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 The bidirectional vortex refers to the bipolar, coaxial, two-cell swirling motion that can be 
triggered, for example, in cyclone separators and some liquid rocket engines with tangential 
aft-end injectors. In this study, we derive an exact solution to describe the corresponding 
bulk motion in spherical geometry. Our approach invokes the assumptions of steady, 
incompressible, inviscid, rotational, and axisymmetric flow.  Of the three possible types of 
similarity solutions that are shown to fulfill the momentum equation, only the second leads 
to a closed-form analytical expression that satisfies the boundary conditions for the 
bidirectional vortex in a straight cylinder. While the first type is incapable of satisfying the 
required conditions, its general form may be used to accommodate other physical settings. 
This case is illustrated in the context of inviscid flow over a sphere. The third type is more 
general and provides multiple solutions although it precludes a closed-form analytical 
outcome except for one case.  The spherical bidirectional vortex is derived using separation 
of variables and the method of variation of parameters. The three-pronged analysis 
presented here increases our repertoire of general mean flow solutions that rarely appear in 
spherical geometry. It is hoped that these general forms will enable us to extend the current 
approach to other complex fluid motions that are simpler to capture using spherical 
coordinates.  One such case corresponds to the analytical treatment of cyclonic flow in a 
conical chamber, a well known problem that remains unresolved. 

Nomenclature  
a   = chamber radius, sini iR φ  

iA  = inlet area of the incoming swirl flow 
b   = chamber outlet radius, aβ  
l   = chamber aspect ratio, /L a  
p  = pressure 

iQ  = volumetric flow rate, iUA  
r   = radial coordinate in cylindrical geometry 
R  = radial coordinate in spherical geometry 
Re  = injection Reynolds number, /Ua ν  

iR  = inlet radius measured from head end, csc ia φ  
S  = swirl number, / iab Aπ πβσ=  
u   = velocity vector ( Ru , uφ , uθ ) 
U  = tangential injection velocity, ( , , )i iu Rθ φ θ  
z   = axial coordinate 
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β  = normalized outlet radius, /b a  
κ  = tangential inlet parameter, 1(2 )lπσ −  
ν   = kinematic viscosity, /µ ρ  
ρ  = density 
σ  = modified swirl number, 2 / /( )ia A S πβ=  
ω  = mean flow vorticity, ∇×u  
ψ  = mean flow stream function, ( , )Rψ φ  
ζ  = similarity coordinate, 2 21

2 sinCR φ  
 
Subscripts and Symbols 
i   = inlet property in the base plane, z L=  
o   = outlet/nozzle property in the base plane, z L=  
r   = radial component in cylindrical geometry 
R  = radial component in spherical geometry 
z   = axial component 
φ   = colatitude component 
θ   = azimuthal component 

 = overbars denote dimensionless quantities 

I. Introduction 
N the last five decades, considerable attention has 
been given to naturally occurring swirl patterns in 

thermal and physical transport applications.1-25 In that 
I

  40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
  11-14 July 2004, Fort Lauderdale, Florida 

      Copyright © 2004 by J. Majdalani, D. Fang and S. W. Rienstra. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 



 

–2– 
American Institute of Aeronautics and Astronautics 

vein, different methods have been employed to simulate 
and trigger swirl in cylindrical or conical chambers 
using, for example, tangential fluid injection, inlet swirl 
vanes, aerodynamically-shaped swirl blades, propellers, 
vortex trippers, twisted tape inserts, coiled wires, vortex 
generators, and other swirl-prop devices.  
  Recently, an efficient cooling method has been 
proposed by Chiaverini and co-workers26-28 who have 
managed to reproduce cyclonic motion inside a 
laboratory-scale liquid rocket engine (see Fig. 1). Their 
technique is based on inducing a coaxial, co-spinning, 
bidirectional flow comprising two distinct concentric 
fields: an outer annular vortex and an inner, tubular 
vortex.  The flow configuration in this chamber is 
unique in that the oxidizer is injected tangentially into 
the combustion chamber and just upstream of the 
nozzle; the process results in a swirling combustion 
field that exhibits an outer, virtually nonreactive, flow 
region. This so-called outer vortex fills the annular 
region separating the combustion core from the 
chamber walls. The combustion core is formed from the 
oxidizer mixing and reacting with the fuel. The latter is 
injected radially or axially at the chamber head end. 
Before reaching the fuel injection faceplate, the outer 
vortex remains composed of cool oxidizer; its tendency 
will be to spiral around while climbing up the chamber 
walls.  The attendant thermal blanket-coil protects the 
chamber walls from fluctuating heating loads. The 
direct consequence is that of lowering the wall 
temperatures to the extent that a laboratory test using a 
fuel-rich Hydrogen-Oxygen combustion could be safely 
sustained in a Plexiglas model of this engine.26-28 The 
thermal protection feature not only reduces cooling 
requirements but leads to appreciable cost reduction, 
prolonged life, more flexibility in material selection, 
and reduced weight. The inner vortex, on the other 
hand, plays an important role in improving combustion 
efficiency.  The inner swirl increases fuel residence 
time, mixing, and turbulence, thus improving overall 
efficiency and ballistic performance. The spinning 
vortices provide an extended flow path that exceeds the 
geometric length of the chamber, thus taking full 
advantage of the chamber’s volumetric capacity.  
  The utilization of bidirectional vortex motion is, in 
fact, a well established technology that dates back to the 
1950s. Earliest experimental investigations may be 
credited to the work of ter Linden1 on dust separators 
and the treatment of hydraulic and gas cyclones by 
Kelsall2 and Smith.3,4 Theoretical analyses have also 
been carried out by Fontein and Dijksman,5 Smith,3,4 
and Bloor and Ingham.6-8 Semi-empirical models are, in 
turn, available from Reydon and Gauvin,9 Vatistas, Lin 
and Kwok,10,11 Vatistas,12 and others. In view of 
progressive advances in computing, numerical 
simulations have been recently prompted by Hsieh and 
Rajamani,13 Hoekstra, Derksen and Van den Akker,14 

