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Predictive algorithms now in general use cannot characterize high-amplitude pressure os-
cillations that are frequently observed in solid propellant rocket motor combustion cham-
bers.  In fact, programs such as the Standard Stability Prediction (SSP) code are based on a
linear theory, which has serious shortcomings.  Therefore, it is necessary to address both
correction of the flawed linear theory and incorporation of models to allow prediction of im-
portant nonlinear effects.  These include:  1) limit cycle behavior in which the pressure fluc-
tuations may dwell for a considerable period of time near their peak amplitude, 2) elevated
mean chamber pressure (DC shift), and 3) a triggering amplitude above which pulsing may
cause an apparently stable system to transition to violent oscillations. Culick’s well-
established nonlinear model provides useful guidance in dealing with the system limit cycle
transition.  It is demonstrated in this paper that his calculations represent the classical steep-
ening mechanism by which the wave system evolves from an initial set of standing acoustic
modes into a shock-like, traveling, steep-fronted wave.  However, a very important missing
element is the ability to predict the accompanying mean pressure shift; clearly, the program
user requires information regarding the maximum chamber pressure that might be experi-
enced during operation of the motor, as well as the peak amplitudes reached by the pressure
oscillations.  Recent theoretical work has resulted in a firm foundation upon which to build
the required predictive capabilities.  These are described in detail, and it is demonstrated
that the new theory yields results that are in excellent agreement with experimental data.

Nomenclature 

 a Mean speed of sound
e Oscillatory energy density

 E Time-averaged oscillatory system energy

  
Em

2 Normalization constant for mode m

 
km Wave number for axial mode m

 L Chamber length
 m Mode number

 M Reference Mach number in chamber
 n Outward pointing unit normal vector
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 p Oscillatory Pressure

 P Mean chamber pressure
 r Radial position
 R Chamber radius
 t Time
 u Oscillatory velocity vector
 z Axial position

Greek
! Growth rate
! Inverse square root of the acoustic Reynolds

number, 
  
! / a0R

! Ratio of specific heats
! Wave amplitude
! Kinematic viscosity,  µ / !
! Density
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! Unsteady vorticity amplitude
! Mean vorticity amplitude

Subscripts

 b Combustion zone
 m Mode number

Superscripts
* Dimensional quantity
~ Vortical (rotational) part
^ Acoustic (irrotational) part
( r ), ( i ) Real and imaginary parts
(1) Indicates first-order accuracy

 I. Introduction
OMBUSTION instability in solid propellant rocket
motors is frequently associated with sound waves,

since measured frequencies are closely approximated
by simple acoustic theory. For this reason, analytical
work aimed at providing physical insight into the phe-
nomenon is, quite naturally, founded upon the notion of
perturbed acoustic waves.1-10 All predictive codes are
built upon these concepts.2-4,7-20 This includes the SSP
(Standard Stability Prediction) program now used al-
most universally in treating instability problems.  Most
such predictive algorithms represent only the linear
features of the instability, and provide no information
regarding important nonlinear features of great practical
significance.

A typical SSP calculation yields only a set of growth
rates based on the underlying linear theory.  Usually
these are net growth rates for each acoustic mode and
burn time selected by the analyst.  If, for example, all of
these are found to be negative, then the system is
deemed to be stable.  If one (or more) is positive, the
user interprets this to mean that there is a potential in-
stability problem.  That is, there may be a tendency for
the motor to oscillate.  No information is forthcoming
regarding what amplitude such oscillations are likely to
attain, or whether or not the system is susceptible to
triggered instability initiated by random or deliberate
pulsing.

The limit cycle, or peak amplitude reached by the
oscillations, is obviously an important quantity since it
reflects the vibration environment produced by the in-
stability.  Attempts have been made to understand this
limiting behavior of the wave system by including non-
linear corrections that extend the linear acoustic insta-
bility theories.5,6,8,21-26 These efforts have been useful in
demonstrating certain essential physical phenomena,
such as the natural steepening mechanism that causes
initially low-amplitude acoustic waves to transition into
shock-like structures.6,21,23,24,27-29 The central role played
by shock waves in nonlinear longitudinal mode com-
bustion instability has also been convincingly demon-
strated experimentally.30

More importantly, no information is provided re-
garding the much dreaded DC shift, or mean pressure
excursion that often accompanies finite-amplitude os-
cillations.  It is curious that although the DC shift was,
historically, the first observed sign of combustion insta-
bility, its true origin and its exact nature have never
been successfully established.14,31,32 Therefore, consid-
erable attention is devoted in this paper to rectifying
this situation.  In particular we seek to understand in
detail its obvious connection to the oscillatory gas mo-
tions and the controlling factors in terms of chamber
geometry and physical parameters.

In this paper we apply a new set of analytical tools
that have evolved from many decades of struggle with
the solid propellant rocket combustion instability prob-
lem.  Recent work by the present authors has led to
considerable progress in the development and refine-
ment of predictive capability. To be useful, such tools
must go far beyond the usual linear growth rate calcu-
lations.  To be complete, the analysis must account for:

• Steep-fronted, shocked pressure waves,

• effects of rotational flow interactions,

• combustion coupling including: unsteady dis-
tributed energy release, detonation wave phe-
nomena, and interactions with the propellant
combustion processes, and

• mean pressure shift and its coupling with the
oscillatory flow field.

In order to achieve understanding of these nonlinear
phenomena, it is vitally important to start with a valid
linear model.  Unfortunately, the linear theory on which
the SSP is based has serious flaws.  As we shall demon-
strate, despite many claims to the contrary, the code
does not adequately predict even the linear stability
features for a given motor configuration.

Over the years, analysts have devised corrective
terms in attempts to yield better agreement with ex-
periments.  Some of these have been based on sound
theoretical ground; others are little more than specula-
tion.  Clearly, if the SSP user is armed with enough
variable parameters, he can fit any data set and thereby
convince himself that he has adequately predicted the
motor behavior.  When the same model incorrectly
portrays another system configuration, the failure is
often blamed on inadequate knowledge of key system
parameters such as the propellant admittance or re-
sponse function.

