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 Internal flowfield modeling is a requisite for obtaining critical parameters for the design 
and fabrication of modern solid rocket motors.  In this work, the analytical formulation of 
internal flowfields particular to solid rocket motors with tapered sidewalls is pursued.  The 
analysis employs the vorticity-stream function approach to treat this problem assuming 
steady, incompressible, inviscid, isothermal and non-reactive flow conditions.  The resulting 
solution is rotational and inviscid following the analyses presented by Culick for a 
cylindrical solid rocket motor.  In an extension to Culick’s classic work, Clayton has recently 
managed to incorporate the effect of tapered walls.  Here, a similar approach to that of 
Clayton will be applied to a slab motor in which the chamber will be modeled as a 
rectangular channel with porous, tapered sidewalls. The solutions will be shown to be 
reducible, at leading order, to Taylor’s inviscid profile in a channel. The analysis also 
captures the generation of vorticity at the surface of the propellant and its transport along 
the streamlines due to axial pressure gradients.  It is from the axial pressure gradients that 
the proper form of the vorticity is ascertained.  The method of regular perturbations is used 
to solve the nonlinear vorticity equation that prescribes the mean flow motion in tapered 
geometry.  Subsequently, numerical results provided by FLUENTTM and an additional 
analytical approach (variation of parameters) are used to gain confidence in the analytical 
approximations obtained from the perturbation method.  To further understand the effects 
of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered 
and non-tapered chambers are entertained.   

 

Nomenclature  
F  = momentum thrust 

0h  = slab motor half-height 
0L  = motor length (slab and cylindrical motors) 

p  = dimensional pressure 
p  = normalized pressure, 2

bp Vρ  
u  = dimensional velocity components, ( ),  x yu u  
u   = normalized velocity, bu V  

bV  = injection velocity at propellant surface 
0w  = slab motor width 

x  = dimensional axial coordinate 
x   = normalized axial coordinate, 0x h  
y  = dimensional transverse coordinate 
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y  = normalized transverse coordinate, 0y h  
β  = velocity ratio, ( )max aveu u x  
ρ  = density 
ψ  = normalized stream function 
Ω  = normalized vorticity 
 
Subscripts 
0   = leading order, parallel chamber quantities 
1   = first-order correction 
b   = burning surface 

,x y = axial or transverse component 
 
Superscript 
−   = dimensional quantity 

I. Introduction 
N the design of solid rocket motors (SRMs), internal 
flowfield modeling is of paramount importance in 

evaluating the impact of mean flow on unsteady wave 
motions, estimating acoustic energy, predicting the 
onset of hydrodynamic instability, and assessing 
velocity and pressure coupling with propellant burning.  

I
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Naturally, accurate mathematical modeling of the 
pressure distribution and velocity profiles are important 
with respect to the efficient design and manufacture of 
the structural components that comprise the solid rocket 
motor. 
  Over-prediction of the pressure load would result 
in increased motor fabrication cost and weight which, in 
turn, would result in a negative impact on motor 
efficiency.  If the pressure load is under-predicted, the 
potential risks can be catastrophic.  Four decades ago, 
Culick developed a mean flow solution for the internal 
flowfield of a circular-port solid rocket motor using an 
inviscid, incompressible and rotational flow model.1  
This profile was used in many studies to predict the 
pressure variation and combustion instabilities.2-12  
Currently, it is used as a baseline in known ballistic 
codes such as SSP (Standard Stability Prediction).13-15  
  Modern solid rocket motors are manufactured with 
small tapers that reduce the contact between the casting 
mandrels and the propellant during mandrel removal.  
The small, divergent angles aid in the reduction of shear 
stress on the surface of the propellant.  This minimizes 
the likelihood of propellant tearing, cracking and 
debonding.  Tapers are also used to shape the thrust 
time curve and to soften thrust transients at tail-off.  As 
a result, tapers are often used in high speed interceptor 
vehicles requiring thrust curve modifications.  Tapers 
also minimize erosive burning effects and maximize 
volumetric loading fraction.  This helps to increase the 
port-to-throat area ratio.  The problem is that some 
ballistic codes used to assess the physical characteristics 
of solid rocket motors do not account for the small 
tapered angles currently found in modern solid rocket 
motors. This point was first raised by Clayton16 in his 
original investigation of this generally overlooked 
feature of SRM analysis. 
  The issue here is that when ballistic codes refer to 
Culick’s1 or Taylor’s17 profiles to evaluate tapered solid 
rocket motors, the pressure drop can be over-predicted 
by as much as 25% to 80%. This is due to the velocity 
diminution that accompanies cross-sectional area 
increases.  Naturally, with an increase in flow area 
(decrease in velocity), the dynamic pressure becomes 
smaller, leading to an overall decrease in total pressure 
drop.  In an effort to produce a solution that yields the 
proper pressure correction applicable to tapered 
combustion chambers, Clayton was able to obtain an 
approximate solution by employing a regular 
perturbation method.16  Being asymptotic, Clayton’s 
solution was shown to be reducible, at leading order, to 
Culick’s profile for a taper angle of zero. 
  In 1956, Taylor17 derived the solution for a 
rectangular chamber with porous walls as part of his 
treatment of pressure-driven flows in wedges and 

cones.  Other pertinent solutions were later advanced by 
Yuan and Finkelstein18,19 and Terrill20 who incorporated 
the effects of viscosity in both axisymmetric and planar 
domains.  Their work was recently extended to include 
the effects of wall regression by Majdalani, Vyas and 
Flandro,21 and Zhou and Majdalani.22  
  The physical model to be employed here consists 
of the straight section of the motor and the tapered 
section as well.  The incorporation of the taper in the 
context of internal flowfield studies of solid rocket 
motors seems to have received very little attention.  In 
fact, one may find very few studies concerned with 
tapered chambers.  One such study may be attributed to 
the work of Mu-Kuan and Tong-Miin.23  In their 
attempt to understand the flowfield present in tapered 
ducts applicable to solid propellants, Mu-Kuan and 
Tong-Miin conducted a fiber optic study of a non-
uniform, injection induced flow in tapered channels.  
The principal focus of their study was to determine the 
effect of the divergent configuration on the promotion 
of flow stability.  Their study also confirmed the lack of 
similarity between the velocity distributions in straight 
(non-tapered) and tapered chambers.  It can hence be 
seen that the problem concerning solid rocket motors 
with tapered walls will serve more than one purpose; 
particularly, it will help to elucidate the contrasting 
mean velocity distributions and compare the pressure 
drop between the parallel and tapered motor shapes.  It 
will also address the mathematical peculiarities 
associated with the no-slip condition along the tapered 
surface. 
  In searching for a solution that captures the effects 
of the tapered walls, the methodology utilized in this 
analysis will exploit the vorticity at the surface and its 
transport along the streamlines.  This vorticity is the 
result of the axial pressure gradient.  The relationship 
between these key variables permits the proper form of 
chamber vorticity to be ascertained.  The development 
of an expression for the vorticity particular to tapered 
geometry results in a nonlinear governing differential 
equation, for which a solution may be obtained by the 
method of regular perturbations.   
  Accompanying the perturbation solution, an 
alternate solution will be sought using the method of 
variation of parameters.  The solution obtained by this 
technique will be found to be identical to the leading-
order solution provided by the regular perturbation 
method, thereby legitimizing the approach used to 
resolve the problem under study.  Finally, a numerical 
simulation will be performed with the aim of validating 
both forms of the analytical solution. At the conclusion 
of this study, an error analysis will be used to establish 
the physical limitations and bracket the applicability 
range of the proposed analytical expressions. 
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II. Mathematical Model 
  The idealized tapered slab burner is characterized 
as a rectangular, parallel port duct with the top and 
bottom porous surfaces oriented at an angle α .  The 
model presented in Fig. 1 incorporates both geometries.  
This allows one to account for the bulk flow originating 
from the non-tapered section of the motor.  
Accordingly, the origin for the coordinate system is 
expediently placed at the interface where x  and y  
denote the axial and transverse coordinates, 
respectively.  The non-tapered section of the motor has 
dimensions of length 0L , height 02h , and width 0w .  
The gases are injected across the top and bottom 
surfaces in a normal and uniform manner.  As a 
consequence of mass conservation, the injected gases 
are forced to turn and assimilate with the primary bulk 
flow emanating from the straight section of the motor 
(see Fig. 1a). 

