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 Nonlinear pressure oscillations have been observed in liquid propellant rocket instability 
preburner devices.  Unlike the familiar transverse mode instabilities that characterize 
primary combustion chambers, these oscillations appear as longitudinal gas motions with 
frequencies that are typical of the chamber axial acoustic modes.  In several respects, the 
phenomenon is similar to longitudinal mode combustion instability appearing in low-smoke 
solid propellant motors.  An accompanying feature is evidence of steep-fronted wave motions 
with very high amplitude.  Clearly, gas motions of this type threaten the mechanical 
integrity of associated engine components and create unacceptably high vibration levels.  
This paper focuses on development of the analytical tools needed to predict, diagnose, and 
correct instabilities of this type.  For this purpose, mechanisms that lead to steep-fronted, 
high-amplitude pressure waves are described in detail.  It is shown that such gas motions are 
the outcome of the natural steepening process in which initially low-amplitude standing 
acoustic waves grow into shock-like disturbances.  The energy source that promotes this 
behavior is a combination of unsteady combustion energy release and interactions with the 
quasi-steady mean chamber flow.  Since shock waves characterize the gas motions, 
detonation-like mechanisms may well control the unsteady combustion processes.  When the 
energy gains exceed the losses (represented mainly by nozzle and viscous damping), the 
waves can rapidly grow to a finite amplitude limit cycle.  Analytical tools are described that 
allow the prediction of the limit cycle amplitude and show the dependence of this wave 
amplitude on the system geometry and other design parameters.  This information can be 
used to guide corrective procedures that mitigate or eliminate the oscillations. 

  Nomenclature  
pA  = unsteady pressure amplitude 

0
  = oscillatory energy density 

a  = mean speed of sound 
e
E  = time-averaged oscillatory system energy 

2
mE  = normalization constant for mode m  

mk  = wave number for axial mode m 
L  = chamber length 
m  = mode number 
M  = reference chamber Mach number 
n   = outward pointing unit normal vector 
p  = pressure 
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P  = mean chamber pressure 
r   = radial position 
R  = chamber radius 
S  = Strouhal number, /m bk M  
t   = time 
u   = oscillatory velocity vector  

,r z
  = axial position  

U U  = mean flow velocity component 
z
 
α  = growth rate (dimensional, ) 1sec−

δ  = reciprocal of square root of the acoustic 
Reynolds number, 0/( )a Rν  

dδ  = compressible viscous length, 4
3( )δ η µ +  

ε   = wave amplitude, 0/( )pA pγ  
γ   = ratio of specific heats 
η   = second coefficient of viscosity, 2

3 µ−  
ν   = kinematic viscosity, /µ ρ  
ρ  = density 
ω  = unsteady vorticity magnitude 
Ω  = mean vorticity magnitude 
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Subscripts  
b   = combustion zone 
m  = specific to a given mode number 
 
Superscripts 
*  = dimensional quantity 
~  = vortical (rotational) part 
^  = acoustic (irrotational) part 
( ), ( i ) = part of a complex variable r

 = mean quantity 

I. Introduction 
OMBUSTION instability in liquid propellant 
engines is most often associated with high 

frequency transverse acoustic modes. Recent 
experiments involving liquid rocket preburners have 
indicated the presence of another form of instability that 
is quite similar to that observed in solid propellant 
rockets with cylindrical combustion chambers and 
internal-burning propellant grains.1-4  In these tests, 
oscillations are observed that are clearly associated with 
longitudinal acoustic waves: calculated frequencies 
agree closely with measured data; as usual, the first 
longitudinal mode is seen to constitute the predominant 
spectral component.   
  Such oscillations are not desirable from several 
standpoints; vibration levels measured in the tests often 
exceed 190 g and the oscillations are accompanied by 
mean pressure changes of significant amplitude.  Both 
of these features represent a threat to the structural 
integrity of the system.  Chamber pressure excursions 
are undesirable as they can alter the performance of the 
injection system in unpredictable ways.   
  An important feature of the data is the presence of 
a rich set of harmonics to the extent that the composite 
waveform appears to be steep-fronted.  Again, these 
features are similar to those experienced in high-
amplitude triggered instabilities in solid motors; it has 
been shown that in those systems the wave motions are 
traveling shock-like waves rather than standing acoustic 
waves.5-8  This solid motor problem was once dubbed 
irregular burning because the oscillations were 
habitually coupled with a distinct mean pressure 
excursion, the dreaded DC shift.2,9  Many early solid 
motor tests ended in catastrophic structural failure due 
to the mean pressure rise. 
  In this paper we bring to bear a new set of 
analytical tools that have evolved from many decades 
of struggle with the solid propellant rocket combustion 
instability problem.  Recent work by the present authors 
has led to considerable progress in the development of 
useful predictive capability.  Companion papers 
describe the success of these efforts.10,11  To be useful, 
such predictive tools must go far beyond the usual 

“growth rate” calculations and stability maps that are 
commonly used.  It is necessary to accommodate the 
nonlinear aspects of the problem in detail.  The 
presence of steep-fronted waves and the associated 
mean pressure rise clearly indicate the presence of 
nonlinear behavior in the preburner instability problem.  
In order to handle this situation, the analysis must 
account for: 

• Steep-fronted, traveling, shocked pressure 
waves. 

• Combustion coupling including: unsteady 
distributed energy release, detonation wave 
phenomena, and interactions with the 
propellant injection processes. 

• Surface effects including heat transfer and 
frictional energy losses. 

  Each of these elements will receive due 
consideration in the approach to be laid out here.  In the 
process, application to prediction, diagnosis and 
correction of liquid engine preburner longitudinal 
oscillations will be demonstrated.  

II. Experimental Observations 
  In this section, we briefly outline what has been 
observed in recent preburner test experience.  Due to 
the sensitive nature of this information, actual data is 
not displayed.  However, similar data from solid rockets 
tests will be described in considerable detail.  The 
similarities between the two data sets will be quite 
apparent.   