To make progress, we must begin by providing a
complete and correct linear representation of combus-
tion instability.  Then upon this platform we can erect
nonlinear models to extend the linear results into the
finite-amplitude regime.  We demonstrate these steps in
this paper.

C
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The third author is currently incorporating the re-
sulting computational modules in the SSP code.  The
validity of the basic analyses on which these are based
are tested in this paper by comparing predicted motor
behavior to experimental data from several previous
studies.14,31-36 We also demonstrate how the improved
theoretical understanding leads to new methods for
measuring the vital propellant response function.

 II. Improving Linear Stability Theory
It would be futile to mount an attack on the nonlinear
combustion instability problem without a valid linear
model upon which to build.  That is, if we cannot accu-
rately represent the gas motions at very low amplitudes
near the stability boundary, then there is scant hope of
resolving their behavior as they grow to finite ampli-
tude.  Let us first examine some typical experimental
data to test current SSP capabilities.

A. Blomshield’s Tactical Motor Tests

An extensive data set employing full scale pulsed
tactical rockets was secured in a series of highly in-
strumented firings.34 These exhibited the classical at-
tributes of nonlinear combustion instability.  Data re-
duction was accomplished by means of the linear SSP
algorithm.  Figure 1 shows the resulting correlation of
the measured growth rates to SSP predictions.  Data
points on the left represent decaying pulses; those on
the right were growing pulses.
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Fig. 1  Measured vs. theoretical growth rates.34

Note that exact agreement between theory and ex-
perimental data is indicated when the data point lies on
the diagonal line.   It is distressing that instability was
never predicted by SSP; all data points in Fig. 1 fall on
the negative side in terms of predicted growth rate.
When data from firings that exhibited decaying pulses
were compared to the SSP predictions, it was felt that
acceptable agreement had been demonstrated.  The
authors wrote “… in all cases the trends in measured
instability were confirmed by the Standard Stability
Program.” However, the growing pulses indicated ex-
tremely poor agreement!  The reason for this discrep-
ancy seems clear: decaying pulses correspond to tests
where negative net growth rates prevail.  Therefore, as
oscillations decay, they tend to approach amplitudes
sufficiently small to behave in a nearly linear fashion.
On the other hand, growing pulses rapidly reach am-
plitudes dominated by nonlinearity. It must be pointed
out that, even for decaying pulses, there is strong evi-
dence that nonlinear effects control the gas motions.
Predictive capability of SSP indicated on the left side of
Fig. 1 is not acceptable.

Of even greater concern is that the linear theory does
not predict the positive growth rates when pulsing leads
to growing disturbances; these are correctly character-
ized as triggered instabilities.  However, there is a sub-
tle implication that there must be some basic difference
between motors with growing pulses and those that
decay.  We will presently show that this is simply re-
lated to conditions leading to positive linear growth
rates.  That is, these motors are made susceptible to
pulsing because (despite the predictions of stability
from the SSP) they must be linearly unstable systems.
The important message here is that there is something
amiss with SSP.

The Blomshield data displays all of the attributes of
nonlinear behavior that are discussed in the Introduc-
tion.  The spectra corresponding to growing oscillations
were rich in harmonics indicating a steepened wave
structure.  The DC pressure shift was closely correlated
with the growth in the oscillations, and a distinct limit
cycle was observed.  Clearly, if such nonlinear instabil-
ity is to be understood, a prerequisite must be a valid
linear approximation on which to build.  This theme
guides the work described herein.

For emphasis, all motor configurations in this test
series were predicted to be stable as indicated by all
points in Fig. 4 lying in the lower half of the graph.
Therefore, it is the opinion of the authors that linear
theory fails in accounting for Blomshield’s measure-
ments.  Thus, we are challenged to identify the reasons
for the serious lack of agreement between the linear
theory and experimental data for cases in Fig. 4 where
linear theory should be applicable.



 –4–
American Institute of Aeronautics and Astronautics.

B. Perturbed Acoustic Wave Equation Models

Current understanding of the instability problem from
the linear point of view has evolved over many decades
and is the work of many outstanding analysts.  The lin-
ear theory has been constantly modified by incorporat-
ing experimental knowledge – the scientific method in
action!  However, the model upon which the current
version of SSP is based has inherent limitations that
result from assumptions used in its formulation.  We
now briefly review each of these and seek ways to
avoid the related pitfalls.

As already pointed out, the close correspondence
between measured wave oscillation frequency and the
acoustic normal mode frequencies of the combustion
chamber leads irresistibly to the notion that the ob-
served oscillations are acoustic pressure waves.  Then it
is natural to use a stability model based on the acoustic
wave equation with perturbation terms to account for
the mean flow, combustion at propellant surfaces, vis-
cous losses, and two-phase flow effects (particle
damping). Culick and his co-workers have honed this
scheme to a fine edge; it forms the basic foundation for
the SSP.2-8,11,12,19-22,27,28,37-42 Culick also uses this basic
structure for nonlinear stability theory by retaining sec-
ond order coupling terms.

There are several concerns with the acoustic wave
model.  The first of these is that such waves do not sat-
isfy correct boundary conditions at the chamber walls,
especially at burning surfaces.  Culick encountered this
difficulty in his one-dimensional (1D) stability calcula-
tions.3,11 In that analysis he correctly forced the un-
steady and unsteady flow to enter the chamber in the
normal (perpendicular to the propellant surface) direc-
tion.  Although allowed in the 1D formulation, this step
cannot be taken in the three-dimensional problem with-
out regard for the actual physical nature of the acoustic
boundary layer.  His one-D model then yielded new
stability terms that did not appear in the 3D analysis.
The most important of these was the flow turning effect,
which Culick theorized must represent “non-elastic”
losses incurred as gas particles entering normally are
forced into the axial direction of the primary wave mo-
tion.  The resulting damping correction factor proved in
most cases to be of the same order of magnitude as the
driving contributions from pressure coupling, the main
energy source for the oscillations.