A. Governing Equations 
  Conceptualizing the problem at hand, it is 
instructive to note that the vorticity produced at the 
surface is an outgrowth of the interaction between the 
injected fluid and the axial pressure gradient.  This 
phenomenon allows one to utilize an alternate form of 
Euler’s momentum equation and its explicit relationship 
between chamber pressure and vorticity.  Another 
feature of this governing set is that the vorticity is 
expressed in terms of the stream function.  For the 
planar, two-dimensional model proposed, the flow can 
be characterized as (i) steady, (ii) inviscid, (iii) 
incompressible, (iv) rotational, and (v) non-reactive.  In 
accordance with the stated assumptions, the kinematic 
equations of motion can be written in vector and scalar 
notations.  Hence,  

   p⋅∇ = −∇u u  (1) 

   2
z ψ−Ω = ∇  (2) 

   1y y
x y

u u pu u
x y yρ

∂ ∂ ∂
+ = −

∂ ∂ ∂
 (3) 

   1x x
x y

u u pu u
x y xρ

∂ ∂ ∂
+ = −

∂ ∂ ∂
 (4) 

   
2 2

2 2z x y
ψ ψ∂ ∂

−Ω = +
∂ ∂

 (5) 

B. Boundary Conditions 
  Judicious boundary conditions are needed to obtain 
a closed-form solution that is representative of the 
physical model.  To begin, one must recognize that the 
transverse component of velocity cannot physically 
contribute to the axial flow crossing into the tapered 

region at 0x =  (see Fig. 2).  The needed boundary 
conditions are prescribed as follows: (i) inflow across 
the tapered interface must originate from the outflow of 
the non-tapered segment of the motor; (ii) no flow 
across the midsection plane; and (iii) uniform and 
constant, normal injection at the burning surface. 
Mathematically, these conditions are expressed as: 

  

( ) ( )1 1
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s b

s b

0,  ,  cos /        

,  ,   sin                  
,  ,   cos
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Fig. 1 Schematic featuring a) typical slab burner 
configuration with tapered walls and b) coordinate 
system  used for the mathematical model. 
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Fig. 2 Graphical depiction of the tapered segment 
with corresponding boundary conditions. 
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C. Normalization 
  Normalization of the governing variables aids in 
the derivation of a clear solution that describes the 
flowfield in a succinct manner.  Here, we use 

   0
0

0 0 0

;  ; ; 
Lx yx y L h

h h h
= = = ∇ = ∇  (7) 

   2
b b b

;  ;  yx
x y

uu pu u p
V V Vρ

= = =  (8) 

   0

0 b b

;  
h

h V V
ψψ

Ω
= Ω =  (9) 

Along with the non-dimensional variables, the 
normalization of the boundary conditions yields 

   

( )1 1
2 2

s

s

0,  ,    cos     

,  ,  sin                     
,  ,  cos                   

0,  ,    0                           

x

x

y

y

x y u L y

y y x u
y y x u

y x u

π π

α
α

⎧ = ∀ =
⎪

= ∀ =⎪
⎨ = ∀ = −⎪
⎪ = ∀ =⎩

 (10) 

D. One-Dimensional Velocity  
  The tapered slab geometry is based on the 
Cartesian coordinate system (as depicted in Fig. 1b) 
where x  is the dimensional axial coordinate and y  is 
the dimensional transverse coordinate.  The area of the 
tapered burning surface is given by 

   b 0 secA w x α=  (11) 
The chamber cross-sectional area may be evaluated 
from 

   ( )0 0( ) tanA x w h x α= +  (12) 
The inflow cross-sectional area at the interface of the 
tapered and straight portions of the chamber is given by 

   0 0 0A w h=  (13) 
The corresponding velocity becomes 

   0 0 0 b( / )u L h V=  (14) 
Here 0L  can be defined as the bulk flow parameter 
because it is directly proportional to the average 
velocity at the entrance to the tapered portion.  Due to 
mass conservation, the cross-sectional average velocity 
of the fluid at any axial location x  may be expressed 
by 

   0 0 b b
ave( )

( )
A u A V

u x
A x

+
=  (15) 

By substituting Eqs. (11)–(14) into Eq. (15) and 
expressing the resulting relation in normalized variables 
one gets 

   ave
sec( )

1 tan
L xu x

x
α
α

+
=

+
 (16) 

For the case of 0α = , Eq. (16) reduces to 

   aveu L x= +  (17) 
which depicts the bulk flow in a straight duct with 
uniform inflow. 
  To gain an in-depth understanding of the behavior 
of the bulk flow in tapered chambers at lengths 
sufficiently removed from the interface, one may 
manipulate Eq. (16) and compute the limit.  Doing so 
one obtains 

   ( )( ) 11 1
ave ( ) sec tanu x Lx xα α

−− −= + +  (18) 

Evaluating the limit at x → ∞  gives 

   avelim ( ) cscx u x α
→∞

=  (19) 

As seen in Eq. (19), the average velocity in a tapered 
chamber converges to a constant value as the axial 
distance approaches infinity (except for 0α = ).  The 
result is due to mass conservation.  The presence of the 
taper increases the flow area, attenuating the 
acceleration of the gases.  Consequently, the velocity 
converges to a constant value, whereas the gases in a 
parallel chamber continue to accelerate at a constant 
rate.  This behavior is clearly illustrated in Fig. 3.  The 
fact that the bulk flow velocity converges to a constant 
value suggests that the geometry imposes a restriction 
on the flow behavior.  For a combined motor 
configuration, the parallel segment is followed by the 
tapered segment of the motor (see Fig. 1).  Knowing 
that the average velocity in a tapered chamber must 
converge to a constant value, it is not physically 
possible for the average velocity in the motor to 
increase beyond the limit prescribed by the tapered 
segment of the chamber.  To suggest otherwise would 
constitute a violation of continuity.  Hence, the average 
velocity must be less than or equal to the maximum 
velocity that can be attained in a tapered motor.  
Mathematically, this can be expressed by 
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Fig. 3 Plot of average velocity down the channel as a 
function of taper angle. 
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   ave ave0
( )  ( )  cscu x u L x

α
α

=
≤ ∞ ⇒ + ≤  (20) 

Rearranging and expressing the result from Eq. (20) in 
dimensional variables, one obtains 

   ( )0 0L x hα + ≤  (21) 
where sinα α≈  for small values of α .  The selection 
of geometric motor parameters that satisfy Eq. (21) 
ensures that the solution does not violate continuity. 