Derksen and Van den Akker,15 and Fang, Majdalani and 
Chiaverini.16 
  Generally, cyclone technology is implemented in 
coal gas purificators, spray dryers, oil-water separators, 
gas scrubbers, gas dedustors, hydrocyclones, and 
magneto-hydrodynamic gas core nuclear rockets. Some 
are widely used in the petrochemical and powder 
processing industries where they are employed in 
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Fig. 1 Schematic of the Cool Wall Bidirectional 
Vortex Combustion Chamber (CWBVCC) by 
Chiaverini and co-workers.26-28 
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Fig. 2 Schematic of a conical cyclone separator 
depicting its key components. 
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catalyst or product recovery, scrubbing, and dedusting. 
The typical cyclone separator consists of an upper 
cylindrical can with a central outlet tube and a lower 
conical section with bottom opening (see Fig. 2). An 
involute inlet section permits the tangential injection of 
liquid or gaseous mixtures. The spinning centrifugal 
motion causes denser and coarser particles to gather 
along the conical walls. Heavier particles precipitate at 
the base of the cyclone, the so-called spigot, where the 
corresponding underflow is withdrawn. 
  The main difference between a purely cyclonic 
flow and that reproduced inside the NASA sponsored 
Cool Wall Bidirectional Vortex Combustion Chamber 
(CWBVCC) is that the latter exhibits only one outlet 
section (Fig. 1 versus 2). This difference is minor 
because the presence of a secondary outlet does not 
alter the bulk flow motion. The spigot serves as a 
collection cavity through which heavy particles may be 
trickled and filtered out of the mixture. The spigot does 
not affect the main characteristics of the swirling stream 
inside the cyclone, especially under high speed 
condition for which friction can be discounted.  
  The purpose of this study is to explore the general 
form of the solution for the bidirectional vortex that can 
be used to describe cyclonic motion in spherical 
geometry under steady, inviscid, incompressible, 
rotational, and axisymmetric flow conditions.  This 
investigation will be guided, in part, by the work of 
Vyas, Majdalani and Chiaverini.29 In the process, the 
inviscid momentum equation will be shown to exhibit 
three possible solutions.  These will be considered one-
by-one and solved either analytically or numerically.   

II. Mathematical Model 
  In seeking a solution for steady, inviscid, rotational 
flowfields, it is customary to use the vorticity-stream 
function approach.30 Accordingly, one solves 

( ) 0∇× × =u ω  and = ∇×ω u . While solutions in 
Cartesian or cylindrical coordinates are quite common, 
those in spherical geometry remain a rarity. In the 
present work, the bidirectional vortex will be 
formulated using the spatial coordinates ( , , )R φ θ  
shown in Fig. 3. 

A. Governing Equations 
  In an axisymmetric field in which changes in the 

–θ directions are small, the equation for continuity 
reduces to 

 0∇ ⋅ =u  or ( ) ( )2 sin sin 0RR u R u
R φφ φ

φ
∂ ∂

+ =
∂ ∂

 (1) 

where Ru  and uφ  are the two components of the 
velocity vector u . A stream function ( , )Rψ φ  that 
satisfies Eq. (1) can be defined as 

   2 sin RR uψ φ
φ

∂
=

∂
,  sinR u

R φ
ψ φ∂

= −
∂

 (2) 

Next, Euler’s momentum equation can be reduced to 
the vorticity transport equation following the usual 
steps. Starting with 

   ( ) /p ρ⋅∇ = −∇u u  (3) 
one may use the vector identity for the convective term 
by putting 

   21
2( ) ( ) /p ρ∇ − × ∇× = −∇u u u  

or  

   21
2( / ) ( ) 0p ρ∇ + − × ∇× =u u u  (4) 

The curl of the above yields 

   [ ( )] 0∇× × ∇× =u u  or ( ) 0∇× × =u ω  (5) 
Equation (5) is the steady vorticity transport equation 
that fulfills the conservation of momentum principle. 