C. The Flow Turning Energy Loss

Flow turning was incorporated from the outset in the
SSP and is frequently used for both 1D and 3D compu-
tations.  Its presence is the principal reason for overly
stable SSP predictions that may give comfort to rocket
industry executives, but leads to incorrect predictions in
many applications.

Users of the SSP code have the option of switching
flow turning on or off.  It has been often noted that

better predictions result when it is not activated.  On the
other hand, some analysts have felt that better agree-
ment results by including the flow turning correction.

A rational three-dimensional model for flow turning
was devised by the present authors, and its true origin
was discovered in the creation of unsteady vorticity at
propellant when gas motions are parallel to the bound-
ary.43-47 However, in this process, additional stability
corrections related to vorticity production were discov-
ered.  One of these was found to effectively cancel the
flow turning effect.  This was originally called the ro-
tational flow correction for want of a better name.44-46

D. The Boundary Layer Pumping Effect

Since the rotational flow correction, or boundary
layer pumping is a destabilizing influence equal in rank
to the flow turning damping, its origin and significance
must be understood.  We will do so without a lengthy
theoretical exposition.  It is only necessary to recall
well-established ideas from fundamental boundary
layer theory.

 Consider a flat plate starting impulsively and then
moving at constant speed into a fluid at rest as illus-
trated in Fig. 2a. A viscous boundary layer is formed in
order that the no-slip constraint is satisfied.  From the
point of view of an observer moving with the plate, the
growing boundary layer induces a flow normal to the
surface because of the displacement effect as shown in
Fig 2b.  This normal velocity correction is equivalent to
a source distribution on the plate.  In other words, the
mass defect caused by the boundary layer requires that
there be a normal induced velocity to account for the
mass entering the boundary layer parallel to the surface.

The same mass conservation effect explains the ori-
gin of the boundary layer pumping mechanism.

Fig. 2  The boundary layer displacement effect.



 –5–
American Institute of Aeronautics and Astronautics.

The unsteady flow near the burning surface (when
the gas motions are parallel to the surface) is controlled
by both the unsteady burning of the propellant in re-
sponse to the pressure fluctuations (pressure coupling)
and by unsteady boundary layer displacement.  To
visualize the latter, imagine that the plate in Fig. 2 un-
dergoes oscillation parallel to the surface.  This is the
familiar Stokes’ second problem.  An unsteady bound-
ary layer is produced and with it an unsteady normal
velocity fluctuation analogous to the steady one shown
in Fig. 2.  This is the origin of the rotational flow cor-
rection.  In order that mass conservation is satisfied,
this correction to the normal velocity created in the
pressure coupling process must be accounted for.  Flan-
dro44-46,48 found that the effect on the linear system
growth rate is given in dimensionless form by

   

!5 = 1

2Em
2

Mb
SbP

"" #pm( )2 dS (1)

where m is the mode integer.  This growth rate contri-
bution arises only at burning surfaces that experience a
parallel acoustic velocity component; hence the nota-
tion on the surface integral. The subscript, 5, pertains to
a numbering system used in Ref. (46) to account for the
various linear growth rate contributions. It was perhaps
fortuitous that this term when evaluated for a full length
cylindrical motor yields a growth contribution that can-
cels the corresponding flow turning correction. How-
ever, as we shall demonstrate, the flow turning is ex-
actly cancelled by other terms that have only recently
been discovered.  Their absence in the earlier analyses
was largely the result of applying the perturbed acoustic
wave formulation.  In order to achieve the correct re-
sult, it is necessary to account for all unsteady energy
pathways.  We will return to this matter in a later sub-
section.

In any event, the destabilizing mechanism described
here both in a simple physical analogy and in a com-
plete theoretical analysis must be incorporated in the
linear stability assessment whenever wave motions par-
allel to a burning surface are present.

E. Velocity Coupling

Another corrective mechanism was introduced by
McClure and his coworkers49 intended to account for
the effects of gas motions parallel to the burning sur-
face.  These rather elaborate analyses were quite natu-
rally configured as unsteady extensions of the steady
state combustion properties of solid propellants.  The
ideas of acoustic erosivity, velocity rectification, flow
reversal, and threshold amplitude were thus introduced
into a theoretical environment already cluttered with ill-
defined concepts.  The unfortunate aspect of all of these
velocity coupling ideas is that they assumed that the
parallel fluctuating gas velocity component acts directly

at the propellant surface leading to the concept of the
“cross-flow velocity” and associated paraphernalia.
The importance of the no-slip condition was not recog-
nized, and the literature is replete with discussions at-
tempting to sort out which part must be treated as non-
linear and how linear velocity coupling can arise.
There has never been consensus on these issues mainly
because of the questionable assumptions and lack of
experimental evidence, other than the usual nonlinear
instability attributes which we will show in this paper
are readily understood without the need for and ill-
defined velocity coupling mechanism.

Eventually, an ad hoc linear velocity coupling model
was adopted and it is still available in the SSP code.  In
order to use this growth rate term it is necessary to
specify a velocity coupling response function that, by
analogy with pressure coupling, must come from ex-
perimental measurements. No successful measurements
were ever demonstrated, so the user is forced to guess
at an appropriate value.  Since there is so much uncer-
tainty regarding the validity of velocity coupling, the
wise analyst always picks a low value for the response
function.  This leads to a growth rate that is usually an
unimportant contribution to the net system growth.  On
the other hand, one can always resort to adjusting val-
ues of the velocity coupling in an attempt to correct
discrepancies between observed instabilities and the
SSP predictions.  This is not an acceptable approach.  In
order to be a truly predictive, the algorithm must be
based only on mechanisms with a sound physical basis
and which are supported by calculated or experimen-
tally determined parameters.

More recent work (cf. Ref. 44) has accounted for the
correct boundary conditions; a rational model for the
effects of parallel wave incidence has emerged.