A. Description of Typical Preburner Geometry  
  A very simple burner geometry will be described 
consisting of an injector surface at the head-end through 
which liquid hydrogen and liquid oxygen are introduced 
into the combustion chamber.  Figure 1 is a schematic 
of the test apparatus.  The mixture is deliberately very 
fuel rich in the case described.  In the preburner test 
device, a choked Laval nozzle is utilized as shown in 
the diagram.  Other features sometimes employed 
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Fig. 1  Schematic of preburner test device. 
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include mixing rings or flame holders, as well as 
acoustic cavities intended to suppress undesirable high-
frequency tangential mode gas oscillations.  The latter 
device, does not, unfortunately, provide significant 
damping for the control of longitudinal oscillations. 

B. Description of Typical Preburner Tests  
  Tests are conducted by ramping up the fuel and 
oxidizer flows to an intermediate throttle level.  In some 
experiments, it was during this mid-throttle level that 
high-amplitude, longitudinal mode pressure oscillations 
were experienced.  When throttle setting was further 
advanced, the oscillations were suppressed.  
  A typical record with low frequency resolution is 
shown in Fig. 2a.  Pressure sensors are placed at several 
locations at the chamber boundaries including the 
injector surface and the nozzle entrance.  Pressure data 
are also secured at points within the LOX and LH2 
injectors.  Figure 2b shows a typical steep-fronted wave 
form measured near the injector face; the frequency of 
this wave closely corresponds to the first longitudinal 
acoustic mode.  The spectrum is illustrated in Fig. 2c.  
Pressure data are also secured at points within the LOX 
and LH2 injectors.  In general, these measurements also 
show spectral characteristics, mean pressure shift, and 

oscillations that follow those measured in the main 
chamber.  However, there are phase shifts as one would 
expect between the LOX and LH2 pressure fluctuations 
and the oscillations measured within the combustion 
chamber near the injector face.  This set of observations 
play a major role in identifying the mechanisms that 
lead to the oscillations.  These matters will be carefully 
examined after the basic mathematical formulation 
needed in interpreting the data is set forth. 

III. Analysis 
  Classical analyses have utilized the assumption of a 
system of irrotational acoustic waves.  Experimental 
data often motivates this approach since, as in the 
preburner case described here, observed oscillation 
frequencies are readily correlated with the standing 
acoustic modes of the chamber. However, adopting an 
acoustic basis for an instability theory results in the 
inability to accommodate correct boundary conditions 
(such as the no-slip condition at chamber boundaries) 
and the loss of important flow features (such as 
unsteady vorticity that can have significant bearing on 
the validity of the results).  It is also difficult to 
properly treat finite amplitude waves using an acoustic 
model.  There is much evidence that the high-amplitude 
wave systems in unstable rockets are more akin to 
traveling shock fronts.12-15 Early efforts were made to 
account for steepened wave effects,6-7 but the analytical 
methods applied did not lead to practical solutions.  
These were usually applications of the method of 
characteristics that did not lend themselves all too well 
to generalized computational techniques of the kind 
needed for a practical stability assessment algorithm.   

 

 
Fig. 2  Typical pressure measurements. 

A. Experience with Solid Propellant Motors  
  The well-known failure of predictive algorithms in 
solid rocket analysis is largely the result of neglect of 
key features of the unsteady flow of combustion 
products.  In particular, one must account for effects of 
vorticity production and propagation, and for the 
tendency of initially weak (essentially acoustic) waves 
to steepen into shock-like wave motions.  When such 
waves interact with a combustible mixture of injectants, 
then the possibility for unsteady detonation waves must 
also be addressed.  Substantial improvement in 
predictive methodology results from inclusion of these 
features which, until recently, were not included in 
either liquid or solid motor analyses. 
  Solid propellant rocket motor analysis as applied in 
the SSP (Standard Stability Prediction) computer 
program, implements Culick’s irrotational acoustics 
based analyses.8,16-25 While the Culick approach 
introduces a more complete formulation than similar 
algorithms in the accepted liquid rocket toolkit, it does 
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not yield satisfactory predictive capability.  This is 
partly the result of the assumption that the wave 
motions are strictly acoustic, hence, irrotational in 
nature.  Recent work by the writers of the present paper 
has focused on improving SSP by implementing 
important mechanisms such as vorticity generation and 
shock wave interactions.11,26  Such progress in the solid 
motor analysis leads directly to similar improvements in 
handling the liquid rocket instability problem. 

B. Rotational Flow Effects  
  Considerable progress has been made in the last 
decade in understanding both the precise source of the 
vorticity and the resulting changes in the oscillatory 
flowfield. Almost every analytical,17,27-34 numerical,35-40 
and experimental investigation41-44 has demonstrated 
that rotational flow effects play an important role in the 
unsteady gas motions in solid rocket motors.  Much 
effort has been directed to constructing the required 
corrections to the acoustic model.  This has culminated 
in a comprehensive picture of the unsteady motions that 
agrees with experimental measurements,17,27,28 as well 
as numerical simulations.29    
  These models were used in carrying out three-
dimensional system stability calculations,17,27 in a first 
attempt to account for rotational flow effects and refine 
the acoustic instability algorithm.  In this process one 
discovers the origin, and the three-dimensional form, of 
the classical flow-turning correction; related terms 
appear that are not accounted for in the SSP algorithm.  
In particular, a rotational correction term is identified 
that cancels the flow-turning energy loss in a full-length 
cylindrical grain.  However, all of these results must 
now be questioned because they are founded on an 
incomplete representation of the system energy balance. 
  Culick’s stability estimation procedure is based on 
calculating the exponential growth (or decay) of an 
irrotational acoustic wave; the results are equivalent to 
energy balance models used earlier by Cantrell and 
Hart.45  In all of these calculations the system energy is 
represented by the classical Kirchoff (acoustic) energy 
density.  Consequently, it does not represent the full 
unsteady field, which must include both acoustic and 
rotational flow effects.  Kinetic energy carried by the 
vorticity waves is thus ignored.  It is then readily 
demonstrated that the actual average unsteady energy 
contained in the system at a given time is about 25% 
larger than the acoustic energy alone.18 Furthermore, 
representation of the energy sources and sinks that 
determine the stability characteristics of the motor 
chamber must also be modified.  Attempts to correct the 
acoustic growth rate model by retention of rotational 
flow source terms only17,27 can preclude a full 
representation of the effects of vorticity generation and 