B. Boundary Conditions 
  The boundary conditions for the confined 
bidirectional vortex are granted by: 
(1) Tangential inlet at the wall; namely, 

   ( , )i i i i iQ u R A UAθ φ= =  (6) 
where 

   1tan ( / )i a Lφ −= ; 2 2
iR L a= +  (7) 

(2) No flow penetration at the head end; this condition 
translates into 

    [ ]1
2 , 0,R aφ π= ∀ ∈ ; ( )1

2, 0u Rφ π =  (8) 

(3) Axisymmetry; this condition prevents flow crossing 
of the axis when 
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Fig. 3  Spherical coordinate system anchored at the 
chamber’s head end. 
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   0φ = ; ( ),0 0u Rφ =  (9) 

(4) No flow penetration at the sidewall; this requires 
setting 

   sinR aφ = ; sin cos 0n Ru u uφφ φ= + =  (10) 
(5) And, finally, global mass balance; the outflow will 
match the inflow when 

   o i iQ Q UA= = , cos sinz Ru u uφφ φ= −  (11) 

C. Swirl Component 
  In order to capture the general behavior of the spin 
velocity uθ , it is useful to consider the –θ momentum 
equation. By virtue of the attendant assumptions, one is 
left with 

   ( sin ) 0R

u
u u R

R R
φ

θ φ
φ

 ∂ ∂
+ = ∂ ∂ 

 (12) 

This can be expanded into 

 2

( sin )1
sin

u R
RR

θ φψ
φφ

∂∂
 ∂ ∂

  

   
( sin )

0
u R

R
θ φψ

φ
∂ ∂

− =∂ ∂ 
 (13) 

Then, it can be rearranged such that 

   
( sin ) ( sin )

0
u R u R

R R
θ θφ φψ ψ

φ φ
∂ ∂∂ ∂

− =
∂ ∂ ∂ ∂

 (14) 

Equation (14) will hold if 

   sin ( )u R fθ φ ψ=  (15) 
because 

   

( sin ) ( sin )

( )

u R u R
R f

R

θ θ
φ φ

φ ψ
ψ ψ
φ

∂ ∂
∂ ∂ ′= =
∂ ∂
∂ ∂

 (16) 

In order to further satisfy Eq. (6), a free vortex form 
must be exhibited by the swirling velocity.  One finds, 
for constant f   

   
sin
sin

i iR
u U

Rθ
φ
φ

=  (17) 

D. Vorticity-Stream Function Approach 
  Because uθ  does not appear in the continuity 
equation, one may invoke the vorticity-stream function 
approach and replace the remaining components of 
velocity using 

   2
1
sinRu

R
ψ
φφ

∂
=

∂
,  1

sin
u

R Rφ
ψ

φ
∂

= −
∂

 (18) 

The corresponding vorticity becomes 

 R R φ φ θ θω ω ω= + +e e eω 1 ( ) Ru
Ru

R R φ θφ
∂ ∂

= − ∂ ∂ 
e  (19) 

Having realized that the inviscid vorticity gives a single 
component in the swirl direction, θω ω= , one may 
drop the subscript θ  and write 

   1 1( ) Ru
Ru

R R Rφω
φ

∂∂
= −

∂ ∂
 (20) 

Substitution into the vorticty transport equation requires 
evaluating 

   ( )∇× ×u ω
( )( )1 1R uR u

R R R
φ

θ

ωω
φ

∂ ∂
= − + ∂ ∂ 

e  (21) 

According to the vorticity transport relation given in 
Eq. (5), one must put 

   
( )( )

0R uR u
R

φωω
φ

∂∂
+ =

∂ ∂
 (22) 

hence 

   0
sin sinR R R R
ω ψ ω ψ

φ φ φ φ
   ∂ ∂ ∂ ∂

− =   ∂ ∂ ∂ ∂   
 (23) 

This can be expanded as 

   
sin sin

0
R R

R R

ω ω
φ φψ ψ

φ φ

   
∂ ∂   ∂ ∂   − =

∂ ∂ ∂ ∂
 (24) 

then rearranged into 

   

( )

( )

sin

sin

R
R R

R

ω φ ψ

ψω φ
φφ

∂   ∂ 
∂ ∂=

∂∂   
∂∂

 (25) 

As usual, the vorticity transport equation will be true if 

   ( )
sin

f
R

ω ψ
φ

=  (26) 

In general, a solution of the form ( )f C λψ ψ=  may be 
sought. Three cases are readily distinguished depending 
on the exponent λ .  Specifically, three different types 
of solutions may be defined viz. 

   
0;   type I
1;   type II
other;   type III

λ

= 



 (27)  

III. Possible Solutions 
  The suitability of Eq. (27) to describe the 
bidirectional vortex motion must, of course, be tested. 
We begin by considering the simplest form attempted 
by researchers, namely, the 0λ =  case. 
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A. Type I Solution: Potential Flow Past a Sphere  
  For 0λ = , one obtains ( )f Cψ = ; the vorticity 
becomes independent of the stream function. Equation 
(26) yields sinCRω φ= , which can be readily 
substituted into Eq. (20).  The result can be simplified 
using Eq. (2) and put in the form 

   
2

2 2
2 2

sin 1 sin 0
sin

CR
R R
ψ φ ψ φ

φ φ φ
 ∂ ∂ ∂

+ + = ∂ ∂∂  
 (28) 

Assuming a separable solution of the form 
2( )sinF Rψ φ= , it can be shown that 

   2 4( ) 2 ( )R F R F R CR′′ − = −  (29) 

and so 

   2 42
1( )

10
C CF R C R R
R

= + −  (30) 

A generalized type I stream function corresponding to 
this case is hence unraveled, specifically, 

   2 4 22
1 sin

10
C CC R R
R

ψ φ = + − 
 

 (31) 

Unfortunately, this form cannot accommodate the 
boundary conditions attributed to the bidirectional 
vortex, given by Eqs. (8)–(11).  Instead, Eq. (31) can be 
readily adapted to describe the flow conditions 
associated with a uniform flow past a sphere. As 
illustrated in Fig. 4, this classic problem exhibits rather 
simple boundary conditions.  In the far field, one has 

   R → ∞ , 2 21
2 sin constURψ φ→ +  (32) 

so that 

   0C =  and 1
1 2C U=  (33) 

The immediate implication here is that of an irrotational 
flow since sin 0CRω φ= = . The corresponding stream 
function reduces to 

   2 221
2 sin

C
UR

R
ψ φ = + 

 
 (34) 

The remaining constant can be obtained from the hard 
wall boundary condition along the sphere’s radius. 