The authors suggest (with some trepidation) that the
growth term shown in Eq. (1) be renamed as the linear
velocity coupling.  Its origin is clearly the interaction of
the parallel gas motions with the burning surface.  Al-
though it does not modify the unsteady combustion
processes that are controlled by the pressure fluctua-
tions, it does indeed represent an additional stability
mechanism of considerable importance.  No response
function of uncertain origin is needed in its evaluation.

F. Other Linear Stability Effects

There are several other contributions to the gain/loss
balance that sets the net growth rate.46 For the most part
these are based on very sound theory, and at least at
present there does not seem to be a major need for revi-
sions.  Thus, the usual particle damping analysis so
elegantly worked out by Culick,8 and the effects of noz-
zle damping, are assumed to be adequately handled in
the present version of SSP.
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G. Applying the Energy Method

In order to achieve a reliable linear stability algo-
rithm, one must obviously account for all energy gains
and losses.  We have pointed out the pitfalls of at-
tempting to do this in the context of the perturbed
acoustic wave equation method.  It is clear that the gas
motions that we must model are only partly acoustic in
nature.  The acoustic assumption implies that rotational
flow effects and nonisentropic effects are of secondary
importance.  We have already demonstrated that this is
not the case.

To rectify this situation, it is necessary to reformulate
the problem and to carefully account for every possible
energy pathway. Full details of the resulting analytical
technique are given in a companion paper.50 We will
simply state the results here and point out the improve-
ments that have been made.

If the full energy balance is used in the problem for-
mulation, it is possible to carry out both the linear and
nonlinear calculations in one step.  Both linear and
nonlinear energy pathways are thus illuminated.  To
illustrate this, we will now briefly introduce one or two
intermediate steps.  The starting point is the conserva-
tion form of the energy equation
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where provision has been made for both dissipative and
non-dissipative energy changes.  If it is assumed that
both the steady and unsteady flowfields are known to
first-order accuracy, then the standard separation of
non-oscillatory and fluctuating variables leads to an
expression for the rate of change of the amplitude of the
wave system of the form

   

d!
dt

= " 1( )! +" 2( )! 2 +" 3( )!3 +L (3)

where the first coefficient is the required net linear
growth rate.

In working with Eq. (2) one finds the origin of the
flow turning and other rotational flow effects in the first
set of terms involving the vorticity on the right-hand
side.  In the process of evaluating the system stability,
we find that these terms lead to a stability contribution
of the form

   
!4

1( ) =
MbP

2E2
U " #u $ #% + #u "U $ #%( )dV

V
&&& (4)

where the notation again corresponds to that introduced
in Ref. 46.  The first term in this expression was miss-
ing in the stability assessment given in that report be-
cause a complete energy balance was not used.  The
method employed in that work was based, in effect, on
the acoustic wave equation approach; therefore, only a
partial accounting of rotational flow corrections was
made.  Furthermore, the results were based on the isen-
tropic assumptions, which is another limitation we
avoid in the new computations.

Flow turning was first identified by Culick3,11 in his
one-dimensional calculations as a result of forcing sat-
isfaction the no-slip condition (which could not be ac-
complished in his three-dimensional model because of
the irrotational flow assumption).  Flandro44-47 later
showed that the actual source of the flow turning was
the irrotational part of the second term in Eq. (4).  None
of the earlier stability calculations incorporated all of
the rotational terms included in Eq. (4).  These appear
because we have now used a complete energy balance
equation.  When all of the terms are properly accounted
for, then application of the familiar scalar triple prod-
uct identity

 
A ! B "C( ) = B ! C " A( ) (5)

leads to

  

U ! "u # "$ + "u !U # "$ =

= % "u !U # "$ + "u !U # "$ = 0
(6)

Flow turning has now utterly disappeared, having been
cancelled exactly. This result agrees with much experi-
mental evidence and with other key analyses.51,52

This correction to the linear growth rate leads to ma-
jor improvement in agreement with experimental data.
The lesson here is that only by accounting for all un-
steady energy gains and losses can a correct linear sta-
bility theory be achieved.  Other terms in Eq. (2) once
thought to have important stability implications do not
appear when the integrals are carefully evaluated.

One then finds that the linear stability of the system
is controlled by
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where particle damping, distributed combustion, and
viscous damping effects are not shown.  Although the
first two terms are the familiar pressure coupling and
nozzle damping effects, some important changes have
appeared.  Of great significance is the presence of the
quasi-steady mean pressure in the linear growth rate
expression.  This is the result of allowing the mean
properties to change slowly (on the scale of the fluctu-
ating properties) with time.  This is a major modifica-
tion and is coupled with the calculation of the important
mean pressure excursion (DC shift) that we will address
shortly.  Also, as a result of eliminating the isentropic
flow assumption there are new appearances of the spe-
cific heat ratio, !, and there are corresponding changes
in the system reference energy.  We find that

   

E2 =
1

! P

"p

!
#
$%

&
'(

2

+ 1
2

P "u ) "u dV
V
*** (8)

where the kinetic energy term must now be based on
the full acoustic/shear wave model.  This results in a
kinetic energy contribution which is approximately
25% larger than for the acoustic model alone.46 Again,
notice the presence of the quasi-steady mean pressure in
this expression.  At the outset we expect significant
coupling between changes in the wave amplitude and in
the chamber pressure as we seek to model the full sys-
tem time history.

The corrections introduced in the linear model and
summarized in Eq. (7), partially account for the poor
agreement between theory and experiment portrayed in
Fig. 1.  It is plain that major nonlinear interactions are
reflected in the measurements.  Thus, to make further
progress, we must seek to introduce nonlinear correc-
tions that can be used effectively in the SSP computa-
tional suite.