coupling.  Rather, a rotational growth rate model is 
needed from the start. 
  In liquid engines, the main role played by the 
rotational flow interactions is in controlling boundary 
conditions at the chamber walls and, especially, at the 
injector boundaries.  Vorticity is created in the case of 
waves traveling parallel to the injection interface 
because such waves (tangential modes, for example) 
represent unsteady pressure gradients across the 
incoming quasi-steady flow streamlines.  This vorticity 
is propagated into the chamber mainly by convection, 
and it has important implications in terms of the motor 
stability.  For the preburner oscillations, the gas 
motions are dominant in a direction parallel to the 
burner axis and, hence, normal to the injector surface; at 
the outset, no rotational corrections from wave 
interactions are necessary.  However, since the flow 
near the flame-holder or mixing ring is highly sheared, 
it is possible that vortex shedding leading to an 
additional source of acoustic energy may be present.  
Clearly, this is an additional rotational flow effect that 
has been an important element in some rocket motor 
instability problems.46-48  In the present case, there is 
some evidence that vortex shedding may occur; 
frequencies that do not fit with the acoustic modes are 
sometimes detected.  However, there is compelling 
evidence that the major source of energy driving the 
observed oscillations comes from nonlinear interactions 
of a steep wave system with unsteady injection of the 
propellants, and the resultant oscillatory release of 
energy in the combustion and mixing processes. 

C. Nonlinear Effects  
  The effects of nonlinear interactions play a major 
role in controlling the nonlinear attributes of pressure 
oscillations in liquid motor combustion chambers.  
Strictly linearized models are of little value in the 
present situation.  Of crucial importance is the modeling 
of the time history of the oscillations and their limiting 
amplitude; also critical are the triggering amplitudes at 
which an otherwise stable motor is caused to transition 
to violent oscillations.  Pulsing of this sort can occur 
from random “popping” and other natural disturbances; 
it is hence instrumental to characterize this aspect of 
motor behavior meticulously.  In the preburner case, 
there is no evidence of triggering, although pressure 
disturbances created during the startup process could 
act as a trigger mechanism.   
  It is well-known that shock waves are a major 
nonlinear attribute of axial mode oscillations in solid 
rockets.4-7 There is no question that shock-like features 
characterize the gas motions described in Fig. 2.  The 
steepening process is a natural feature of nonlinear 
resonant oscillations of gas columns.49,50 Recognition of 
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the major role played by shock waves in combustion 
instability is not widespread in the present research 
community, although many past investigators have 
explored this possibility.6,7,51-53 Current liquid rocket 
engine instability prediction methods do not incorporate 
this important aspect of the problem.   

D.  Formulation of Nonlinear Stability Algorithm 
  In this section we briefly discuss what is needed 
from the theoretical standpoint to provide a useful 
analytical framework for combustion instability. It is 
necessary to accommodate the features we have 
identified as key elements in a correct physical 
representation.  We must discard models based on the 
acoustic point of view.  Nonlinear energy losses in 
steep wave fronts and energy flow to the wave structure 
from combustion must be accommodated.  It is also 
necessary to provide a framework that can ultimately 
include effects of mixing, vaporization, and other two 
phase flow effects.  These elements will be included 
only in outline form, but placeholders are inserted 
which will require later elaboration.  By far the most 
effective method for incorporating this large array of 
physical/chemical interactions is by using a global 
nonlinear energy balance.  Methods based on the usual 
perturbed acoustic wave equation cannot properly 
account for the many interactions that must be included. 

E. Mathematical Strategy  
  Since the handling of steep fronted waves is of 
principal concern, it is necessary to carefully lay out a 
solution technique that will lead to a practical predictive 
algorithm.  To make the mathematical problem 
tractable, we choose to avoid fashionable numerical 
strategies such as method of characteristics or a full 
CFD treatment of the problem.  Either of these 
techniques would most likely absorb excessive time and 
resources, and, in the end, would fail in the problem we 
attempt to solve here.  What is required is an approach 
that bridges the gap between the earlier perturbation 
techniques (that limit the solutions to linear gas motions 
near the stability boundary) and other ad hoc methods 
such as those introduced by Culick to study nonlinear 
features of combustion instability.19,54 In those works, 
Culick and his coworkers model the steepening process 
in which energy flows by a process of nonlinear mode 
coupling.  In these calculations, one traces the flux of 
energy from low frequency to higher frequency spectral 
components.   
  In the problem of central interest here, we are not 
concerned with the steepening process, per se, rather 
we wish to understand the gas motions in their fully 
steepened state.  Figure 3 illustrates several aspects of 
the problem that must be addressed; it portrays all key 
features of nonlinear combustion instability that appear 

 
 

 
 