E. Stream Function along the Burning Surface 
  A crucial component to the formulation of the 
flowfield under study is the development of the stream 
function at the simulated burning surface.  The nature 
of the stream function changes with the angular 
orientation of the burning surface.  Therefore, one can 
define the directional derivative along the burning 
surface as  

   sd
cos sin

ds x y
ψ ψ ψα α∂ ∂

= +
∂ ∂

 (22) 

Along the burning surface (see Fig. 4), the normalized 
variables are evaluated to be 
   cosx s α=  (23) 

   s 1 tany x α= +  (24) 

   sinxu α=  (25) 

   cosyu α= −  (26) 
Making use of the stream function relations as defined 
at the burning surface, one puts 

   ,    x yu u
y x
ψ ψ∂ ∂

= = −
∂ ∂

 (27) 

Subsequent insertion of the stream function definitions 
into Eq. (22) yields 

   2 2s sd d
cos sin 1

d ds s
ψ ψ

α α= + ⇒ =  (28) 

Integrating the resulting expression and converting back 
to the spatial coordinates, one obtains 

   s s( ) ( ) sec( )s s x x Cψ ψ α= ⇒ = +  (29) 
where C  is a constant that can be evaluated by 
applying the boundary condition, ( )s 0 Lψ = .  
Application of this constraint gives 

   s ( ) secx x Lψ α= +  (30) 

F. Axial Pressure Gradient 
  Essential to the development of the chamber 
vorticity is the derivation of the axial pressure gradient.  
By close inspection it is evident that the axial pressure 
gradient is the primary source of vorticity and aids in its 
transport along the streamlines.  This alludes to the idea 
that it is quite advantageous to exploit the relationship 
between the pressure gradient and the vorticity as a 
means to arrive at a suitable form for the chamber 
vorticity.  To begin, one may start by expressing 
Bernoulli’s equation along the central streamline as 

   21
0 max2( ) ( )p x p u x= −  (31) 

The total pressure in the combustion chamber of solid 
rocket motors is sensitive to the shape of the axial 
profiles.  In non-tapered chambers, the shape of the 
axial profile is determined by the ratio of the axial 
velocity to the axial distance.  For diverging ducts, the 
axial profile changes at the burning surface as the gases 
move downstream.  Thus, it is required that the shape of 
the profile be known at each axial location in order to 
obtain accurate pressure estimates.  Considering that the 
maximum velocity is unknown, it is expedient to define 
a ratio between the maximum and average local 
velocities at any axial location x .  This velocity ratio 
can be written as 

   max

ave

( )
( )

u
x

u x
β =  (32) 

The form of ( )xβ  will be later determined to satisfy the 
no-slip condition along the tapered burning surface. By 
substituting Eq. (32) into Eq. (31), the expression 
becomes 

   2 21
0 ave2( ) ( )p x p u xβ= −  (33) 

The pressure gradient can be determined along the 
surface by calculating the derivative of Eq. (33).  The 
result is 

   2d d ( ) ( ) d ( )( ) ( )
d d ( ) d
p u x u x xx u x
x x x x

ββ
β

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 (34) 

Differentiating Eq. (16) and substituting the known 
surface variables furnishes  

   ave s
2

s s

d tansec
d
u
x y y

ψ αα
= −  (35) 

secs x α
=

x

y
s 1 tany x α= +α

 
Fig. 4 Schematic of tapered segment showing key 
geometric parameters in dimensionless form. 
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By substituting Eq. (35) into Eq. (34) and simplifying, 
it follows that  

 
2

s s
s2

ss

sec tand 1 cos
d
p
x yy

β ψ α ψ α βψ α
β

⎡ ⎤′⎛ ⎞
= − − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (36) 

where  

   d
dx
ββ ′ =  (37) 

G. Surface Vorticity 
  The relationship between the chamber vorticity and 
pressure is now established.  Moving forward, one may 
seek evaluation of the momentum equation for steady, 
inviscid flows at the surface.  Recalling the normalized 
form of Euler’s momentum equation for steady, 
incompressible and inviscid flows, 

   p ρ⋅∇ = −∇u u  (38) 
one may substitute the well known vector identity, 

1
2⋅∇ = ∇ ⋅ − ×∇×u u u u u u , to obtain an alternate 

expression of the form  

   ( )1
2p× = ∇ + ⋅u Ω u u  (39) 

The velocity vector at the simulated burning surface is 
defined as 

   ˆ ˆsin cosα α= −u i j  (40) 
Evaluating the expression at the surface by substitution 
of Eq. (40) into (39) gives 

   ( )s
ˆ ˆ ˆsin cos sα α× = −Ω − = −Ωu Ω i j s  (41) 

where ŝ  represents the unit vector parallel to the 
burning surface.  As we treated the directional 
derivative of the stream function along the surface, the 
chain rule can be applied to the pressure gradient 
parallel to the burning surface.  Hence, one can put 

   d d dˆ ˆcos sin
d d d
p p p
s x y

α α
⎡ ⎤

+⎢ ⎥
⎣ ⎦

s = s  (42) 

Equating the expressions provided by Eqs. (41) and 
(42) yields  

   s
d dcos sin
d d
p p
x y

α αΩ = − −  (43) 

Considering values of α  between 1  and 3 , any term 
containing sinα  would appear to be negligible.  
Taking this into account, Eq. (43) can be reduced to  

   ( )2
s b

d cos
d
p O V
x

α αΩ = − +  (44) 

Having previously formulated an expression for the 
pressure gradient, the surface vorticity can be expressed 
as 

   
2

s s
s s2

ss

sin
1 cos

yy
β ψ ψ α βψ α

β
⎡ ⎤′⎛ ⎞

Ω = − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (45) 

  Figure 5 allows one to visually interpret the 
pertinent surface and chamber quantities that are 
essential to formulate the governing equation for mean 
flow in tapered ducts.  Shown in the diagram are the 
domains for which the required form of the vorticity is 
given.  Also shown are the values of the stream function 
at the boundaries, which will be used later to obtain a 
closed-form solution.  

III. First Solution: Regular Perturbations 
  At this point, one may recall that vorticity is 
produced at the surface from the interaction between 
the perpendicularly injected gases and the axial pressure 
gradient.  The primary feature particular to the vortical 
behavior of an inviscid fluid is the fact that the vorticity 
generated at the surface is transported along the 
streamlines as the gases penetrate into the chamber.  
The idea that the vorticity is conserved in inviscid 
systems suggests that the expression for the surface 
vorticity is now valid (along the streamlines) 
throughout the chamber.  Therefore, one may remove 
the subscript from the stream function and vorticity 
variables in Eq. (45).  Next, one may equate Eq. (3) 

x

y

( )1
2sinL yψ π= Lψ =

s

sec
s

x
L

ψ
α

=
+

( ) ( )[ ]2 2
s s1 cos cosy yψ β ψ ψ α ψ α β β′Ω = − − +

0ψ =
 

 
Fig. 5 Evaluation of the stream function along the boundaries. Also shown is the key relation linking vorticity 
at any point along a streamline to the stream function at the surface; the latter remains constant along any
streamline crossing the chamber length. 
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with Eq. (45) to obtain a partial, nonlinear differential 
equation that governs the flow.  Equating these 
expressions, one finds 

2 2 2

2 2 2
ss

sin1 cos
yx y y

ψ ψ β ψ ψ α βψ α
β

⎡ ⎤′⎛ ⎞∂ ∂
+ = − − +⎢ ⎥⎜ ⎟∂ ∂ ⎝ ⎠⎣ ⎦

 (46) 

The boundary conditions required to solve Eq. (46) are 
given as 

   ( ),0 0xψ = ,   ( )s s,x yψ ψ=  (47) 
  For the cylindrical case, Clayton16 determined the 
relative magnitudes of the axial derivatives of the 
stream function and the velocity ratio by numerical 
analysis.  Based on his results, he was able to deduce 
that the axial derivatives were negligibly small.  In 
particular, Clayton noted that β ′  and 2 2/ xψ∂ ∂  were 
small quantities.  Clayton’s observations may be 
verified using a scaling analysis.  Considering that  