 III. Nonlinear Instability Algorithm
In this section we briefly discuss what is needed from

the theoretical standpoint to provide a useful analytical
framework for combustion instability. It is necessary to
accommodate the features we have identified as key
elements in a correct physical representation.  We must
discard models based on the acoustic point of view.
Nonlinear energy losses in steep wave fronts and en-
ergy flow to the wave structure from combustion must
be accommodated. By far the most effective method for
incorporating this large array of physical/chemical in-
teractions is by application of the global nonlinear en-
ergy balance.  Methods based on the usual perturbed
acoustic wave equation cannot properly account for the
many interactions that must be included. To make the
mathematical problem tractable, we choose to avoid

fashionable numerical strategies such as method of
characteristics or a full CFD treatment of the problem.
Either of these techniques would likely represent a
handicap in approaching the problem solution we seek
here.

There is a vast array of data that prove that the wave
motions characterizing the nonlinear instability problem
are shock-like rather than simple acoustic waves.  A
very thorough discussion of the facet of nonlinear in-
stability is given in a companion paper.50  Thus, what-
ever is done in modeling nonlinear effects, this feature
must play a major role.  In Ref. 50 we demonstrate that
the natural evolution of an initially linear system com-
posed of superimposed standing acoustic modes will
transition to a traveling shock wave if the system in
linearly unstable.  That is, if the linear growth rate is
positive, given sufficient time (sometimes referred to as
the delay time16,17), the wave system will steepen into a
shock if there is enough energy to give nonzero ampli-
tude to one or more of the constituent acoustic modes.
This process can be made to occur almost instantane-
ously if the chamber is pulsed as is often done in motor
stability testing.

A. Culick’s Nonlinear Model

Building on his linear acoustic wave equation model,
Culick has approached the nonlinear instability problem
by carrying higher-order terms that represent the cou-
pling between the acoustic modes.5,21,28

His nonlinear model traces cascading of energy from
lower-order to higher-order modes.  Figure 3 shows a
frame from an animation of the development of the
wave system with time predicted by Culick’s model.
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Fig. 3  Culick’s fully steepened wave.



 –8–
American Institute of Aeronautics and Astronautics.

At the instant shown, the wave has nearly reached its
final limit condition, and the wave front is moving to
the left.  This wave is the composite of twenty acoustic
modes.  Energy from the lower order modes has cas-
caded to the higher modes until the stationary state
shown in the figure has been reached.  This “mode cou-
pling” effect clearly represents the natural steepening
process.  What began as a set of standing acoustic
modes has transitioned into a single traveling steep-
fronted wave.  Once limiting has occurred, the wave
simply bounces back and forth from one end of the
chamber to the other.  The period of oscillation corre-
sponds to the first longitudinal acoustic period.  What is
shown here agrees in every respect with the fully steep-
ened condition described in earlier works by the present
writer.23,24The calculations and animation from which
Fig. 3 was taken were carried out by J. French.  He has
fully implemented Culick’s nonlinear model in the SSP.
It can be run for longitudinal modes with arbitrary
chamber cross-sectional area.

B. Mathematical Strategy

In the problem of central interest here, we are not
concerned with the steepening process, per se, rather,
we wish to understand the gas motions in the fully
steepened state.  Figure 4 illustrates several aspects of
the problem we must solve. Plots of this sort can be
made by application of the model implicit in Eq. (3).

With this information in hand, one must now seek to
take best advantage of it.  Experiments show that if the
system is pulsed or if measurements are taken when it is
in a fully steepened state, the acoustic components will
display very nearly fixed relative amplitudes.  We de-
scribe this as the frozen state,23,24 in which it is no
longer necessary to account for energy transfer between
the modes. A simple model can be used to represent the
composite wave system.

Fig. 4  Nonlinear evolution of system amplitude.

This diagram shows in schematic form all features of
combustion instability that appear experimentally.
Furthermore, it provides a useful way to categorize the
various analytical methods by which we attempt to un-
derstand this very complicated physical problem.  Fig-
ure 6 shows that if the waves grow from noise in the
linear fashion, the motion is linear and each acoustic
mode grows individually according to the balance of
energy gains and losses peculiar to that operating fre-
quency.  In general, the lowest order mode grows most
rapidly because it requires less energy to excite.  As the
oscillations grow to finite amplitude, nonlinear effects
appear and energy is redistributed from lower to higher
modal components; this cascading process is the basis
of Culick’s nonlinear model.

As the wave steepens, the relative amplitudes of the
constituent acoustic modes reach a frozen state corre-
sponding to shock-like behavior.  This is the fully non-
linear state illustrated in the figure.  In pulse testing of
motors, the steepening process is almost instantaneous.
For example, Brownlee16 notes that when the pulse is
fired, “… the injected flow disturbance traversed the
length of the motor, partially reflected at the nozzle
end, and became a steep-fronted shock-like wave in one
cycle.” Thus, in modeling such effects, it is unnecessary
to trace the full steepening process.  The relative wave
amplitudes are readily estimated from a large database
of experimental data.  It is readily established that pre-
cise knowledge of the relative amplitudes is not neces-
sary to achieve an accurate estimate of the limit cycle
and triggering amplitudes.

We must formulate a mathematical strategy that
yields the essential information, namely the limit am-
plitude reached by the system in the fully steepened
state.  This is the information required by the motor
designer in assessing potential vibration levels, and as
we will show, the severity of heat loads and force levels
on fragile system components.

C. Traveling Shocked Acoustic Waves by Super-
position of Standing Normal Modes

A key to simplifying the nonlinear problem is to as-
sume that the fully steepened traveling wave is a com-
posite of the chamber normal modes:

   
p

1( ) r,t( ) = ! t( ) An t( )" n r( )
n=1

#

$ (9)

where "(t) is the instantaneous amplitude and n is the
mode integer. This is a proven simplifying strategy23,24

that follows directly as the final form reached in Cu-
lick’s calculations.  It conforms well to all experimental
features that must be accommodated in our solution
algorithm.  Before proceeding with the analysis, let us
first test this model in several ways to see if it contains
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the necessary features and flexibility.  Equation (9)
provides a useful tool and a way to avoid all computa-
tional difficulties associated with modeling of the un-
steady flowfield.  In the case of simple longitudinal
oscillations in a chamber of constant cross section, the
functions in the summation are, for example,
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where L is the chamber length and z is the axial posi-
tion.  If Eq. (1) is evaluated with these parameters, the
waveform illustrated in Fig. 5a is produced.  This
should be compared to a measured waveform in Fig.
5b.  The data shown came from precision pressure
measurements in a liquid rocket preburner undergoing
high-amplitude nonlinear longitudinal oscillations.