Fig. 3  Evolution of system amplitude. 
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experimentally.  Furthermore, it suggests a useful way 
to categorize the various analytical methods by which 
we attempt to understand this very complicated physical 
problem.  If the waves grow from the ever present noise 
in the system, the motion is linear and each acoustic 
mode grows individually according to the balance of 
energy gains and losses peculiar to that operating 
frequency.  In general, the lowest-order mode grows 
most rapidly because it requires less energy to excite.  
As the oscillations approach a finite amplitude, 
nonlinear effects begin to appear and there is a phase in 
which energy is redistributed from lower to higher 
modal components; it is this process that is represented 
in Culick’s nonlinear model.   
  As the wave steepens, the relative amplitudes of 
the constituent acoustic modes reach a “frozen” or 
stationary condition corresponding to shock-like 
behavior.  This is the fully nonlinear state illustrated in 
the figure.  In pulse testing of motors, the steepening 
process is almost instantaneous.  For example, in his 
solid rocket tests, Brownlee5 notes that when the pulse 
is fired, “. . . the injected flow disturbance traversed the 
length of the motor, partially reflected at the nozzle end, 
and became a steep-fronted shock-like wave in one 
cycle.” Thus, in modeling such effects, it is unnecessary 
to trace the full steepening process as Culick attempts to 
achieve.   
  The relative wave amplitudes are readily estimated 
from a large database of experimental data to be 
described later, and these remain fixed whenever the 
driving mechanisms continue to supply sufficient 
energy to the oscillating system.  Thus, it is readily 
established that precise knowledge of the relative 
amplitudes is not necessary to achieve an accurate 
estimate of the limit cycle and triggering amplitudes. 
  We must formulate a mathematical strategy that 
yields essential information, namely the limit amplitude 
reached by the system in its fully steepened state.  This 
is the knowledge required by the engine system 
designer in assessing potential vibration levels, and as 
we will show, the severity of heat loads and force levels 
on fragile injector components. 
  The key to simplifying the nonlinear problem is to 
assume that the fully steepened traveling wave is a 
composite of the chamber normal modes: 

  (1) ( ) ( ) ( ) ( )
1

, m m
m

p t t A tε ψ
∞

=

= ∑r r

where ( )tε  is the instantaneous amplitude. This is a 
proven strategy6,7 that conforms in all respects to the 
behavioral characteristics observed experimentally.  
These will be described and shown how they can 
accommodated into our solution algorithm.  However, it 

may be helpful to first test this model and determine 
whether it contains the necessary features. 
 

F. Shocked Acoustic Waves   
  Equation (1) provides a very powerful tool and a 
way to avoid all computational difficulties associated 
with modeling of the unsteady flowfield.  In the case of 
simple longitudinal oscillations in a chamber of 
constant cross section, the functions in the summation 
are, for example: 

   
( )

( )

0
2
8 sin

4 1

cos

m

m

n anA t
Ln

n zr
L

π

πψ

⎧ ⎛ ⎞⎛ ⎞= ⎜ ⎟⎪ ⎜ ⎟+⎪ ⎝ ⎠ ⎝
⎨

⎛ ⎞⎪ = ⎜ ⎟⎪ ⎝ ⎠⎩

⎠  (2) 

where L is the chamber length and z is the axial 
position.  If Eq. (1) is evaluated with these parameters, 
then the waveform illustrated in Fig. 4a results. This 
should be compared to measured waveforms shown in 
Figs. 2b and 4b. Although the individual components 
are effectively standing acoustic modes, the composite 
wave is a traveling steep fronted wave. Thus, one can 
accurately represent a traveling shock wave by 
superposition of standing acoustic waves. This is a 
powerful computational simplification. 

2 4 6 8 10 12 14
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a) Waveform calculated via Eq. (1) using 20 modes 
 

b) Preburner waveform during severe oscillation 
 

Fig. 4 Measured versus calculated wave form. 
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G. Notation  
  Here we use an asterisk * to denote dimensional 
quantities and a subscript 0 to indicate quiescent 
chamber reference conditions.  We therefore let 

 

( )
( )

( )

20
0 0

0
0

0

0
0

2
0

* *
*

*
*

**
**

p p P a L

t t L a
T T T

a La
e e aL

ρ
ρ ρ ρ

=⎧ ⎧ =⎪ ⎪=⎪ ⎪ =⎪ ⎪=⎨ ⎨
⎪ ⎪=⎪ ⎪

=⎪⎪ ⎩=⎩

F F

ω ωu u
r r

=
 (3) 

where F  is a body force and e is specific internal 
energy.  The dimensionless governing equations are: 
Continuity: 

   ( ) 0
t
ρ ρ∂

+ ∇ ⋅ =
∂

u  (4) 

Momentum: 

1
2t

ρ ∂⎛ ⎞+ ∇ ⋅ − ×⎜ ⎟∂⎝ ⎠

u u u u ω  

  ( )2 21
dp δ δ

γ
= − ∇ − ∇×∇× + ∇ ∇ ⋅ +u u F  (5) 

Energy:  

( ) ( )1 1
2 2e e

t
ρ ρ∂ ⎡ ⎤ ⎡+ ⋅ + ∇ ⋅ + ⋅⎣ ⎦ ⎣∂

u u u u u ⎤⎦  

  
( ) ( ) (

2
2 1

1
T p

Pr
δ ρ

γ γ
= ∇ − ∇ ⋅ + ⋅

−
u u u ω)×  

  [ ]2δ+ ⋅ + ⋅ − ⋅∇×u F ω ω u ω  

    (6) ( ) ( )22

1

N

d
i

h wδ
=

⎡ ⎤= + ∇ ⋅ + ⋅∇ ∇ ⋅ −⎣ ⎦ ∑u u u 0
i i

Species mass fraction: 

   
2

2i
i i

Y
Y Y

t Pr
δρ

∂⎡ ⎤+ ⋅∇ − ∇ =⎢ ⎥∂⎣ ⎦
u iw  (7) 

State: 

   p Tρ=  (8) 
The Prandtl number  and viscous reference lengths 
(proportional to inverse square root of appropriate 
Reynolds numbers) appear naturally.  Define these as 

Pr

 
( )

2

0
2 2 4

3

0 0 0

p

d

f
p ref p ref

c
Pr

a L

c V c a M

µ
κ
νδ

δ δ η µ

κ κδ
ρ ρ

⎧
≡⎪

⎪
⎪ =⎪
⎨
⎪ = +
⎪
⎪

≡ =⎪
⎩

 (9) 

The latter dimensionless length is the reference flame 
length needed in regions dominated by combustion heat 
release.  Other variables needed in modeling chemical 
reactions are: 

 

( )0 0

0 0 2
0

* ;    reaction rate
* ;    heat of combustion

;    mass fraction for species 
i i

i

w w a L

h h a
Y i

ρ⎧ =
⎪⎪ =⎨
⎪
⎪⎩

 (10) 