Given that ( , ) 0aψ φ = , one must have 

   31
2 2C Ua= −  (35) 

This leaves us with the familiar solution 

   
3

2 21
2 3sin 1 aUR

R
ψ φ

 
= − 

 
 (36) 

and 

   
( )

( )

3 3

3 31
2

2 cos 1   

sin 2

Ru U a R

u U a Rφ

φ

φ

−

−

 = −


= − +
 (37) 

Equation (37) replicates the potential flow profile past a 
sphere; it is unsuitable for representing the bidirectional 
vortex.  

B. Type II Solution: Bidirectional Vortex 
   For 1λ = , one recovers the classic linear form, 

2( )f Cψ ψ= . The corresponding vorticity-stream 
function relation becomes 2 sinC Rω ψ φ= .  Rearward 
substitution into Eq. (20) gives 

   ( )2 1 1sin Ru
C R Ru

R R Rφψ φ
φ

∂∂
= −

∂ ∂
 (38) 

This PDE can be fully expressed in terms of the stream 
function 

 2 1 1sin
sin

C R
R R R

ψψ φ
φ

 ∂ ∂
= − ∂ ∂ 

 

   2
1 1

sinR R
ψ

φ φφ
 ∂ ∂

−  ∂ ∂ 
 (39) 

and so 

 
2

2 2
sin 1

sinR R
ψ φ ψ

φ φ φ
 ∂ ∂ ∂

+  ∂ ∂∂  
2 2 2sin 0C Rψ φ+ =  (40) 

Using the product rule, the middle term can be 
expanded and simplified:  

 2
sin 1

sinR
φ ψ

φ φ φ
 ∂ ∂
 ∂ ∂ 

2

2 2
1 cos

sinR
ψ φ ψ

φ φφ
 ∂ ∂

= − ∂∂ 
 (41) 

Equation (40) becomes, at length, 
2 2

2 2 2 2
1 1 cos

sinR R R
ψ ψ φ ψ

φ φφ
∂ ∂ ∂

+ −
∂∂ ∂

2 2 2sin 0C Rψ φ+ =  (42) 

This is the key equation that needs to be solved for type 
II behavior. Its linearity suggests the possibility of a 
closed-form solution.  

1. Separating the Vorticity Equation 
  At this stage, it is useful to attempt a similarity 
solution of the form ( , ) ( )Rψ φ ψ ζ=  with the similarity 
variable 2 21

2 sinCRζ φ= ; this requires evaluating 

uφ
Ru

φ

R

U

R=a

 
 

Fig. 4  The case of uniform flow past a sphere 
leading to an inviscid, irrotational solution. 



 

–6– 
American Institute of Aeronautics and Astronautics 

   2 2sin ;   sin cosCR CR
R
ζ ζφ φ φ

φ
∂ ∂

= =
∂ ∂

 (43) 

Inserting into Eq. (42) yields 
2 2 2sin 2 sin sinC C Cφψ ζ φψ φψ′ ′′ ′+ −  

   22 cos 2 0C Cζ φψ ζψ′′+ + =  (44) 
and so 

   2 22 (sin cos ) 2 0C Cζ φ φ ψ ζ ψ′′+ + =  (45) 
leading to 

   0ψ ψ′′ + =  (46) 
The standard solution is, of course, 

   1 2sin cosC Cψ ζ ζ= +  (47) 
or 

 2 2 2 21 1
1 22 2sin( sin ) cos( sin )C CR C CRψ φ φ= +  (48) 

Equation (42) is deceptively simple and can be shown 
to be unsuitable for the bidirectional vortex.  The 
constants of integration must be permitted to vary in 
order to capture more complex features of the flow. 
This will be carried out next. 

2. General Behavior of the Type II Solution 
A more general solution for Eq. (42) can be 

pursued in the spirit of Eq. (48); to that end, one can let 

 2 21
1 2( , ) sin( sin )C R CRψ φ φ=  

   2 21
2 2( , ) cos( sin )C R CRφ φ+  (49) 

This ansatz may be substituted back into Eq. (42); after 
some algebra, one segregates 

 
2

1 1 1
2 2 2

cot sincos sin(2 ) sinC C CC
R R

φ ζζ φ ζ
φ φ φ

 ∂ ∂ ∂
− + ∂ ∂ ∂

  

  
2

2 1 1
22 cos sin sinC CCR

R R
ζ φ ζ

∂ ∂
+ + ∂ ∂ 

 

 
2

2 2 2
2 2 2

cot cossin sin(2 ) cosC C CC
R R

φ ζζ φ ζ
φ φ φ

 ∂ ∂ ∂
− + − ∂ ∂ ∂

 

   
2

2 2 2
22 sin sin cos 0C CCR

R R
ζ φ ζ

∂ ∂
+ − =∂ ∂ 

 (50) 

It is interesting to note the striking similarity between 
bracketed terms in Eq. (50). One is thus able to 
disentangle particular solutions by first collecting the 
cos –ζ  and sin –ζ terms, and then causing them to 
vanish simultaneously.  One gathers 

