mean pressure shift and pressure
oscillations are clearly shown.  Data came from a pres-
sure transducer at the motor forward end.  The spectrum

Fig. 9  Pressure vs. time for motor no. 9.36

was dominated by the 1L (first longitudinal mode) ac-
companied by a great many harmonics representing
strong evidence for steep-fronted waves. Figure 10
shows the predicted behavior of this motor found by

solving Eq. (32) using geometrical and physical data
from the tests; no curve fitting was employed

All important features of the actual data are well
represented.  Notice that even though the system is
linearly unstable, no wave growth or DC shift occurs
unless the motor is pulsed.  Examination of the numeri-
cal results reveals that this motor was marginally stable
during the first part of the burn, but the net linear
growth rate became positive after about t = 0.5 sec.
The motor was then susceptible to pulsing, and could be
“triggered” into violent oscillations.  Parametric studies
have shown that the predicted DC shift and corre-
sponding oscillation limit cycle amplitude are insensi-
tive to the pulse amplitude; this agrees with experi-
mental findings.

To summarize: we have devised a new procedure
for estimating the tendency for a given rocket motor
chamber to exhibit nonlinear combustion instability.
The new algorithm gives not only growth rate informa-
tion and the associated stability maps, but more impor-
tantly predicts the evolution of the system oscillation
amplitude and the mean pressure shift.  These analyti-
cal/numerical tools promise to give the motor designer
the ability to avoid design features that may promote
combustion instability much earlier in the development
cycle than possible using other methods.

Fig. 10  Simulation of motor no. 9.83,84
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If combustion instability problems are encountered
in the motor test phase of development, these new tools
yield an improved method for correlating experimental
data and correctly interpreting the results.  They also
provide the ability to test and perfect corrective mecha-
nisms if these become necessary.

 V. Conclusions
In this paper we have demonstrated a predictive

algorithm based on sound theoretical foundations that
fully explains the nonlinear behavior observed in unsta-
ble rocket motor systems.  The close connection be-
tween pressure coupling, the main linear driving
mechanism in combustion instability, and the DC pres-
sure shift has been illuminated.  Knowledge of the
physical parameters that control the pressure coupling,
namely the admittance function or response function of
the propellant, makes it possible to determine the
growth and limiting amplitude of both the wave system
and the accompanying mean pressure shift.

Much work is left in perfecting and fine tuning the
new methodology.  Eventually these tools will be in-
corporated into commercially available analysis tools
that will enable the rocket motor designer and experi-
mentalist to better deal with combustion instability
problems.
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