H. Separating Steady and Unsteady Parts 
  One may subdivide each variable into a mean 
component and an unsteady part that captures the 
oscillations about the mean.  This decomposition 
requires setting 

 

( )

( )

( )

( )

( ) ( )

1

1

1

1

1 1

b

b b

p P p

T T T

M

M M

ρ ρ ρ⎧ = +
⎪
⎪ = +
⎪⎪ = +⎨
⎪

= +⎪
⎪ = ∇× + ∇× = +⎪⎩

u U u

ω U u ωΩ

 (11) 

Since the energy balance is the key to understanding the 
system behavior, let us carefully apply it here.  In what 
follows, we will avoid the common simplifying 
assumptions such as the isentropic flow limitation.  We 
will also include heat transfer and viscosity so that, in 
effect, we are modeling a wave system composed of 
superimposed waves of compressibility, vorticity, and 
entropy.  
  It may be useful to recall that the total 
thermodynamic energy density E  consists of the 
specific internal energy augmented by the total kinetic 
energy.  The key to solving this problem, and the 
departure from previous models, is to incorporate both 
mean and unsteady velocity contributions in the kinetic 
energy term. Unlike other purely acoustic studies in 
which the mean velocity is discounted, we now define 
the system energy density as 
 ( )1

2eρ≡ + ⋅u uE  (12) 

Then, for a calorically perfect gas, the energy equation 
becomes 

( )
1
21

T
t

ρ
γ γ

⎡ ⎤⎛ ⎞∂
= −∇ ⋅ + ⋅⎢ ⎥⎜ ⎟⎜ ⎟∂ −⎢ ⎥⎝ ⎠⎣ ⎦

u uE u  

 

( ) ( )

[ ] ( )
( ) ( )

2
2 2

22

1

1

d

p

T
Pr

Q

ρ
γ

δδ
γ

δ

⎧ ⎫− ∇ ⋅ + ⋅ ×⎪ ⎪
⎪ ⎪
⎪ ⎪

+ + ⋅ − ⋅∇ × + ∇⎨ ⎬
−⎪ ⎪

⎪ ⎪⎡ ⎤+ ∇ ⋅ + ⋅∇ ∇ ⋅ + + ⋅⎪ ⎪⎣ ⎦
⎩ ⎭

u u u ω

ω ω u ω

u u u u F

 (13) 
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where shorthand notation has been adopted for the 
distributed heat release in the combustion processes.  
The body force, F, is a placeholder for several two-
phase flow effects such as spray atomization, particle 
drag, etc., that will be treated later.  Note that the 
compressive viscous force and conduction heat transfer 
terms are retained.  These are the source of the 
important nonlinear energy loss in steep wave fronts.   
  Using Eqs. (11), one can now expand Eq. (12) to 
give the equation for the system amplitude.  To 
accomplish this, the time-averaged Eq. (13) can be 
written as 

2
d2
dt
εε E

( )
1
21

Tρ
γ γ

⎧ ⎫⎡ ⎤⎪ ⎪= −∇ ⋅ + ⋅⎢ ⎥⎨ ⎬
−⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

u u u  

  ( ) ( )1 p Qρ
γ

− ∇ ⋅ + ⋅ × + ⋅ +u u u ω u F  

   ( ) (2 2
dδ δ+ ⋅ − ⋅ ∇× + ⋅∇ ∇ ⋅⎡ ⎤⎣ ⎦ω ω u ω u u)

   
( ) ( )

2
22 2

1 dT
Pr

δ δ
γ

⎡ ⎤
+ ∇ + ∇ ⋅⎢ ⎥

−⎢ ⎥⎣ ⎦
u  (14) 

where 

 
2

1
2 2

1 p
P

ρ
γ γ

′⎛ ⎞ ′ ′= +⎜ ⎟
⎝ ⎠

u uE ⋅  (15) 

is the time averaged oscillatory energy.  Note that this 
consists of a “potential” energy proportional to the 
pressure fluctuation and a kinetic part proportional to 
the square of the particle velocity.  The latter is not the 
simple acoustic particle velocity; rather, it is the 
composite of the irrotational and rotational parts needed 
to satisfy proper boundary conditions at the chamber 
surfaces.   
  Equation (15) is similar to the usual Kirchoff 
reference energy density from classical acoustics:55 

 
( )

( ) ( )
21

1 11 1
Kirchoff 2 2

p ρ
γ

⎡ ⎤
= + ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
u uE  (16) 

The differences are the result of relaxing the isentropic 
flow assumption that was used in deriving Eq. (16). 

I. Spatial Averaging 
  In order to account for the net behavior of the 
entire system it is now required to integrate the time-
averaged energy density over the chamber control 
volume.  To that end, one must define the reference 
system energy 

2
2 d

V

E V≡ ∫∫∫ E
2

1
2

1 d
V

p P
Pγ γ

′⎛ ⎞ ′ ′= + ⋅⎜ ⎟
⎝ ⎠

∫∫∫ u u V  (17) 

then the rate of change of system amplitude can be 
written in the convenient form 

 ( ) ( ) ( )1 2 32 3d
dt
ε α ε α ε α ε= + + +  (18) 

where ( )1α  is the linear growth rate for the composite 
wave system. This expression emphasizes the important 
fact that the nonlinear model is only as good as the 
linear representation of the system.   