   21 1cos sin sin 0C CR
R

φ φ φ
φ

∂ ∂
+ =

∂ ∂
 (51) 

with 

   
2 2

1 1 1
2 2 2 2

1 cot 0
C C C

R R R
φ

φφ
∂ ∂ ∂

+ − =
∂∂ ∂

 (52) 

and, in like manner,  

   22 2cos sin sin 0C CR
R

φ φ φ
φ

∂ ∂
+ =

∂ ∂
 (53) 

with 

   
2 2

2 2 2
2 2 2 2

1 cot 0
C C C
R R R

φ
φφ

∂ ∂ ∂
+ − =

∂∂ ∂
 (54) 

Equation (52) is linear and can be solved using the 
method of characteristics. One finds that 

1 ( cos )C f R φ= . To determine f , one substitutes the 
relation 1 ( cos )C f R φ=  back into Eq. (52); this 
operation yields ( cos ) 0f R φ′′ =  or 

   1 1 2( cos ) cosC f R K R Kφ φ= = +  (55) 
  Using similar arguments and Eqs. (53)–(54), one 
finds 

   2 3 4cosC K R Kφ= +  (56) 
One form of the type II stream function satisfying Eq. 
(42) becomes 

1 2 3 4( cos )sin ( cos )cosK R K K R Kψ φ ζ φ ζ= + + +  (57) 

3. General Axisymmetric Behavior 
  Based on Eqs. (18) and (57), one can re-evaluate 
the velocity components 

{ 2 2
3 2 1

1 cos cosRu K CK R CK R
R

φ φ = − + +   

  [ 1 4cos cosK CK Rζ φ× − +  

   }2 2
3 cos sinCK R φ ζ+   (58) 

and 

( ){ 3 2 1
1 cot cosu K CR K K R
Rφ φ φ= − + +  

  ] (1 4sin cos cotK C Kφ ζ φ× + − +  

   ) }3 cos sin sinK R φ φ ζ+   (59) 

Axisymmetry demands that 3K  and 4K  be zero lest the 
component of the velocity be unbounded along the axis. 
At the outset, the general solution appropriate of 
axisymmetric flows reduces to 

   ( )1 2cos sinK R Kψ φ ζ= +  (60) 
with the companion velocities 
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( )1 2 1
1 cos cos cos sinRu CR K R K K
R

φ φ ζ ζ= + −    (61) 

and 

( )1 2
1 sin cos cosu CR K R K
Rφ φ φ ζ= − +  

   ]1 cot sinK φ ζ+  (62) 
Equations (61)–(62) represent the type II class of 
solutions for an axisymmetric flowfield.  

4. Specific Case: Cylindrical Bidirectional Vortex 
  A cylindrical cyclone or a CWBVCC chamber may 
be modeled as a cylindrical tube of length L  and radius 
a ; the head end may be considered impermeable (due 
to the corresponding small volumetric flux associated 
with the underflow in a cyclone or the fuel injected in 
the CWBVCC); the aft end may be assumed to be 
partially open to a straight nozzle of radius b . A sketch 
of the chamber is given in Fig. 3 where R , φ  and θ  
are used to guide spherical variations. Note that the 
origin of the spherical coordinate system is placed at the 
center of the chamber head end; alternatively, r  and z  
are used to represent the cylindrical radial and axial 
coordinates in a coincident reference frame. The 
fraction of the radius that is open to flow may be 
defined by b aβ =  and the chamber’s aspect ratio by 
l L a= .   
  Excluding axisymmetry (which is already satisfied) 
the remaining physical conditions described in Eqs. (8)
–(11) may now be applied to Eqs. (61)–(62). Firstly, the 
state of no flow across the head end requires that 

( )1
2, 0u Rφ π = ; hence  

   ( )21
1 2 2cos 0u CC K CRφ = − =  (63) 

This is true when 2 0K =  or  

   1 cos sinK Rψ φ ζ=  (64) 
One is left with 

 ( )2 2
1 cos cos sin /Ru K CR Rφ ζ ζ= −  (65) 

 ( )2
1 cos sin cos cot sin /u K CR Rφ φ φ ζ φ ζ= − +  (66) 

  Secondly, one can enforce the no flow across the 
sidewall where the radius a  remains invariant. 
Accordingly, the component of the velocity normal to 
the surface must vanish along sinR aφ = . Based on 
geometric considerations, the component of velocity nu  
normal to the sidewall may be evaluated from 

   sin cos ,   cscn Ru u u R aφφ φ φ= + =  (67) 
where 

2 2 21 1
1 2 2sin cot cos( ) sin( ) /Ru K Ca Ca Ca aφ φ = −   (68) 

and 
2 21 1

1 2 2sin cot cos( ) cot sin( ) /u K Ca Ca Ca aφ φ φ φ = − + 

    (69) 
Equation (67) becomes 

   21
1 2( )sin( )nu K a Ca= −  (70) 

The no flow across the sidewall requires that 0nu =  or 
( )21

2sin 0Ca = . This condition precipitates 

   22 / ,   1, 2...C n a nπ= =  (71) 
Hence, ( )2 2 2

1 cos sin sinK R n a Rψ φ π φ−= . For a single 
pass bidirectional motion, one must set 1n =  such that 