It is clear that Eq. (9) yields an excellent model of the
actual waveform.  It can be used to represent any ex-
perimental waveform by fitting a Fourier series to the
data.  It is known that once the wave has reached the
limit cycle conditions, the waveform remains essen-
tially frozen; only the amplitude then changes with
time. This is a truly valuable and very powerful com-
putational simplification.

Fig. 5  Measured vs. calculated waveform.

D. Shockwaves in Blomshield’s Motor Data

To further test the application of Eq. (9) we can (by
using spectral measurements that give each acoustic
mode amplitude as a function of frequency) simulate
the actual wave motion in the motor test.  Figure 6
shows data of this type for a full-star motor with nomi-
nal first longitudinal (1L) mode frequency of about 300
Hz.

Note that the relative amplitudes stay fixed for a con-
siderable time period as we have assumed in Eq. (9).
Using these amplitudes in Eq. (9) we can examine the
wave form of the resulting traveling pressure oscilla-
tion.  Figure 7 shows such a simulation for the spectrum
of Fig. 6.  A half-cycle is shown with the traveling
wave traveling from left to right. Ten modes were used.

Fig. 6  Nonlinear evolution of system amplitude.
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Fig. 7  Shockwave in motor no. 7.34
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The motion shown in the plot repeats with the steep
wave bouncing to and fro from one end to the other.
What is shown agrees fully with the final state reached
in a typical simulation from Culick’s model.  The bene-
fit from using Eq. (9) is that a time consuming transi-
tion calculation is not needed.  A reasonable analytic
wave form model of the type shown in Eq. (10) can be
used or, as we have demonstrated, actual spectral data
measured in the subject burner can be used in repre-
senting the nonlinear oscillations.

E. Shockwave Energy Loss

It is now required to examine nonlinear terms arising
from the expansion of Eq. (2). The most important of
these are the energy losses incurred in steep wave
fronts.  Let us focus on the set of terms in Eq. (2) that
are associated with shock layer effects.  The details of
the calculation are described in Ref. 50.  After temporal
and spatial averaging, we are left with

   

! 2

" #1( )Pr
$2T + !d

2 $ %u( )2 dV
V
&&& (11)

Those readers with training in gasdynamics will recog-
nize in this term the source of the entropy gain and as-
sociated energy loss in a steep wave front.  In fact, this
term is usually ignored because it is only important if
there are very steep gradients in particle velocity and
temperature.  Let us evaluate this term by considering a
very small portion of the chamber volume that encom-
passes the shock layer formed by a steepened wave
system as described earlier.  The shock layer can be
treated as a region of nonuniformity as illustrated in
Fig. 8.

Following standard procedures, Eq. (11) can be re-
duced to the classical textbook result showing the origin
of the entropy gain in the shockwave.  By manipula-
tions using the Rankine-Hugoniot equations, we find
the formula for the energy loss in the steep wave to be
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which leads to a simple approximation for the nonlinear
stability parameter in Eq. (17), namely
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!  is a factor dependent upon the assumed waveform

for the traveling shock wave, and reference area is the
chamber port area at the shock front.  In the longitudi-
nal case, this is simply the cross-sectional area of the
duct at a convenient location.

Fig. 8  Shock layer structure.

This nonlinear loss effect is the principal damping
mechanism in both liquid and solid propellant motors,
and is the key element in understanding the limit cycle
behavior so often encountered when finite amplitude
waves appear.  It is tempting to carry the implied per-
turbation series in Eq. (3) to orders higher than second
in the system amplitude.  However, this is not justified
in the present situation because we assume that the un-
steady flow-field and mode shape information for the
chamber are accurate only to the first order in wave
amplitude.  Let us now test the results we have found
against experimental evidence.

F. Limit Cycle Amplitude

A very important goal of the present work is the ac-
curate estimation of the limit amplitude to which oscil-
lations will rise in the course of their growth.  Linear
theory as in the SSP gives no information in this regard.
There is, however, a well-known rule of thumb that
suggests that large values of the linear growth rate (es-
timated for example by using Eq. (7)) correlate with
large values of the limit cycle amplitude.  Clearly it is
the latter amplitude that is of concern, since it is a
measure of vibration and other impacts on the system
due to the oscillations.
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What is required is information concerning the limit
amplitude reached as the wave system approaches a
fully steepened form.  Equation (3) provides the re-
quired limit amplitude.  In the fully steepened state, the
wave amplitude is stationary, and it is readily seen that
the limit amplitude is

 

!limit = "
# 1( )

# 2( ) (14)

This is physically meaningful only when  !
2( )  is nega-

tive.  This will always be the case for the shock loss
mechanism described by Eq. (13).  To the knowledge of
the authors, there has never been either experimental or
theoretical evidence of second order interactions that
are not damping effects.  However, there may be non-
linear driving mechanisms yet to be discovered.  Equa-
tion (14) has been tested for many solid rocket data sets
and has been found to yield an excellent estimate of the
limit amplitude.  Again, note that good results depend
critically on a valid linear stability estimate.

Jensen and Beckstead successfully used the equiva-
lent of Eq. (14) in developing their well-known Pi
Theorem.23,33  This correlation allowed improved data
reduction for T-burner tests, thus yielding far better
response function values than can be secured by the
usual blind application of the SSP algorithm.  Why this
promising approach was not adopted more generally
remains a mystery.