J. Linear Growth Rate 
  The linear part of Eq. (18) becomes 

( ) ( ) ( )1 1
22

1 d
2 b

S

M P S
E

α
⎧⎪ ′ ′ ′ ′= − ⋅ ⋅ + ⋅⎨
⎪⎩

∫∫ n U u u u U u  

  ( )21 d /b

S S

M
p S p

P
γ

γ γ
′ ′ ′− ⋅ − ⋅∫∫ ∫∫n u n U dS  

 ( ) d db b
V V

M P V M P′ ′ ′ ′+ ⋅ × + ⋅ ×∫∫∫ ∫∫∫u u U u ωΩ V  

  ( )2 2d dd
S V

S Vδ δ′ ′ ′ ′+ ⋅ × + ⋅∇ ∇ ⋅∫∫ ∫∫∫n u ω u u  

   d
V V

Q V V
⎫⎪+ + ⎬
⎪⎭

∫∫∫ ∫∫∫ F d  (19) 

where only the placeholders for combustion heat release 
and two-phase flow interactions are shown.  It happens 
that careful evaluation of the volume integrals in Eq. 
(19) leads to cancellation of some of the terms.   
  In many ways, achieving a valid linear model is the 
most difficult part of the entire procedure.  This has, in 
fact, been the downfall of numerous past attempts.  
Much time and energy has been expended on attempts 
to correct deficiencies in the linear model by 
introduction of ad hoc fixes that are often based on 
guesswork, and misinterpretation and/or distortion of 
experimental evidence.  The roadway is strewn with the 
wreckage of such attempts; we avoid the temptation to 
dwell on this unfortunate aspect of the past.  Clearly, 
the only path to success is to retain and evaluate all of 
the physical information that has been collected in the 
system energy balance constructed here. 
  To illustrate the benefits of a complete energy 
balance as compared to earlier models based on the 
perturbed wave equation approach, we briefly examine 
the origins of the Culick flow turning effect. Flow 
turning has been a source of considerable debate, 
disagreement, and discord in the solid propellant rocket 
instability research community.  It introduces a major 
energy sink in stability assessments using the SSP 
algorithm.  Unfortunately, this term leads to a damping 
effect which in most motor evaluations is as large as 
other main contributors to the energy balance, including 

–8– 
American Institute of Aeronautics and Astronautics 



 

the combustion-related pressure coupling effects.  We 
now demonstrate the handling of terms in Eq. (19), to 
evaluate the term from which flow turning originates, 
namely, 

 ( ) (1
4 2 d

2
b

V

M P
V

E
α ′ ′ ′ ′= ⋅ × + ⋅ ×∫∫∫ U u ω u U ω )

)

 (20) 

The subscript, 4, is an artifact of a numbering system 
introduced in Ref. (18) to keep track of the many linear 
stability contributions in Eq. (19).  Flow turning was 
first identified by Culick23,56 in his one-dimensional 
calculations.  It appeared as a result of forcing 
satisfaction of the no-slip condition (which could not be 
accomplished in his three-dimensional model because 
of the irrotational flow assumption).  Flandro17,18,27,57 
later showed that the actual source of the flow turning 
was the irrotational part of the second term in Eq. (20).  
It must be noted here that no earlier stability algorithms 
incorporated the complete set of rotational terms that 
give rise to Eq. (20).  When all of the terms are 
properly accounted for, and by applying the standard 
scalar triple product identity,  
 ( ) (⋅ × = ⋅ ×A B C B C A  
we find that  

  ′ ′ ′ ′⋅ × + ⋅ ×U u ω u U ω  

   0′ ′ ′ ′= − ⋅ × + ⋅ × =u U ω u U ω  (21) 
Flow turning has now completely vanished; 
furthermore, this key result agrees with experimental 
evidence and with other independently conducted 
analyses.58,59 
  This correction alone leads to major improvement 
in agreement with experimental data.  The lesson here 
is that only by accounting for all unsteady energy gains 
and losses can a correct linear stability theory be 
achieved.  Other terms in Eq. (19) once thought to have 
significant stability implications no longer appear when 
the integrals are evaluated and added. 
  We have recently completed a full evaluation of 
Eq. (19) for the solid motor case;10,11 current efforts are 
focused on a similar evaluation for the liquid motor 
case.60 A major effort is now being devoted to the 
transverse mode problem of central importance in large 
liquid engine development programs.60 

K. Linear Driving Mechanisms 
  Equation (19) clearly shows all potentially 
important sources of unsteady energy as well as 
damping effects.  Many years of experience have shown 
that the first pair of terms represented by the surface 
integral 

   ( )1 2
1 2 2

1 ˆ d
2

b

S

M
p p

E P
α

γ γ
⎛ ⎞

′ ′= − ⋅ + ⋅⎜ ⎟
⎝ ⎠

∫∫ n u n U S  (22) 

play a major role in driving waves.  It is also the origin 
of the important nozzle damping effect.  It may be 
interesting to add that, in recent investigations of the 
thermoacoustic energy conversion process in Rijke 
tubes, Majdalani, Entezam and Van Moorhem61-63 have 
identified the first term, ˆp′ ⋅n u , to be the primary 
agent responsible for driving the Rijke-type acoustic 
oscillations.  These studies have been corroborated 
using experimental, commercial CFD, and analytical 
scaling techniques.  
  In cases where the combustion energy release 
occurs close to the surface (as in a burning solid 
propellant) or near the injector surface (for a liquid 
rocket engine), ( )1

1α  becomes the primary source of 
unsteady energy.  At first glance, it appears that Eq. 
(22) should represent zero contribution since, for 
acoustic motions, the pressure and velocity fluctuations 
are 90o out of phase.  However, one must account for 
the phase shift in the combustion zone region of 
nonuniformity.  This is done in the solid propellant case 
by introducing the admittance function which is 
intended to account for a myriad of chemical and 
physical processes within the flame zone.  For example, 
one defines 