   ( )2 2 2
1 cos sin sinK R a Rψ φ π φ−=  (72) 

  

(
) ( )

(
) ( )

2 2 2 2 21

2 2 2 2

2 2 2 21

2 2 2 2

2 cos cos

     sin sin sin

2 cos sin cos

     sin cot sin sin

R
K

u a R a R
R

a R

K
u a R a R

R
a R

φ

π φ π

φ π φ

π φ φ π

φ φ π φ

− −

−

− −

−

 = 


 × − 
 − = 
 × + 

 (73) 

  The last constant 1K  may be deduced from global 
mass balance. In Fig. 3, it can be seen that, for flow 
across a cylindrical face, the axial velocity consists of 
the combination 

   cos sinz Ru u uφφ φ= −  (74) 
such that 

(2 2 2 2 21 2 cos cosz
K

u a R a R
R

π φ π− −=   

  ) ( )2 2 2 2sin sin sin cosa Rφ π φ φ− × −   

  (2 2 2 21 2 cos sin cos
K

a R a R
R

π φ φ π− −+   

   ) ( )2 2 2 2sin cot sin sin sina Rφ φ π φ φ− × +   (75) 

This, in turn, simplifies into 

  ( )2 2 2 2
12 cos cos sinzu a K R a Rπ φ π φ− −=  

   ( )2 2 2
12 cosa K z a rπ π− −=  (76) 

The global mass balance across the outlet requires that 
o i iQ Q UA= = ; hence 

2 2 2 2
10 0

( , )2 d 4 cos( ) d
b b

o zQ u r L r r a K L a r r rπ π π− −= =∫ ∫  

   ( )2 2
12 sinK L a bπ π −=  (77) 

For this to hold, the last constant must be 
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( )1 2 22 sin

iUA
K

L a bπ π −
=  (78) 

The bidirectional vortex specific to a cylindrical 
chamber is now at hand.  One has 

   
( )
( )

2 2 2

2 2

cos sin sin

2 sin
iUA R a R

L a b

φ π φ
ψ

π π

−

−
=  (79) 

with the spherical components 

( )
2 2 2

2 2
2 cos

2 sin
i

R
UA

u a R
RL a b

π φ
π π

−
−

=   

   ( )2 2 2cos sina Rπ φ−× ( )2 2 2sin sina Rπ φ− −   (80) 

and 

( )
2 2

2 2
2 cos sin

2 sin
iUA

u a R
RL a bφ π φ φ

π π
−

−

− =   

 ( ) ( )2 2 2 2 2 2cos sin cot sin sina R a Rπ φ φ π φ− − × +   (81) 

This completes the bidirectional vortex representation 
in spherical geometry. The conical bidirectional vortex 
is discussed in Appendix A. 

C. Type III Solution: Nonlinear Behavior 
  For ( ) 2f C λψ ψ= , (0,1)λ∀ ≠ , a nonlinear 
relation ensues between the vorticity and stream 
function.  One must reconsider 

 
2

2 2
sin 1

sinR R
ψ φ ψ

φ φ φ
 ∂ ∂ ∂

+  ∂ ∂∂  
  

   ( ) 2 2sin 0f Rψ φ+ =  (82) 
with f  exhibiting the general form 

   ( )f C λψ ψ=  (83) 
for some C  and λ . If we now assume ψ  of the form 

   ( ) ( ) ( ),R F R Gψ φ φ=  (84) 
we get 

 
( ) ( ) ( ) ( )

2
2

2

d
sin

d
F R

G CF R G R
R

λ λφ φ φ+  

   
( ) ( )

2

sin dd 1 0
d sin d

F R G
R

φ φ
φ φ φ

 
+ = 

 
 (85) 

or 

 
( )

( )22
1 1 4 2

2

d
sin

d
F RR CF G R

F R R
λ λ φ− −+  

   
( )

( )dsin d 1 0
d sin d

G
G

φφ
φ φ φ φ

 
+ = 

 
 (86) 

By applying the transformation ( ) ( )F R H R R= , we 
are left with 

   
( )

( )22
2

2

d 1
4d

F RR H HR R
F R H HR

′ ′′
= − + +  (87) 

In seeking a separable solution, one must equate Eq. 
(87) to a constant; if this constant is chosen to be 

2 1
4µ − , Euler’s differential equation is recovered, 

namely 

   2 2RH R H Hµ′ ′′+ =  (88) 

As usual, the general solution exhibits the form 

   ( )H R AR BRµ µ−= +  (89) 
With this information the rest of Eq. (86) becomes 
independent of R .  Instead of using the general 
solution for H , let us pick 

   ( )H R Rµ=  (90) 
and so 

 
( )

( )2 1
4

dsin d 1
d sin d

G
G

φφµ
φ φ φ φ

 
− +  

 
 

   ( )( ) ( )
1
2 1 4 1 2sin 0CR Gµ λ λ φ φ+ − + −+ =  (91) 

Clearly, Eq. (91) can be made independent of R  by 
choosing 

   ( )( )1
2 1 4 0µ λ+ − + =  (92) 

or 

   ( ) 1
24 / 1µ λ= − −  (93) 

This choice turns Eq. (91) into  

( ) ( ) 2dd 1sin sin
d sin d

G
CGλφ

φ φ φ
φ φ φ

 
+ 

 
 

   ( ) ( )2 1
4 0Gµ φ+ − =  (94) 