   
2

2
yu

xx
ψ ∂∂

=
∂∂

 (48) 

one may recall that the transverse velocity is 
independent of x  in the straight channel, thus causing 
Eq. (48) to vanish.  Evidently, the presence of a small 
taper will not affect the size of this term.  Therefore, the 
axial derivatives are small and can be neglected in the 
prescribed tapered domain.  Once the proper form of 
the velocity ratio has been obtained, a scaling analysis 
will be employed once more to further justify 
neglecting β ′ .  Using arguments similar to those 
provided by Clayton, one can reduce Eq. (46) into 

   
2 2

2 2
ss

sin1
yy y

ψ β ψ ψ α⎛ ⎞∂
= − −⎜ ⎟∂ ⎝ ⎠

 (49) 

Recognizing that the reduced equation is nonlinear, a 
solution can be sought by the method of regular 
perturbations.  Accordingly, the stream function and 
velocities are expanded in the form 

   ( )2
0 1 Oψ ψ ψ ε ε= + +  (50) 

   ( )2
s s,0 s,1u u u Oε ε= + +  (51) 

Similarly, by expanding Eq. (32) in an effort to assure 
satisfaction of the no-slip condition along the tapered 
surface, one obtains 

   ( )2
s 0 1 Oβ β β ε ε= + +  (52) 

where the perturbation parameter is due to the small 
taper angle, namely, 

   ( )sinε α=  (53) 
The governing equation can be solved by first inserting 
Eq. (50) and Eq. (52) into Eq. (49) and expanding the 
resulting terms.  This method serves to linearize the 

governing equation by reducing it to a sequence of 
linear problems, making a solution by standard methods 
accessible. 

A. Leading-Order Solution 
  For the sake of brevity, the details of the expansion 
are not presented here.  At leading order, ( )1O , one 
obtains  

   
2 2

0 0 0
2 2

s

d
0

dy y
ψ β ψ

+ =  (54) 

This is a second-order, linear differential equation that 
allows for the simple extraction of the transverse 
variation of the stream function.  The general solution 
can be expressed as 

  ( )0 1 0 2 0
s s

cos siny yy C C
y y

ψ β β
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (55) 

Now that a general solution has been obtained, 
evaluation of Eq. (55) at the conditions provided by Eq. 
(47) furnishes the leading-order solution, 

   ( )0 s 0
s

sin yy
y

ψ ψ β
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (56) 

where   

   secs x Lψ α= +  and 1
0 2β π=  (57) 

It should be noted that at 0L α= = , one recovers 

   ( ) ( )0 0siny x yψ β=  (58) 
Equation (58) represents Taylor’s profile for porous 
flow in channels.17  The leading-order solution, given 
by Eq. (56), can be described as an expanded version of 
the Taylor profile.  Such a form can be attributed to the 
additional bulk flow resulting from increased surface 
area owing to the divergent angle of the burning 
surface. 

B. First-Order Solution 
  At first order, the perturbative expansion yields 

   
2 2 22
0 1 0 1 0 0 01

2 2 2 3
s s s

2d
0

dy y y y
β ψ β β ψ β ψψ

+ + − =  (59) 

The first-order boundary conditions are 

   ( )1 0 0ψ = ,  ( )1 s 0yψ =  (60) 
By application of these boundary conditions, one 
obtains a first-order correction of the form 

( )
2
s 0

1
s s

, 3 4cos
6

y
x y

y y
ψ β

ψ
⎡ ⎛ ⎞

= − + ⋅⋅ ⋅⎢ ⎜ ⎟
⎢ ⎝ ⎠⎣

 

 0 0 0
1

s s s

2
cos 2sin 6 cos

y y y
y

y y y
β β β

β
⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ − + ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎦

 (61) 



 

–8– 
American Institute of Aeronautics and Astronautics 

The first-order correction accounts for transverse 
expansion, flow deceleration and the axial derivatives.  
Observing Eq. (61), it can be seen that there exists an 
unknown term that orginates from the perturbed 
velocity ratio β . The final step in the solution process 
involves solving for the first-order velocity ratio 1β , 
such that the no-slip condition is satisfied along the 
tapered surface. In the process, it is neccesary to 
express the surface velocity using  

   ( ) ( )s ,s ,s s,0 s,1cos siny xu u u u uα α ε= − = +  (62) 
and so 

( ) ( )s cos sinu
y x
ψ ψα α∂ ∂

= + =
∂ ∂

  

   ( ) ( ) ( ) ( )0 1 0 1cos siny xψ ψ ε α ψ ψ ε α+ + +  (63) 

Considering that 0ψ  already satsifies the no-slip 
condition at the wall, one may segregate the first-order 
correction by putting 

   ( ) ( )1 1
s,1 cos sinu

y x
ψ ψ

α α
∂ ∂

= +
∂ ∂

 (64) 

Again, it can be seen that the term containing ( )sin α  is 
negligibly small, being of ( )O ε .  One may neglect this 
term and set Eq. (64) equal to zero.  Evaluating the 
resulting expression at the tapered surface, one obtains 

   1 s2 /(3 )yβ =  (65) 
The required form of the leading and first-order 
velocity ratios, 0β  and 1β , is now determined.  At this 
point, it is necessary to make use of a scaling analysis 
to justify neglecting their derivatives.  Expressing Eq. 
(65) in the form of its derivative, one can put 

   ( )2
s 0 s 1 Oβ β ψ β ε ε′ ′ ′ ′= + +  (66) 

Using the known values of the velocity ratios, it follows 
that 

   ( )2
s s s3 sin yβ α ψ ′′ =  (67) 

Computing the derivative, one obtains 

   ( ) ( )
2

2 22
s 3 2

sin1 tan
cos

x Oαβ α ε
α

−′ = − + ≈  (68) 

IV. Method of Variation of Parameters 
  Using the method of variation of parameters, a 
more general solution that depicts the behavior of the 
governing equation may be sought.  For purposes of 
obtaining an approximate solution, the distance from 
the midsection plane to the simulated burning surface is 
again approximated as a constant although it is a 
function of x .  One may begin unraveling the solution 

by recalling the governing equation, as derived in the 
previous section, from Eq. (46), as 

 
2 2 2

2 2 2
ss

sin1 cos
yx y y

ψ ψ β ψ ψ α βψ α
β

⎡ ⎤′⎛ ⎞∂ ∂
+ = − − +⎢ ⎥⎜ ⎟∂ ∂ ⎝ ⎠⎣ ⎦

 (69) 

Commensurate with the approximations considered for 
the perturbation solution, the governing equation 
reduces to  

   
2 2 2

2 2 2
s

0
x y y
ψ ψ β ψ∂ ∂

+ + =
∂ ∂

 (70) 

Treating sy  as a constant, the most general solution 
assumes the form 

 ( ) ( ) ( )1 2
s s

, sin cosy yx y C x C x
y y

ψ β β
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (71) 

Inserting Eq. (71) into Eq. (70), one finds that  

( ) ( ) ( )1 2 3 4
s s

, sin cosy yx y K x K K x K
y y

ψ β β
⎛ ⎞ ⎛ ⎞

= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (72) 
The surface boundary conditions can be determined by 
evaluating the stream function at the surface.  Referring 
back to the previous section, it may be recalled that  

   s secx Lψ α= +  (73) 
In order to obtain the proper boundary conditions at the 
surface, one may employ the definition of the stream 
function.  Doing so yields 

   
( )s s,

0x
x

x y
u

y
ψ

∀

∂
= =

∂
 (74) 

and 

   
( )s s,

secy
x

x y
u

x
ψ

α
∀

∂
= − = −

∂
 (75) 

Due to the quasi-developed flow entering from the non-
tapered segment of the motor, one may observe that 
there exists an inflow boundary condition at the 
interface.  This condition has been previously referred 
to as the bulk flow parameter and is expressed 
mathematically by  

   
( )s s

s s

0,
cos

2 2x
y

y yu L
y y y

ψ π π

∀

∂ ⎛ ⎞
= = − ⎜ ⎟∂ ⎝ ⎠

 (76) 