 ( )ˆ r
b b

pM A
γ

′
⋅ = −n u  (23) 

expressing the normal velocity fluctuation in terms of 
the pressure disturbance that creates it.  Major effort is 
expended in the solid rocket motor community in 
characterizing the admittance function.   
  The idea of a response function constitutes a 
familiar scenario and need not be treated in depth.  The 
solid rocket literature is replete with discussion of this 
concept.  A lucid treatment can be found in Ref. 25.  
The associated nozzle damping is also described in 
detail in this and many other documents.  The nozzle 
damping plays a crucial role in the preburner 
oscillations.   
  The first term in Eq. (22) is also a potent source of 
energy in the preburner problem. If ˆp′ ⋅n u  is 
evaluated at the injection surface accounting for the 
phase difference between fluctuations in the incoming 
oxidizer and fuel particle velocities and the pressure 
oscillations at the interface, it will be seen that a 
powerful analog to the solid rocket pressure coupling is 
identified.  This is related to the well-known “injector 
coupling” mechanism. The benefit is that it allows a 
quantitative estimate of this driving effect. Examination 
of the preburner experimental data shows that, indeed, 
the pressures in the LOX and LH2 feed lines upstream 
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of the injector reflect the pressure fluctuations in the 
chamber and exhibit the phase differences needed to 
explain this powerful unsteady energy source.  
Additional energy is supplied to the waves via the more 
traditional distributed combustion; this mechanism is 
enhanced by the phase shifts already present in the 
injectants as they enter the combustion zone.  However, 
there can be no doubt that any energy source located 
near a pressure antinode (e.g., at the injector surface) is 
a potent driver of oscillations of the type observed.  
These matters are currently undergoing thorough study 
by the authors and their coworkers, and we expect that 
they will play a major role in the predictive algorithm 
under development by our research group. 

L. Effects of Nonlinearity 
  It is now required to examine nonlinear terms 
arising from the expansion of Eq. (14). The most 
noteworthy of these are the energy losses incurred in 
steep wave fronts.  Let us, at this point, focus on the last 
set of terms in Eq. (14).  After temporal and spatial 
averaging, we are left with 

 
( ) ( )

2
22 2 d

1 d
V

T
Pr

δ δ
γ

∇ + ∇ ⋅
−∫∫∫ u V  (24) 

 
Fig. 5 Shock layer structure. Those readers familiar with gasdynamics will recognize 

in this term the source of the entropy gain and 
associated energy loss in a steep wave front.  In fact, 
this term is usually ignored because it is only important 
if there are very steep gradients in particle velocity and 
temperature.  We can evaluate this term by considering 
a very small portion of the chamber volume that 
encompasses the shock layer formed by a steepened 
wave system.  The shock layer can be treated as a 
region of nonuniformity as illustrated in Fig. 5. 
  Following standard procedures, Eq. (23) can be 
reduced to the classical textbook result showing the 
origin of the entropy gain in the shockwave.  By 
manipulations using the Rankine-Hugoniot equations, 
we find the formula for the energy loss in the steep 
wave to be 

( )
( )port 2 1

shock

*d
d 1 v

S s sE
t cγ γ

−⎛ ⎞ = −⎜ ⎟ −⎝ ⎠
  

   
3

shock
port 3

1
12

S
P

ε γ
γ

⎛ +⎛ ⎞= − ⎜⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎞
⎟  (25) 

This leads to a simple approximation for the nonlinear 
stability parameter in Eq. (18), namely 

 ( ) ( ) 3
2

port2

1
23

S
E

γ ξα
γ

+ ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (26) 

where ξ  is a factor (of order 1), which is dependent 
upon the waveform used to represent the traveling 

shock wave. port  is the area of the shock front.  In the 
longitudinal case, this is simply the cross-sectional area 
of the duct at a convenient location; the forward 
chamber area is a good choice. 

S

  This nonlinear loss effect is the principal damping 
mechanism in both liquid engines and solid propellant 
motors, and is the key element in understanding the 
limit cycle behavior so often encountered when finite 
amplitude waves are formed.   
  It is tempting to carry the implied perturbation 
series in Eq. (18) to higher than second order in the 
system amplitude.  However, such effort is not justified 
in the present situation because the unsteady flowfield 
and mode shape information for the chamber is accurate 
only to the first order in wave amplitude.  

M. Limit Cycle Amplitude 
  In liquid propellant engines, one is seldom 
interested in tracing the details of the growth of the 
waves to their final state.  Such engines usually operate 
for very long time (measured on the time scale of the 
wave motions) with correspondingly slow changes in 
the steady operating parameters.  For this reason, 
strictly linear models provide very little useful 
information in the predictive sense.  There is, however, 
a well-known rule of thumb that suggests that large 
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values of the linear growth rate, ( )1α , estimated, for 
example, by using Eq. (19) correlate with large values 
of the limit cycle amplitude.  Clearly, it is the latter 
amplitude that is of concern from the engine design 
point of view, since it is a measure of the vibration and 
other impacts on the system integrity.   
  What is required is knowledge of the limit 
amplitude reached as the wave system approaches a 
fully steepened form.  Equation (18) provides the 
required formula for the limit amplitude.  In the fully 
steepened state, the wave amplitude is stationary, and it 
is readily seen that the limit amplitude is 

 
( )

( )

1

limit 2

αε
α

= − , (27) 

This term is physically meaningful only when ( )2α  is 
negative.  This will always be the case for the shock 
loss mechanism described by Eq. (24) since it is the 
outcome of a positive definite entropy gain.  This 
expression has been tested for many solid rocket data 
sets and has been found to yield an excellent estimate of 
the limit amplitude.  It must be borne in mind that 
accurate results depend critically on a valid linear 
stability estimate. 

N. Triggering Amplitude 
  The existence of a disturbance triggering pulse 
amplitude has never been convincingly demonstrated.  
If one examines Fig. 5, in the context of Eq. (18) 
(evaluated, at the least, to the fourth order in the wave 
amplitude), it is theoretically possible to raise the 
amplitude of a system oscillating at its lowest limit 
amplitude to a yet higher limit amplitude by hard 
pulsing. That is, if the system receives sufficient energy 
to raise the oscillations above the critical triggering 
level as described in the figure, it may transition to a 
higher limit amplitude.  This is what might be termed 
true triggering.   
  Careful examination of solid rocket data shows that 
this scenario seldom fits what is actually observed.  In 
every case studied by the authors, motors that exhibit 
“triggering” are actually linearly unstable motors.  That 
is, they are not stable motors that are triggered into a 
high-amplitude limit cycle.  When such motors operate 
without deliberate pulsing, the wave system grows so 
slowly from the random noise that oscillations become 
barely measurable by the end of the burn.   
  However, when the motor receives a hard pulse, 
the broadband energy increment almost instantaneously 
excites finite amplitude steep fronted waves.  Clearly, 
as Eq. (18) shows, the time to reach the limit cycle 
depends on the initial system ε created in the pulse.  
The system then either grows rapidly to its limit cycle 
amplitude or it decays to the limit amplitude if the pulse 