  The resulting ODE has to be solved subject to the 
periodicity condition needed for a physically 
meaningful problem, specifically, ( ) ( )0 2G G π=  and 

( ) ( )0 2G G π′ ′= . This condition places restrictions on 
the possible choices of C  and λ .  
  Equation (94) is essentially nonlinear because, as it 
can be seen from Eq. (92), any choice of λ  may be 
possible except for 1λ = . Using primes to denote 
differentiation with respect to φ , Eq. (94) can be 
written as 

2 2cot sin 4( 3)( 1) 0G G CG Gλφ φ λ λ −′′ ′− + + + − =  (95) 
Multiple solutions may thus be obtained and those that 
are meaningful are those that would satisfy the 
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periodicity condition. For example, using 3,λ = −  
( 1

2µ = ), and 1C = , Eq. (95) becomes 

   ( ) ( ) ( )3 2cot sin 0G G Gφ φ φ φ φ−′′ ′− + =  (96) 
This can be solved numerically to obtain multiple 
periodic solutions. The resulting behavior is illustrated 
in Fig. 5 where it is solved using two sets of initial 
guesses.  These are 

 1( / 4) 1.558501G π = , 1( / 4) 0.7000145G π′ =  (97) 
and 

 2 ( / 4) 4.016863G π = , 2 ( / 4) 0.05790198G π′ =  (98) 
Note that, for each set, a candidate solution is obtained.  
  Interestingly, for the special case of 3,λ = −  
( 1/ 2µ = ), an exact solution can be obtained for 
arbitrary C .  This can be seen by reexamining Eq. (94) 
which now becomes 

   ( )31 d 1 d 0
sin d sin d

G CG φ
φ φ φ φ

− 
+ = 

 
 (99) 

By letting cosχ φ=  and 1/ 4( ) ( )G C gφ χ= , Eq. (99) 
can be simplified into 

   3 0g g−′′ + =  (100) 
where primes are associated with χ .  This simple 
result can be multiplied by g ′  and integrated to 
produce 

   2 21 1 1
12 2 2( ) constantg g K−′ − = =  (101) 

or 2
1g K g−′ = ± + . A second integration attempt 

furnishes 

  21
1 1 22

1

d 1
1

g K
K g K K

K

ξ
ξ χ

ξ
± = ± + = +

+
∫  (102) 

hence 2 2
1 1 21 ( )K g K Kχ+ = +  or 

   2
1 2 1( ) [( ) 1] /g K K Kχ χ= ± + −  (103) 

Finally, the type III solution gives 

   
1/ 22

1/ 4 1 2

1

( cos ) 1
( )

K K
G C

K
φ

φ
 + −

= ±  
 

 (104) 

and so, in combination with Eqs. (90) and (84), renders 

   ( )
1/ 22

1/ 4 1 2

1

( cos ) 1
,

K K
R C R

K
φ

ψ φ
 + −

= ±  
 

 (105) 

with 

  
1
4

1
2

1/ 2
1 1 2

2
1 2

( cos )

( cos ) 1
R

C K K K
u

R K K

φ

φ

+
=

 + − 

∓  (106) 

  
1
4

1/ 22
1 2

1/ 2
1

( cos ) 1

sin

C K K
u

K Rφ

φ

φ

 + − = ∓  (107) 

This particular profile cannot be made to observe the 
boundary conditions implied in the bidirectional vortex. 
However, it may find useful application elsewhere. 

IV. Sample Verification 
  To verify that the bidirectional vortex is valid 
inside a cylinder, it can be compared to its equivalent 
obtained by Vyas, Majdalani and Chiaverini.29 In order 
to do so, one can employ the coordinate transformations 

cosR zφ =  and sinR rφ = . The corresponding 
velocities are related vis-à-vis 

   
sin cos

cos sin
r R

z R

u u u

u u u
φ

φ

φ φ

φ φ

= +
 = −

 (108) 

or, in matrix form 

   
sin cos
cos sin

Rr

z

uu
uu φ

φ φ
φ φ

    
=     −    

 (109) 

One may recall from basic analysis that the inverse of 
this coefficient matrix is the matrix itself; for we also 
have  

   
sin cos
cos sin

R r

z

u u
u uφ

φ φ
φ φ

    
=    −    

 (110) 

Transformation of the spherical solution yields 

( ){ 2 2 2 2 2 2
1( / ) 2 cos cos sinru K R a R a Rπ φ π φ− −=   

  ( ) } { 12 2 2 2 2sin sin sin 2K
Ra R a Rπ φ φ π−− − − +   

  ( )2 2 2cos sin cos sina Rφ φ π φ−×  

  ( ) }2 2 2cot sin sin cosa Rφ π φ φ− +   

0 2π 4π 6π 8π 10π

0

2

4

φ

G
, G

'

 G1     G2

 G1'     G2'

 
Fig. 5  Sample plot of the periodic results of the 
nonlinear type III solution for the specific case of 

3λ = −  and 1C = .  The two cases illustrate the 
solution multiplicity with different initial conditions.
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   ( )2 2 21 sin sin
sin
K

a R
R

π φ
φ

−−
=  (111) 

which, from Eq. (78), simplifies into 

( )
( )

( )
( )

2 2 2 2 2

2 2 2

sin sin sin

2 sin sin 2 sin
i i

r

UA a R UA a r
u

LR a b Lr

π φ π

π φ π π πβ

− −

−

− −
= = (112) 

where /b aβ = . Similarly, one finds 

( )2 2 2
12 coszu a K z a rπ π− −=

( )
( )