The final boundary condition requires no flow across 
the midsection plane.  It is also referred to as the 
condition for symmetry.  This is expressed as 

   
( )s ,0

0y
x

x
u

x
ψ

∀

∂
= − =

∂
 (77) 
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A. Particular Solution 
  In searching for a particular solution, one may now 
apply the aforementioned boundary conditions.  
Application of the condition for symmetry reduces the 
general expression to 

   ( ) ( )1 2
s

, sin yx y K x K
y

ψ β
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 (78) 

Next, the no-slip condition at the simulated burning 
surface yields 

 
( )s s,

0x
x

x y
u

y
ψ

∀

∂
= =

∂
,   

   ( ) ( ) 2cos 0 2 1 ,  0n nπβ β⇒ = ⇒ = + =  (79) 
For uniform, normal injection at the simulated burning 
surface, the boundary condition can be expressed as 

  
( )s s,

secy
x

x y
u

x
ψ

α
∀

∂
= − = −

∂
  

   1 1sin sec sec
2

C Cπ α α⎛ ⎞⇒ = − ⇒ = −⎜ ⎟
⎝ ⎠

 (80) 

The final constant of integration is determined by 
matching the bulk flow condition at the interface of the 
taper.  Doing so, one acquires 

2 2
s s

cos cos
2 2 2 2

yC L y C L
y y

π π π π⎛ ⎞ ⎛ ⎞= − ⇒ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (81) 

Finally, the particular solution becomes 

  ( ) ( )
s

, sec sin yx y x L
y

ψ α β
⎛ ⎞

= − + ⎜ ⎟
⎝ ⎠

 (82) 

  As seen above, the method of variation of 
parameters furnishes a solution identical to the leading-
order expression provided by the perturbation method.  
Such an agreement between the two substantiates the 
legitimacy of the approach used heretofore. 

V. Velocity, Pressure and Vorticity 
  Now that the proper form of the stream function 
has been ascertained, it is possible to extract other 
useful physical quantities particular to tapered 
flowfields.  A useful analysis of the remaining flow 
attributes can be made from both the leading-order and 
first-order solutions. The incorporation of the first-order 
correction ensures that the physical characteristics 
consistent with flow in tapered geometries are 
recovered at larger taper angles and axial distances.  In 
particular, the addition of higher-order corrections may 
be deemed necessary for the axial velocity and the 
pressure drop, ensuring a reasonably accurate solution 
suitable for comparison with its numerical counterpart.  

Although the distance to the tapered surface is a 
function of the axial coordinate x , it may be treated as 
a constant in the evaluation of the velocity, pressure, 
and vorticity.  This enables one to express the desired 
quantities in a compact and concise form similar to the 
leading-order solution.  Forthwith, one can compute the 
velocity components from the definition of the stream 
function.  At the outset, the leading-order axial velocity 
component may be written as  

   0 s
,0 0

s s

cosx
yu

y y
β ψ

β
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (83) 

where s secx Lψ α= + .  The first-order correction for 
the axial velocity component follows 

2

,1 0 0 0 02
s s

2 cos 2 sin 2
6

s
x

s

y yu
y yy

ψ
β β β β

⎡ ⎛ ⎞ ⎛ ⎞
= − − + ⋅⋅⋅⎢ ⎜ ⎟ ⎜ ⎟

⎢ ⎝ ⎠ ⎝ ⎠⎣
 

 ( )1 0 0 1 0
s s

6 cos 2 3 2 siny yy
y y

β β β β β
⎤⎛ ⎞ ⎛ ⎞

+ − − ⎥⎜ ⎟ ⎜ ⎟
⎥⎝ ⎠ ⎝ ⎠⎦

 (84) 

where the total solution can be concisely expressed as  

   ,0 ,1x x xu u uε= +  (85) 
At the outset, the leading-order solution for the 
transverse velocity component is found to be 

   ,0 0
s

sec( )sin ( )y
yu O
y

α β ε
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 (86) 

So far, it has been established that the parameter of 
interest is the pressure drop.  The latter is extremely 
sensitive to the axial velocity profile which is governed 
by the height of the chamber.  Quite naturally, 
approximating the chamber height as constant in the 
axial direction introduces error.  That error can be 
effectively recovered by the addition of the first-order 
correction. 
  Having formulated the velocity field, the pressure 
gradients can be deduced.  In order to obtain the 
required pressure drop along the chamber length, one 
only needs to insert the axial and transverse velocity 
relations into the inviscid momentum equations given 
by Eqs. (4) and (5).  By performing this substitution, 
one gets 

   
2

s
2
s

sec
4

p
x y

π ψ α∂
− =

∂
 (87) 

   
( )2

0 0
2

ss

sec 2
sin

2
yp

y yy
β α β⎛ ⎞∂

− = ⎜ ⎟∂ ⎝ ⎠
 (88) 

By integrating and combining Eqs. (87) and (88), one is 
able to produce the spatial variation of the pressure that 
satisfies both momentum equations.  Consequently, the 
total pressure can be expressed as 
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( )
2 2

0 2
s

, sec
24
xp x y Lx

y
π α

⎛ ⎞
− = + + ⋅⋅⋅⎜ ⎟

⎝ ⎠
 

   2 2
0

s

1 sec cos  constant
2

y
y

α β
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

 (89) 

The head-end boundary condition is ( ) Taylor0,0p p= , 
where 2 2

Taylor 8p L π= − .  By applying this condition, 
the constant becomes equal to Taylorp .  Setting 

( )0 0 Taylor,p p x y p∆ = − , one can express the leading-
order pressure drop in the chamber in the following 
compact form 

   
2 2

0 2
s

sec
24
xp Lx

y
π α

⎛ ⎞
∆ = − +⎜ ⎟

⎝ ⎠
 (90) 

The treatment of sy  as a constant has permitted the 
development of an approximate expression for the 
pressure drop at leading order.  At this juncture, it may 
be reasonable to question the accuracy of the expression 
derived due to the approximations.  To arrive at an 
expression for the pressure drop, sy  has been assumed 
to be constant twice for purposes of differentiation and 
once for integration, thereby compounding the errors 
involved.  For larger taper angles, the variation of half-
height with axial distance increases, leading to the 
possibility of the under-prediction of the pressure drop 
for larger values of α  at leading order.  In an effort to 
recover the accuracy of the model presented here, the 
pressure drop at first-order is considered.  The 
expression is obtained in the same manner as its 
leading-order solution for pressure with the addition of 
a term that is of first order.  Thus, in the interest of 
conciseness, the details regarding the derivation are not 
presented here.  The complete relation, including both 
the leading and first-order terms, at 0L = , can be 
expressed as 

   ( )
2 2

2 3
s3

s

sec 3 2 ; sec
2 312

p x x y x
y

π αε ε α⎛ ⎞∆ = − +⎜ ⎟
⎝ ⎠

 (91) 

It has been determined earlier that the pressure gradient 
in the transverse direction is negligibly small.  This 
leaves the axial pressure gradient as the quantity of 
interest. 
  In addition to the formulation of the velocity and 
pressure gradients, one may compute the vorticity in 
order to complete the extraction of most physical 
parameters needed to characterize the flowfield.  In this 
effort, the vorticity field can be obtained using 

   ( ), y xu u
x y

x y
∂ ∂

Ω = −
∂ ∂

 (92) 

Inserting the solutions for the velocity components into 
Eq. (92) produces the expression for the spatial 
variation of chamber vorticity.  One deduces that  

   ( )
2
0 s

0
s s

, sin yx y
y y

β ψ
β

⎛ ⎞
Ω = ⎜ ⎟

⎝ ⎠
 (93) 

  Each of the required flowfield characteristics 
particular to tapered slab burners is now at hand.  
Although some mathematical similarities appear to 
exist between flow in tapered and straight chambers, 
models for straight chambers do not encompass all of 
the physical characteristics inherent in the present 
model.  Since the taper angle is known to be small, it 
should follow that the leading-order mean flow 
characteristics possess minimal variance with the taper 
angle α .  However, this is not the case given that the 
parameter that is most sensitive to the taper appears to 
be the pressure field. 
  In order to explore the effects of straight portion of 
the motor preceding the tapered segment, one may 
invoke another parameter that arises from this study.  
This parameter has been described as the bulk flow 
parameter 0L u= ; it is also known as the normalized 
chamber length 0 0/L L h= .  The bulk flow parameter 
enables one to examine the physical characteristics of 
small to moderate size motors with combined geometry. 