starts the motion at ε higher than the limit amplitude.  
Calculations using Eq. (27) agree very well with actual 
observations.   
  We believe that true triggering is seldom, if ever, 
observed in practice.  Much of the confusion over this 
issue results from application of faulty predictive codes 
that almost always predict a linearly stable system.  A 
classic example can be found in the recent experiments 
by Blomshield.1  All motors fired in this test series are 
predicted by the SSP algorithm to be linearly stable.  In 
fact, most of the motors are found to be linearly 
unstable at least during part of the burn.  Unless excited 
by a sufficiently hard pulse, only very low-level 
oscillations are detected.  Strong pulsing during 
otherwise leisurely (linearly unstable) operation led to 
violent oscillations in many tests. 

O. The Mean Pressure Excursion 
  The preburner data plotted in Fig. 2 clearly shows a 
rise in mean chamber pressure accompanying high-
amplitude longitudinal mode oscillations.  A test of the 
validity of the theory presented in this paper is its 
ability to predict this important classical feature of 
combustion instability.  What we will demonstrate here 
is that the same mechanism that drives the oscillations 
(first term in Eq. (22)) is also the source of the DC shift 
phenomenon.  This is a new result that has been shown 
to agree very well with experimental data in the solid 
motor case.1,10,11 Until now, explaining the mean 
pressure excursion required invocation of ad hoc 
“velocity coupling” or “acoustic erosivity” effects.52  
These confusing and misleading paraphernalia can now 
be discarded.   
  The source of the DC shift is readily found if 
nonlinear terms are retained in the continuity equation.  
Expanding Eq. (3) and taking the time average yields  

 ( ) ( ) ( )1 1d 1
d b
P M p
t

ρ
γ

= −∇ ⋅ − ∇ ⋅U u  (28) 

where the first term on the right represents the usual 
quasi-steady mass flux at the chamber boundaries.  The 
similarity of the second term to the pressure coupled 
acoustic driving in Eq. (22) is obvious.  Integration over 
the chamber volume leads to the formula for the rate of 
change of the quasi-steady chamber operating pressure: 
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∫∫

n U

n u
 (29) 

The first term is handled by means of standard steady 
internal ballistics calculations.  The second leads to the 
mean pressure shift.  Notice that it is proportional to the 
second order of the wave amplitude. Equation (29) 
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establishes the intimate coupling between the pressure 
rise and the growth and limiting of the pressure 
oscillations. 

P. Simulating and Predicting Preburner Behavior 
  The results for the nonlinear system growth and the 
corresponding mean pressure excursion must be 
computed simultaneously.  When the several system 
models are assessed and the integrals are evaluated, we 
are left with a pair of coupled nonlinear, ordinary 
differential equations: 

 

( ) ( )

( ) ( )

1 2 2

1 2 2

d
d
d
d

t
P
t

ε α α

β β

ε ε

ε

⎧ +⎪⎪
⎨
⎪ = +
⎪⎩

= +
 (30) 

These are readily solved using a simple numerical 
algorithm.  The result is the time history of the growth 
and limiting of the pressure oscillation amplitude and 
the accompanying growth and limiting of the mean 
pressure amplitude.  These results agree in every way 
with the preburner instability data set.  

IV. Conclusions 
  It is not possible at the present time to display 
results comparing the preburner experimental data with 
predictions from the algorithm just described.  Much 
remains to be accomplished in carrying out the details.  
A computer algorithm is being written to enable the 
motor analyst or engine designer to predict the stability 
of a given system and to diagnose sets of experimental 
data.  
  In order to aid the reader in envisioning the 
possibilities, we show here some recent results from a 
similar application of Eq. (30) in a difficult solid rocket 
instability problem.  In many ways, the instability 
experienced in this example case closely parallels what 
has been observed in the liquid propellant preburner 
situation.   
  A set of tactical solid motors of varying geometry 
and propellant characteristics were tested by Dr. F. 
Blomshield at NAWC, China Lake, CA.1,64-68 In 
virtually all cases the standard code SSP predicted 
stable behavior.  Yet, many of the motors were readily 
pulsed into violent oscillations.  Fig. 6 shows a pressure 
vs. time trace for a cylindrical motor from this test 
series.  The progressive pressure rise results from the 
increasing burning surface area with time.  The mean 
pressure shift and pressure oscillations are clearly 
shown.  Data came from a pressure transducer at the 
motor forward end.  As in the case of the preburner data 
depicted in Fig. 2, this motor exhibited a spectrum 
dominated by the 1L (first longitudinal mode) 

accompanied by many harmonics and, thereby, strong 
evidence for steep-fronted waves. 
  Figure 7 shows the predicted behavior for this 
motor found by solving Eq. (30) using only geometrical 
and physical data from the tests – no curve fitting was 
employed.  All important features of the actual data are 

 

 
Fig. 6  Pressure vs. time for motor no. 9.1 

 
 

 
Fig. 7  Simulation of motor no. 9.10,11 
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well represented.  Note that even though the system is 
linearly unstable, no wave growth or DC shift occurs 
unless the motor is pulsed. 
  To summarize: we have devised a new procedure 
for estimating the tendency for a given rocket motor 
chamber to exhibit nonlinear combustion instability.  
The new algorithm gives not only growth rate 
information and the associated stability maps, but more 
importantly, predicts the evolution of the system 
oscillation amplitude and the mean pressure shift.  
These analytical/numerical tools promise to give the 
motor designer the ability to avoid design features that 
may promote combustion instability much earlier in the 
development cycle than possible using other methods. 
  If combustion instability problems are encountered 
in the test phase of engine development, these new tools 
will yield an improved method for correlating 
experimental data and judiciously interpreting the 
results.  They also provide the ability to test and perfect 
corrective mechanisms if these become necessary. 
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