2 2

2 2 2

cos

sin
iUA z a r

La a b

π

π

−

−
=  (113) 

and, from Eq. (17), 

   
sin sin

sin
i i i iUR UR Uau

R r rθ
φ φ

φ
= = =  (114) 

To render Eqs. (112)–(114) dimensionless, one may use  

, , , , ,r z
r z

uu ur zr z u u u
a a U U U

θ
θ= = = = = 1

2
iA

a
σ −=  (115) 

The resulting normalized velocities become 

  
( )

( )
( )
( )

2 2

2 2

sin sin

2 sin sin
r

r r
u

rlr

π πκ
πσ πβ πβ

−
= = −  (116) 

  1u
rθ =   (117) 

  
( )
( )

( )
( )

2 2

2 2

cos cos
2

sin sin
z

z r r
u z

l

π π
πκ

σ πβ πβ
= =  (118) 

where 1(2 )lκ πσ −=  is the tangential inlet parameter. It 
should be noted that, in order for the outflow radius to 
match that of the nozzle inlet, the radius of the latter 
should be / 2b a=  or 1 2β = . Under these 
idealized conditions, the bidirectional vortex becomes 
expressible by  

( ) ( )2 21sin , , 2 cosr zu r u u z r
r rθ
κ π πκ π= − = =  (119) 

   Equation (119) is identical to the non-dimensional 
solution obtained by Vyas, Majdalani and Chiaverini.29 
This converted result lends support to the validity of the 
current approach. For illustration, the velocity 
distribution is reproduced in Fig. 6.  Here, the axial 
velocity profiles are plotted at four equally spaced axial 
stations. These confirm the location of the mantle, 
where the vortex switches polarity (at 0.707 of the 
chamber radius). The hyperbolic relation exhibited by 
the azimuthal velocity reflects the presence of a free 
vortex in a frictionless environment. Finally, the radial 
velocity component shown at several chamber aspect 
ratios confirms the inevitable mass transport between 
the outer and inner vortex regions. This crossflow is 
uniformly distributed along the chamber length. 

V. Concluding Remarks 
In this paper we have uncovered several solutions 

in the context of steady, axisymmetric, incompressible, 
and inviscid vortex motion exhibiting a two-cell 
structure. In addition to the quest for generalizations, 
the focus has been on those specific solutions that will 
satisfy the physical conditions associated with a single 
pass, bidirectional vortex.  In so doing, separation of 
variables was used in conjunction with the method of 
characteristics and the variation of parameters 
technique. 

In addition to the importance of identifying the 
different types of possible solutions, the work’s 
development in spherical coordinates increases our 
repertoire of procedural steps and available 
generalizations that can be applied to other geometric 
shapes. Specifically, the work may prove useful in 
tackling those problems that are more manageable in 
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 l = 3
 l = 4
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Fig. 6 Illustration of the velocity profile 
corresponding to the bidirectional vortex.  
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spherical geometry.  The conical cyclone may be such a 
case whose treatment is deferred to forthcoming study.   

To verify the general approach presented here, the 
type I solution is shown to reproduce the potential flow 
past a sphere, one of the rare spherical solutions found 
in the technical literature. After conversion to polar-
cylindrical coordinates, the type II solution is shown to 
reproduce the bidirectional vortex in a straight cylinder. 
As the latter is obtained in inviscid form, it unravels the 
free vortex motion that is known to affect the bulk flow 
away from the core.  Near the chamber axis, viscous 
stresses rise in importance as transition to a forced 
vortex becomes inevitable.31  The treatment of attendant 
structures in spherical geometry is hoped to be 
accomplished in later work. The discussion of other 
possible solutions arising with single or multiple flow 
passes is also hoped to receive attention in similar 
geometry.  Finally, in the forced vortex analysis, 
incorporation of viscous terms will be needed to capture 
the core motion. Similar work will be necessary to 
carefully capture the boundary layers adjacent to the 
endwall and sidewall. It is hoped that their analysis will 
open up additional lines of research inquiry. 

Appendix A: Conical Geometry 
  By placing the origin of the spherical coordinate 
system at the center of the head end (i.e. the short side 
of the truncated cone in Fig. 7), one may define the 
normal and tangential velocity components ( ,n tu u ) to 
be normal and tangential to the sidewall, respectively.  
Here, the sidewall is tapered at an angle α  with respect 
to the axis.  It is easy to show that 

   
( ) ( )
( ) ( )

sin cos
cos sin

Rn

t

uu
uu φ

φ α φ α
φ α φ α

 − −    
=      − − −    

 (A1) 

Another geometric property of importance is the 
relation between the spherical radius R  and the 
colatitude angle φ  along the sidewall.  By applying the 
sine law to an arbitrary triangle anchored at the 
sidewall, one finds 

 
( ) ( )1

2 sinsin
R a

φ απ α
=

−+
 or 

( )
cos

sin
aR α

φ α
=

−
 (A2) 

If this coordinate system is adopted, then the no flow 
boundary condition becomes 

   ( ) ( )sin cos 0n Ru u uφφ α φ α= − + − =  (A3) 
This is true along the sidewall defined by 

( )cos cscR a α φ α= − . Similar work is required to set 
up the remaining boundary conditions and solve the 
corresponding problem in a conical cyclone. 
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