A. Ideal Momentum Thrust 
  Considering our efforts to characterize the 
flowfields in tapered solid rocket motors from a fluid 
dynamical perspective, further analysis of typical rocket 
performance parameters require examining the thrust 
variation with the taper angle α .  Effectively, the 
characterization of the thrust behavior furnishes a link 
between the mathematical model and standard design 
procedures.  Since the pressure drop is directly related 
to the thrust, it should follow that both parameters 
exhibit similar responses to the taper angle.  This fact 
may also confirm the effect that the taper has on the 
pressure drop in the combustion chambers of current 
SRMs.  To begin, it is helpful to recall the standard 
form of the momentum equation for a control volume 

   ( )
cv cs

ˆd  dF V V A
t

ρ υ ρ∂
= + ⋅

∂ ∫ ∫ V n  (94) 

Taking this into account, one may utilize the expression 
for the average velocity and the chamber cross-sectional 
area previously derived to aid in the formulation of an 
expression for the thrust.  By recalling these 
expressions one may put 

   ave
sec

1 tan
L xu

x
α
α

+
=

+
  (95) 
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and  

   ( ) ( )0 1 tanA x w x α= +  (96) 
The transient component is not of interest here.  
Equation (94) becomes 

   ( )
cs

ˆ  dF V Aρ= ⋅∫ V n  (97) 

The definitions of cross-sectional area and average 
velocity presented in Eq. (95) can be inserted into the 
steady momentum thrust equation to give 

  ( ) ( )
( )

*
2

0 20

d 1 tan
sec

1 tan

x L

x

x
F w L x

x

α
ρ α

α

=

=

+
= +

+∫  (98) 

Recalling the burning surface definitions of the stream 
function and chamber height, Eq. (98) can also be 
expressed as 

   
*

2 s
0 s 20

s

dx L

x

y
F w

y
ρ ψ

=

=
= ∫  (99) 

  In order to secure an expression that relates the 
thrust to the taper angle, Eq. (99) must be integrated 
along the maximum length *L  of the tapered domain.  
Carrying out the integration, one obtains 

   
* 2

0 s
* cot

L w
F

L
ρ ψ

α
=

+
 (100) 

where secs L xψ α= + .  To the author’s knowledge, 
this result represents the first analytical expression 
relating the thrust to tapered geometry, albeit for a non-
reactive, incompressible gas. 

VI. Added Confirmation: CFD Simulation 
  Thus far, we have explored the characteristics of 
mean flowfields applicable to both the slab and 
cylindrical rocket motors with available analytical 
procedures.  En route to obtaining an analytical solution 
that encompasses the physical significance of mean 
flow in tapered and parallel SRM combustion 
chambers, the first and second-order axial derivatives of 
the parameters essential to this work were assumed to 
be negligible.  For the case of the tapered cylindrical 
motor originally formulated by Clayton, a numerical 
computation was performed in an effort to determine 
the relative magnitudes of these terms in the governing 
equations.  Close examination of the terms revealed that 
they were indeed negligible and significant error would 
not accrue in their absence; hence, an analytical 
solution was possible by both the method of regular 
perturbations and variation of parameters.  The same 
reasoning was adopted for the mean flow model in a 
slab burner.  In the same vein, a numerical simulation 
can now be employed to further assist in the verification 
and assessment of pertinent parameters critical to the 
applicability of these closed-form solutions. 

  At present, a numerical solution would prove to be 
not only essential, but fundamental to this work in 
regards to the regular perturbation methods and other 
approximations used to obtain an explicit analytical 
solution.  A favorable comparison with numerics would 
serve to further validate the approximate methods used 
thus far.  To that end, a numerical simulation will be 
pursued.  FLUENT, a widely used CFD package in both 
industry and academia, will be employed to simulate 
the mean flowfield characteristics of tapered chambers. 

A. Geometry and Meshing Scheme 
  The geometric model for the rectangular geometry 
is created for taper angles ranging from 1  to 3 .  The 
dimensions are chosen in accordance with the 
parameters used by the analytical model.  The slab is 
modeled in two-dimensional space with the top and 
bottom simulated burning surfaces defined as velocity 
inlets. 
  The meshing scheme and interval sizes are 
generally chosen based on the size and complexity of 
the physical model.  Since the model under study 
possesses relatively simple geometry, standard meshing 
schemes are utilized to obtain a numerical solution with 
an interval size of 0.1. 

B. Boundary and Operating Conditions 
  The working fluid is injected at velocities ranging 
from 0.1 m/s to 1 m/s.  These values of injection 
velocity are chosen in concurrence with the 
incompressible fluid model which is generally valid for 
compressible fluids with Mach numbers that are less 
than 0.3.  The selection of the injection velocity can be 
further validated from experimental work by Brown and 
co-workers24-26 as well as a research team led by 
Dunlap.27-29 In addition, the selected injection velocity 
is corroborated by Clayton’s CFD results, in which he 
managed to determine that the taper profiles change 
minimally with increasing injection velocity (provided 
that the Reynolds numbers Re bV Dρ µ=  remain 
within the range of 210  to 410 ).16  The reference 
pressure can be interpreted as a boundary condition for 
the stagnation pressure at the head end of the chamber 
and, as a result, is placed at the origin.  This condition is 
chosen so that the mass outflow condition at the outlet 
of the chamber is not affected.  It also allows the 
pressure to vanish at the head end. 
  The theoretical fluid model chosen here for the 
numerical solution is the laminar model.  The flowfield 
inside an actual solid rocket motor can be turbulent and 
a significant portion of the combustion occurs near the 
burning surface so that the chamber is filled primarily 
with the reaction products (see Chu, Yang and 
Majdalani30 and Vyas, Majdalani and Yang31). 
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VII.  Results and Discussion 
  This section seeks to document and compare the 
dissimilarities that exist between the numerical and 
analytical cases presented heretofore.  With graphical 
depictions of the quantities in question, one is able to 
determine the level of accuracy that is required and 
which physical parameters are most important.  For the 
case of tapered solid rocket motors, it has been 
determined that the axial velocity profiles and the 
pressure drop are of paramount importance.  In pursuit 
of a general expression that describes the flowfield in 
tapered geometry, some terms were neglected based on 
generalizations made about the mean flow before a 
particular solution could be obtained.  To validate these, 
the same problem was solved numerically. 
  Here, a basic comparison of the solutions obtained 
by the two methods will be performed with the aim of 
elucidating the similarities, differences and limitations 
of the analytical solution.  Also in question will be the 
magnitude of the axial derivatives.  This portion of the 
final analysis will be critical given the assumption of 
constant distance from the midsection plane to the 
simulated burning surface. 