G. Triggering Amplitude

This is a controversial subject.  If one examines Fig.
4, in the context of Eq. (3) extended to fourth order in
the wave amplitude, it is apparent that it is theoretically
possible to raise the amplitude of a system oscillating in
its lowest limit cycle to a yet higher limit amplitude by
adding sufficient energy in a strong pulse.  This is what
might be termed true triggering.  Careful examination
of solid rocket data has convinced the authors that this
scenario seldom fits what is actually observed.  In every
case, motors that exhibit “triggering” are linearly un-
stable motors.  That is, they are not stable motors that
are triggered into a high-amplitude limit cycle.  When
such burners operate without deliberate pulsing, the
wave system grows so slowly from the always-present
random noise, that oscillations are often barely measur-
able by the end of the burn.  However, when the motor
is disturbed by a sufficiently large pulse, the broadband
energy increment can excite finite amplitude steep-
fronted waves.  The system then grows rapidly to the
limit cycle amplitude.  Calculations using Eq. (3) agree
very well with actual observations.  We believe that
true triggering is seldom, if ever, observed in actual
rocket motors.  Much of the confusion over this issue
has resulted from application of faulty analytical codes

that almost always predict a linearly stable system.  A
classic example can be found in the Blomshield data.34

Every motor fired in this test series was predicted by
the SSP to be linearly stable.  In fact there is no doubt
that many of the motors were linearly unstable at least
during part of the firing.  Unless pulsed, only very low
level oscillations were present.  Sufficiently strong
pulsing during linearly unstable operation led to violent
oscillations in several tests.

These observations help us to understand the seem-
ingly contradictory and nearly inexplicable information
depicted in Fig. 1.  When confronted by such data,
many experimentalists tend to explain the scatter and
obvious departure from expected behavior (usually
based on incorrect use of SSP data reduction) by in-
voking errors or uncertainties in the T-burner data
needed in the SSP evaluations.  As already pointed out,
there is cause to worry about the response function data
itself; it is usually determined by applying the SSP to
the raw T-burner data. We see here a classical case of
the compounding of errors.

 IV. The DC Pressure Shift
The mean pressure rise, or DC shift, is an oft-

observed feature of nonlinear instability.  It is obviously
closely coupled to the growth and limiting of the sys-
tem of acoustic waves. A test of the validity of the the-
ory presented in this paper is its ability to predict this
important classical feature of combustion instability.
What we will demonstrate here is that the same mecha-
nism, pressure coupling, that drives the oscillations
(first term in Eq. (7)) is also the source of the DC shift
phenomenon.

Until now, explaining the mean pressure excursion
required invoking ad hoc velocity coupling or “acoustic
erosivity” effects.53 These confusing and often simply
misleading paraphernalia can now be discarded.

Clearly, any attempt to understand one nonlinear
feature without due attention to other closely connected
features does not take full advantage of the experimen-
tal data.  In this section we demonstrate the benefits of
accommodating all of the observations in formulating
the mathematical approach.

Previous theoretical models have been based on the
assumption that the mean gas properties remain con-
stant.  For example, Culick writes: “…we assume that
the average values do not vary with time.  That is not an
essential assumption, but to correct it requires consider-
able elaboration not justified here.  However, there are
practical situations in which changes in the average
values, particularly the pressure, are important.  No
thorough analysis of such cases has been given.”8 In
what follows we present the missing analysis.

The formulation described in the last section has been
deliberately written without the assumption of constant
mean properties.  Thus we are able to study the cou-
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pling between the unsteady and quasi-steady gas mo-
tions.  It is assumed that the chamber mean temperature
is controlled by combustion heat release and is there-
fore essentially constant.  Then the state equation shows
that mean pressure and density are slowly changing
functions of time.  The surface reference Mach number
and the wave amplitude are also slow functions of time
as already demonstrated.

A. Formula for Rate of Change of Mean Pressure

The source of the DC shift is readily found if nonlin-
ear terms are retained in the continuity equation.  Ex-
panding Eq. (6) and taking the time average yields
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where the first term on the right represents quasi-steady
mass flux at the chamber boundaries due to combustion
and nozzle outflow.  The similarity of the second term
to the pressure-coupled acoustic driving in Eq. (21) is
intriguing.  Integration over the chamber volume leads
to the equation for the rate of change of the quasi-
steady chamber operating pressure:
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The first term is handled by means of the standard
steady internal ballistics calculations; the second leads
to the mean pressure shift.  Notice that it is proportional
to the second order in the wave amplitude.  Equation
(16) confirms the anticipated coupling between the
mean pressure rise and the growth and limiting of the
pressure oscillations.

B. Simulating and Predicting Motor Behavior

The results for the nonlinear system growth and the
corresponding mean pressure excursion must be com-
puted simultaneously.  When the several system models
are collected and the integrals are performed, we are
left with a pair of coupled nonlinear, ordinary differen-
tial equations:
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These are readily solved using a simple numerical algo-
rithm.  The result is the time history of the growth and
limiting of the pressure oscillation amplitude and the
accompanying growth and limiting of the mean pres-
sure amplitude.  These results agree in every way with
motor data.

C. Response Function from the DC Shift

A test of the validity of any new theory is its ability
to predict new information not available in the theory
that it is intended to replace.  We will briefly demon-
strate that the new nonlinear combustion instability
theory passes this test.

Consider a case in which the limit amplitude has
been reached and the mean pressure is no longer grow-
ing.  We will demonstrate in the next section using ex-
perimental data that the rapid growth of both mean and
fluctuating pressure cease at very nearly the same time.
At this condition, the rate of change of pressure is zero,
and Eq. (16) can be evaluated.  One finds
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where the terms in the square brackets represent the
classical solid motor internal ballistics.  The last term is
clearly related to the admittance function for the pro-
pellant.  Write, for example, for normal wave incidence
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Then we can solve for the admittance value for a given
wave geometry and measured pressure shift.  After sev-
eral lines of algebra we find that
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where n is the burning rate exponent.  The pressure
ratio on the left-hand side is the ratio of the measure
mean pressure shift to the expected mean pressure when
no instability is present.  This is easily calculated using
the SPP or other internal ballistics codes.  The two pa-
rameters shown are

  
C1 =

0 waves normal to surface

1 waves parallel to surface
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(21)

which accounts for the velocity coupling when waves
are parallel to the surface.  Also one must know
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which accounts for the effective mode shape of the
wave.  For the case of longitudinal oscillations, this
coefficient is approximately 0.5.

Assuming that the wave limit amplitude and mean
pressure have been measured, then one can solve Eq.
(20) to find the admittance function.
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For example, for motor 3 in Blomshield’s data set we
find that
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Inserting measured quantities yields an admittance
value of approximately

  
Ab

r( ) = 4

This agrees reasonably well with T-burner measure-
ments.  This approach will require considerable refine-
ment, but it may eventually lead to improved experi-
mental techniques for characterizing the propellant re-
sponse function.

 V. Results
The methods described here are being used to en-

hance the SSP. This will enable the rocket ana-
lyst/designer to predict the stability of a given system
and to diagnose sets of experimental data.

We show here some preliminary results from appli-
cation of Eqs. (17) to Blomshield’s data set.34-36,54,55  In
virtually all of his motor configurations, the standard
stability prediction code predicted stable behavior as
depicted in Fig. 1.  Yet, many of the motors were read-
ily pulsed into high-amplitude oscillations.  We wish to
understand this apparent triggering phenomenon. Nu-
merical solutions of Eq. (17) provide the required in-
formation.

Figure 9 shows a pressure vs. time trace for a cylin-
drical motor from this test series.
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Fig. 9  Pressure vs. time for motor no. 9.34

The mean pressure shift and pressure oscillations are
clearly shown.  Data came from a pressure transducer at
the motor forward end.  This motor exhibited a spec-
trum dominated by the 1L (first longitudinal mode)
accompanied by a great many harmonics representing
strong evidence for steep-fronted waves as already de-
scribed. The progressive pressure rise results from the
increasing burning surface area with time.
Figure 10 shows the predicted behavior of this motor
found by solving Eqs. (32) using geometrical and
physical data from the tests; no curve fitting was em-
ployed.

All key attributes of the actual data are well repre-
sented.  Notice that even though the system is linearly
unstable, no wave growth or DC shift occurs unless the
motor is pulsed.  Examination of the numerical results
shows that this motor was marginally stable during the
first part of the burn, but the net linear growth rate be-
came positive after about t = 0.5 sec.  The motor was
then susceptible to pulsing, and could be “triggered”
into violent oscillations.  Parametric studies have shown
that the predicted DC shift and corresponding oscilla-
tion limit cycle amplitude are insensitive to the pulse
amplitude; this agrees with experimental findings.

Similar comparisons of predicted and measured be-
havior are shown in Figs. 11-14 for the other two cylin-
drical motors (10 and 13) fired in this test series.  Motor
10 follows closely the pattern that was predicted for
motor 9.  Both of these were full-length motors with
oscillation frequency of about 300 Hz.  Motor 13 was a
half-length motor with otherwise similar geometry.
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Pulse No. 1

Fig. 11  Pressure vs. time for motor no. 10.34

Fig. 12  Pressure vs. time for motor no. 13.34

Motors 11 and 13 had nozzles sized to yield an average
operating pressure of 500 psi; Motor 9 was intended to
operate at about 1000 psi.

All motors described here were predicted to be stable
throughout the firing by the SSP.  Again, we see evi-
dence of the failure of this analytical tool.

Note that in both full length motors our new predic-
tive computer code has captured all of the main features
shown in the experimental data.

In the half-length motor (13) we see some interesting
results.  This motor was pulsed three times and did not
exhibit the violent oscillations observed in the other two
tests.  However, careful inspection of the data reveals
that oscillations were indeed present despite the predic-
tion from the SSP code that motor 13 was
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a stable motor.  Since a large DC shift did not appear,
the authors of Ref. (34) expressed their belief that this
was indeed a stable firing in agreement with the SSP
prediction.  If the reader will examine the last part of
the pressure time trace evidence of a DC shift is clearly
present.  It apparently grew without a pulse from pres-
sure oscillations already in the system.

For motor. 13 the new predictive algorithm yields a
result that is in good agreement with the measurements.
No violent DC pressure rise was predicted, but, again, a
small elevation was present as in the experimental data.
We must conclude that motor 13 was indeed unstable!
The main reason for the less violent oscillations was the
reduced propellant surface area in the half-length grain.
The primary energy source for both the oscillations and
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the DC pressure rise was thereby much reduced.  Thus,
on the basis of a limited number of test cases we feel
that the basic validity of our approach has been demon-
strated.

To summarize: we have devised a new procedure for
estimating the tendency for a given rocket motor con-
figuration to exhibit nonlinear combustion instability.
The new algorithm gives not only growth rate informa-
tion and the associated stability maps, but more impor-
tantly predicts the evolution of the system oscillation
amplitude and the mean pressure shift.  These analyti-
cal/numerical tools promise to give the motor designer
the ability to avoid design features that may promote
combustion instability much earlier in the development
cycle than possible using other methods.

If combustion instability problems are encountered in
the motor test phase of development, these new tools
yield an improved method for correlating experimental
data and correctly interpreting the results.  They also
provide the ability to test and perfect corrective mecha-
nisms if these become necessary.

 VI. Concluding Remarks
In this paper we have demonstrated a predictive algo-

rithm based on sound theoretical foundations that fully
explains the nonlinear behavior observed in unstable
rocket motor systems.  The close connection between
pressure coupling, the main linear driving mechanism
in combustion instability, and the DC pressure shift has
been demonstrated.  Knowledge of the physical pa-
rameters that control the pressure coupling, namely the
admittance function or response function of the propel-
lant, makes it possible to determine the growth and
limiting amplitude of both the wave system and the
accompanying mean pressure shift.

This research has been conducted from the outset
with the intention that it be used in constructing an im-
proved version of the Standard Stability Prediction
code.

Much work is left in refining the new computational
technique.  Eventually these tools will be available in a
practical form and with a powerful user interface to
enable the rocket motor engineer to better deal with
combustion instability problems.
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