A.  Pressure Approximations 
  As seen in Fig. 6a, it is clear that the pressure 
varies with the taper angle.  The slow increase in cross-
sectional area acts to decrease the pressure drop by 
allowing a slight build up in local static pressure 
resulting from the accompanying decrease in velocity.  
As it can be inferred from Fig. 6a, larger motors are 
seen to exhibit a higher sensitivity to small increases in 
wall taper.  Even in chambers with zero bulk flow, one 
can infer that the influence of minute variations in wall 
taper can have significant impact on the overall 
pressure drop.  By comparison to Taylor’s solution in a 
straight porous channel, Fig.6a illustrates the dramatic 
decreases in the absolute pressure drop at higher taper 
angles taken along the midsection plane ( )0y = .  In a 
tapered motor for which the actual pressure drop down 
the bore is 100 psi, modeling without account for the 
small taper correction will over-predict the pressure 
drop to 130-175 psi, for taper angles between 1  and 
3 . Naturally, the approximate leading-order solution 
suggests that these differences become more significant 
in larger motors for which the constant velocity 
criterion is not violated.  However, using only the 
leading-order solution to approximate the percent over-
prediction can result in exaggerated error estimations.  
With the addition of the first-order correction, it is 
observed in Fig. 6b that the percent over-prediction 
decreases by approximately 10% to 12%, yielding a 
maximum percent over-prediction of about 63%.  The 
error in predicting the pressure drop without accounting 

for wall taper propagates along the midsection plane.  
As the gases approach the aft end of the motor, the 
pressure drop can be over-predicted by as much as 38% 
to 63% for taper angles between 1  and 3 . 
  The information disclosed in Fig. 6 illustrates the 
dissimilarities in the pressure drops in tapered and 
parallel chambers.  There are obvious implications 
associated with ignoring the effect of the taper in 
ballistic analyses.  To that end, one can conclude with 
certainty that the incorporation of taper in ballistic 
analyses is necessary to prevent over-prediction of 
pressure drop, an essential requirement for the 
manufacture of fail-safe motor casings where precise 
pressure estimates are highly desirable. 
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Fig. 6  We plot in a) both leading and first-order 
pressure drop approximations for several values of 
taper angle α .  In b) the percent over-prediction
from a) is calculated and shown at several values of 
α . In c) we compare numerical versus first-order 
solutions. 
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  Observing the numerical pressure approximation 
(shown in Fig. 6c ), it is clear that at larger taper angles 
and longer tapered domains, the numerical and 
analytical solutions begin to deviate.  Any deviation 
between the analytical and numerical cases can be 
partly attributed to neglecting the transverse pressure 
effects in the analytical solutions.  Since the half-height 
and radius increase with axial distance, the transverse 
terms seem to become somewhat more significant 
farther away from the head end of the motor.  As a 
result, there is a larger overall transverse contribution to 
the spatial variation of the pressure over the length of 
the chamber.  Although the higher-order analytical 
expression accounts for the axial derivatives as well as 
the transverse expansion, the effects of the constant 
wall distance assumption begin to manifest in long 
tapered domains.  This can also cause deviations to 
build up between the numerical and analytical 
solutions. 
  The analytical solution seems to consistently 
reproduce the results provided by the numerical model.  
Furthermore, one may recall that the level of precision 
is governed by the relationship between the asymptotic 
limit and the average velocity of the gases (also known 
as the constant velocity criterion).  For tapered domains 
that do not satisfy the relationship prescribed by the 
asymptotic limit, one may begin to discern increased 
deviation between the numerical and analytical 
solutions. 

B. Momentum Thrust Behavior 
  In Fig. 7, the idealized thrust behavior is quantified 
and plotted for each value of α  along the midsection 
plane using 0 1wρ =  and 0L = .  It should be borne in 
mind that the expression presented for the thrust is 
steady-state and cold flow.  Also, it does not explicitly 
account for regressive, progressive or neutral burning 
profiles typical of actual solid propellant motors.  
However, since the surface area increases nonlinearly in 
the axial direction and time, it may be theorized that 
tapered SRMs are likely to exhibit behavior close to 
that of a regressive burning motor.   
  Consider the limiting case for example: if the taper 
is very large, the presence of the propellant will be 
compromised to the extent that the thrust will be much 
smaller than in the case of a non-tapered propellant.  
Furthermore, with an increase in burning surface area, 
comes an increase in chamber motor pressure and, 
hence, in the regression rate that inherently affects the 
thrust.   
  In the previous section, it was surmised that the 
momentum thrust would respond to the taper angle in 
the same manner as the pressure drop. Observing Fig. 7, 
it is evident that this would be the case.  One may 

consider that an increase in cross-sectional flow area 
requires that the average velocity begins to decrease in 
order to satisfy continuity.  As a result, the straight 
chamber undergoes a faster ascent to its maximum 
value at the edge of the domain.  It is quite possible that 
current one-dimensional ballistic codes that determine 
the thrust (with no due attention to the taper), over-
predict the average thrust at each axial location. 

C. Axial Velocity 
  Earlier sy  was treated as a constant during the 
evaluation of the axial and transverse velocity 
components.  By doing so, it was expected that error 
would be introduced in the solution.  Neglecting the 
axial variation in chamber half-height, it is clear from 
Fig. 8 that the axial profiles given by the analytical 
solution for the slab burner tend to slightly undershoot 
the numerical solution with increasing axial distance.  
In fact, the discrepancy becomes more appreciable 
further down the motor chamber and may become non-
negligible in very long slab motors. 
  At this juncture, one should note also that the 
analytical solutions shown in Fig. 8 include higher-
order corrections.  Neglecting these higher-order terms 
leads to a grossly under-predicted maximum velocity.  
Again, this suggests that the leading-order solution 
lacks valuable flow information and that the higher-
order terms appear to be a requisite for accurate 
solutions in long chambers with large taper angles (i.e. 
motors with 4L ≥  and 2α ≥ ).  The higher order 
corrections seem to slowly recover the error introduced 
by neglecting the axial variation of the half-height away 
from the interface.  Nonetheless, Fig. 8 displays very 
good agreement between the analytical and numerical 
solutions. 
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Fig. 7 Idealized momentum thrust along midsection 
plane at several taper angles. Note that the thrust is 
overpredicted by internal ballistics not accounting 
for the presence of taper. 
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D. Axial Derivatives 
  Integral to the development of the flowfields 
discussed throughout this work were the assumptions 
that led to the dismissal of the axial derivatives.  Upon 
exacting an approximate solution, a scaling analysis 
was employed during the analytical derivation to 
determine if, in fact, these assumptions were justifiable.  
These assumptions targeted two derivatives, namely: 
(1) 2 2xψ∂ ∂ and (2) d dxβ  . 
  The magnitudes of the second-order axial 
derivatives of stream function have been extracted from 
the numerical solution and quantified along the 
midsection plane.  The second-order transverse 
derivatives were also obtained to serve as a basis for 
comparison.  From Fig. 9a, it may be observed that the 
magnitudes appear to oscillate (as a result of 
symmetry).  More importantly, they remain 

approximately of ( )410O −  down the length of each 
chamber.  In contrast, the transverse derivatives 
( )2 2yψ∂ ∂  shown in Fig. 9b exhibit magnitudes of 

( )1O .   
  Considering that the axial derivatives are several 
orders of magnitude smaller than their transverse 
counterparts, it may be stated that our numerical results 
confirm the prior scaling analysis that justified their 
dismissal from the analytical formulation. 
  In the same vein, it is seen in Fig. 9c that the 
magnitudes of the axial derivatives for the velocity ratio 
are small enough that they would have no appreciable 
effect on the analytical solution.  Here too, the 
numerical results corroborate our original premise 
behind their dismissal from the analytical solution.  The 
plot shows the axial variation of d dxβ  at several 
transverse locations for 3α = .  From the figure, it can 
be deduced that the axial variation of each derivative 
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Fig. 9  Derivatives from FLUENTTM shown at 
several taper angles. 
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Fig. 8  Numerical versus analytical comparison of 
slab burner velocity profiles at various locations. 
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dictates the shape of the velocity profile.  For example, 
at sy y= , the axial derivative slowly increases.  One 
may recall that the velocity profile must adjust itself at 
each axial location to satisfy the no-slip requirement at 
the tapered surface.  Bearing this in mind, it can be 
inferred that the rate of change at the wall must increase 
due to the increased axial variation as the gases 
propagate down the chamber.  Along the midsection, 
one may notice that the derivative is decreasing.  
Essentially, this can be ascribed to the maximum 
velocity decreasing in the axial direction.  From a 
physical standpoint, this must occur in order to satisfy 
mass conservation.  The increasing rate of change at the 
wall works in conjunction with the decreasing rate of 
change along the midsection plane to force the profile 
to slowly relinquish its transverse component with 
increasing axial distance.  Hence, the profile may 
evolve into a near constant shape over the cross-section 
perpendicular to the flow for sufficiently long tapered 
domains.  As for the intermediate transverse values, the 
derivatives exhibit little axial variation being that they 
are quantified at or near the core of the flow. 
 

VIII. Error Analysis and Limitations 
  For practical applications of the analytical solutions 
at increasing orders, one may be concerned with their 
parametric limitations.  Previously, such limitations 
were explored by analytically predicting the behavior of 
the gases at an infinite distance away from the head 
end.  The results of this inquiry suggest that some 
relationships, guided by mass conservation, must be 
maintained between the geometric parameters.  The 
relationship can be expressed as: 

   ( )0 0 1L x hα + ≤    (101) 
This expression was obtained using the average value 
of the velocity as opposed to the maximum velocity 
(see Eqs. (20)–(21) for more detail).  In order to 
determine a maximum range for which the analytical 
solution remains applicable, one must calculate the 
maximum relative error between asymptotic predictions 
and numerical solutions.  To do so, it is expedient to 
examine the asymptotic limit where the velocities in 
each chamber are at their maximum values, specifically, 
by comparing the maximum velocities predicted by 
numerics versus asymptotics.  For the non-tapered 
segments, the relationship between maximum and 
average velocities can be easily found to be 

   1
max ave2u uπ=  (102) 

By translating this result to the maximum velocity, the 
criteria that establish the upper limit of the solution 
domain may be extrapolated. One finds   

   
( )0

0

2L x
h

α
π

+
≤  (103) 

Equation (103), can now be solved for 0 0L =  to obtain 
the maximum conservative domain aspect ratio for a 
given taper angle.  One gets 

   cons
2x

απ
=  (104) 

where cons 0x x h= .  It is our observation that, so long 
as consx x≤ , the percent error between numerics and 
asymptotics remains less than 1%.  The conservative 
range represents a domain of asymptotic validity in 
which the accrued error is virtually insignificant.  By 
requiring a minimum chamber aspect ratio of 4 (lest 
edge effects become important), the maximum 
conservative taper angle for which an asymptotic 
solution would exhibit a smaller than 1% error can be 
calculated from Eq. (104).  One finds the maximum 
conservative taper angle to be 9 degrees.  Thus, for the 
slab burner, a suitable range of tapers would be 

o0 9α< ≤ .  
  In Fig. 10, the numerical and analytical maximum 
velocities are plotted at several taper angles.  Overall, 
the figures indicate that within the maximum, 
conservative domain specified by Eq. (104), there is 
virtually no noticeable deviation between the numerical 
and analytical solutions (the error remains less than 
1%).  The issue is, however, the behavior of the fluid 
once it exits the domain.  At this juncture, one must be 
concerned with the maximum deviation between the 
numerical and analytical cases outside of the domain.  
Here, we choose the maximum allowable percent 
deviation to be 20% in order to define a longer 
approximate range.  In Fig. 10, the numerical and 
analytical velocities are shown for extreme values of 
the taper angle, α .   
  Note that, in Fig. 10a, we show the maximum 
velocities corresponding to 1α = .  Since cons 36.1x = , 
it may be noted that so long as 0 36.1x≤ ≤ , there is 
virtually no deviation from the numerical solution.  In 
the range 36.1 108.0x≤ ≤ , deviations of 1%-2% are 
observed.  For x  values greater than 108.0, the percent 
deviation undergoes a gradual increase until it reaches a 
maximum of 16.0%. 
  Figure 10c illustrates the behavior of the numerical 
and analytical solutions at 9α = .  Comparing Fig. 10a 
to Fig. 10c, it is clear that the conservative domain 
decreases with an increase in taper angle.  Hence, the 
conservative range for 0-to-1% deviation reduces to 
0 4x< ≤  (here, cons 4x = ).  For the range 4 22.5x< ≤ , 
the percent deviation increases to 20%, which is the 
maximum allowable error from an engineering 
perspective.  Figure 10b constitutes an intermediate 
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case in which cons 7.2x = .  Note that even at the end of 
the domain ( 60x = ), the error remains under 20%. 
 

IX. Conclusions 
  In this work, we have presented approximate 
solutions for the mean flowfields in slab rocket motors 
with tapered walls.  Analytical solutions were obtained 
with the use of two methods: (1) the method of regular 
perturbations and (2) variation of parameters.  The 
solution resulting from the use of variation of 
parameters is identical to the leading-order solution 

shown earlier.  This fact further legitimizes Clayton’s 
approach in which the relationship between the axial 
pressure gradient and surface vorticity is explored.16  
Although the distance from the axis to the simulated 
burning surface varies with axial distance, it is assumed 
constant in the evaluation of key fluid dynamical 
quantities such as the velocity, vorticity and most 
notably, the pressure drop. 
  En route to an expression that characterizes the 
chamber pressure, multiple operations (differentiations 
and integrations) were performed with the assumption 
that the distance from the midsection plane was 
constant, because its variation was of ( )sinO α .  This 
prompted a search for a higher-order correction that 
would inevitably recover the accuracy lost from this 
restrictive approximation.  In fact, the higher-order 
corrections were found to compensate for the 
assumption of axial independence of the half-height of 
the slab burner.  Also, the higher-order corrections 
recovered the effect of the second-order axial derivative 
of the stream function as well as the transverse 
expansion and flow deceleration.  
  In summary, we have proven that the pressure drop 
is over-predicted if Taylor’s mean flowfield is applied 
to chambers with tapered walls.  A cursory study was 
attempted by evaluating the momentum thrust along the 
length of the chamber.  The results demonstrated the 
possibility to over-predict the thrust as well.  Our 
results suggest the need to modify ballistic codes that 
predict and characterize bulk gas motion in view of 
taper effects. 
  Given the methodologies used throughout this 
work to obtain the desired flowfield, the numerical 
simulation has been instrumental in substantiating the 
assumptions posited during the theoretical derivation.  
Our study confirms the usefulness of adequate 
numerical models in validating approximate solutions, 
especially those that are asymptotic in nature. 
  It may be worth mentioning that accurate matching 
of both the numerical and analytical solutions requires 
that the motor parameters are chosen within the 
specified mean flow asymptotic limits, satisfying the 
relation given by Eq. (21).  One shortcoming in the 
analytical solution is that it is long, albeit simple to 
implement and evaluate, and always quicker than CFD.  
While the leading-order solution can be expressed 
concisely, it is of marginal accuracy as it can only be 
applied to motors with short tapered domains and 
smaller taper angles.  Better precision can be achieved 
when the higher-order corrections are added; in that 
case the total number of terms required to virtually 
reproduce the numerical predictions can be anywhere 
from 6 to 20, depending on the desired accuracy. 
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Fig. 10  Numerical and analytical velocities shown at 
several taper angles. Note that up to xcons, the 
relative error in the asymptotic expressions is nearly
insignificant. 
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