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 Current ballistics analyses require detailed information regarding the key characteristics 
of the flowfields present in the combustion chambers of solid rocket motors.  In this study, 
our purpose is to develop an internal flowfield applicable to circular-port solid rocket 
motors with tapered bores.  Our analysis is based on the vorticity-stream function method, 
allowing one to resolve the resulting problem under isothermal, inviscid, rotational and 
steady-state conditions.  Here, the approach employed in Clayton’s original investigation of 
tapered motors is implemented with the aim of producing an approximate solution that 
reflects the behavior of the flowfield at higher orders as well as combined geometric 
configurations.  In the advent of a nonlinear governing equation, an initial solution is sought 
with the use of regular perturbations.  Additionally, an analytical solution is explored using 
the method of variation of parameters; its outcome will be shown to be identical to the 
leading order solution obtained by asymptotic analysis.  In an effort to validate the 
approximations used throughout this work, a numerical simulation is performed and 
compared to the analytical results.   

 

 

Nomenclature  
F  = momentum thrust 
p  = dimensional pressure 
p  = normalized pressure, 2

bp Vρ  
0R  = dimensional radius of cylindrical motor 

r  = dimensional radial coordinate 
r  = normalized radial coordinate, 0/r R  
u  = dimensional velocity components, ( ) , z ru u  
u  = normalized velocity, bu V  

bV  = injection velocity at propellant surface 
z  = axial coordinate 
z  = normalized axial coordinate, 0/z R  
β  = velocity ratio, ( ) ( )max ave max ave,u u x u u z  
ρ  = density 
η  = coordinate transformation, 2rη =  
ψ  = normalized stream function 
Ω  = normalized vorticity 
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Subscripts 
0  = leading order, parallel chamber quantities 
1  = first-order correction 
b  = burning surface 
,r z  = radial or axial component 

θ  = azimuthal component 
 
Superscript 
−  = dimensional quantity 

I. Introduction 
HE extraction of critical design parameters for 
solid rocket motors through internal ballistics 

analysis is fundamental in modern propulsion system 
design and development.  Information regarding the 
flowfields generated in combustion chambers and the 
motor performance associated with them comprise the 
framework necessary to evaluate specific motor 
requirements, candidate grain geometries, motor 
configurations, and propellant formulations.1  Ballistics 
analyses are available to predict chamber pressures, 
combustion instabilities, thrust, mass flux and grain 
burn rate histories based on the velocity and pressure 
profiles provided by the mean flowfield.2-9  An increase 
in the accuracy of predictions provided by ballistics 
analyses would invariably require enhanced flowfield 
models.   

T
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  In the past, several researchers have successfully 
developed mean flow models that have set the standard 
for current flowfield investigations.  Among them is 
Culick,10 whose original rotational, inviscid solution 
remains at the foundation of this work.  Current 
research involves the evaluation of unsteady wave 
motions,11-14 acoustic interactions with propellant 
burning,15 velocity and pressure coupling,16 nonlinear 
(DC) pressure shift,17 triggering amplitudes,18 limit 
cycle amplitudes,19 as well as particle-mean flow 
interactions,20-24 two-phase flow effects,25 distributed 
combustion, parietal vortex shedding,26-28 and both 
spatial and temporal instabilities of the mean flow.29-32    
  It is imperative that the rocket propulsion 
community continues to seek refinement in current 
analytical, numerical and experimental flowfield 
modeling methods in order to avoid economic losses 
resulting from adjusted mission requirements, over-
design, mission failures and catastrophic accidents due 
to under and over-prediction of the pressure load in the 
motor case.  Despite the advent of advanced propulsion 
concepts such as solar and magnetic sails, antimatter 
and electric arc propulsion, it remains of paramount 
importance to refine existing methods and models 
pertaining to the design and analysis of chemical 
propulsion systems, namely, solid rocket motors 
(SRMs).  This holds true given the fact that the 
aforementioned propulsion concepts are relatively early 
in their developmental stages and have yet to surmount 
a plethora of technical barriers in regards to critical 
performance specifications.   
  The search for enhanced analytical models has led 
one to consider the mean flowfield characteristics of 
SRMs with tapered bores.  Examples of tapered 
propellant surfaces can be observed in the Titan IV, 
Ariane, Castor, solid rocket boosters, interceptor 
vehicles with fast burning propellants, and other 
moderate size launch vehicles requiring thrust curve 
modifications.  Most modern SRMs are manufactured 
with small tapers in order to facilitate the removal of 
the casting mandrel after the curing process has been 
completed. It is implied that these small tapers help to 
reduce the contact between the propellant surface and 
the mandrel, thereby reducing the possibilities of 
propellant tear, cracking and debonding.  Additional 
tapering of propellant bores has served two functions: 
(1) minimization of erosive burning and (2) 
implementation of boost-sustain motor configurations.  
It is also speculated that tapering or coning of the 
propellant surfaces can help to maximize the volumetric 
loading fraction by increasing the port-to-throat area 
ratio.   
  Aside from the three-dimensional internal ballistics 
codes such as the Standard Stability Prediction33 and the 

Solid Propellant Performance,2-4 there are many 
industrial codes that still refer to parallel profiles (such 
as Culick’s10) as a basis for design and analysis.34  
When parallel profiles are applied to tapered SRMs, the 
result is over-prediction of the pressure drop by as 
much as 50% to 85% for taper angles as small as 1 .  
Being in excess of 25%, such a discrepancy can 
drastically alter motor case design requirements to the 
extent of compromising the structural integrity of the 
motor components. 

II. Mathematical Model 
  For academic reasons, the SRM is characterized as 
a cylindrical, circular-port duct with a circumferential 
porous surface oriented at an angle α .  The model 
presented here in Fig. 1a incorporates both the non-
tapered and tapered geometries.  This allows one to 
account for the bulk flow originating from the non-
tapered section of the motor.  Here, the origin for the 
coordinate system is placed at the interface where z  
and r  denote the axial and radial coordinates, 
respectively (see Fig. 1b).  The non-tapered section of 
the cylindrical motor has dimensions of length 0L  and 
radius 0R .  The gases are injected perpendicularly to 
the tapered burning surface.  In order to satisfy mass 
conservation, the injected gases are forced to turn and 
merge with the bulk flow that originates in the parallel 
segment of the motor.  The streamline behavior can be 
seen in Fig. 1a. 
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Fig. 1 Schematic featuring a) typical cylindrical solid 
rocket motor with tapered bore and characteristic 
streamlines; and b) coordinate system for the 
mathematical model. 
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A. Governing Equations 
  Since the vorticity is produced at the surface as a 
result of the interaction between the injected fluid and 
the axial pressure gradient, one may begin by obtaining 
the required form of the vorticity.  Further, the flow can 
be characterized as (i) axisymmetric, (ii) inviscid, (iii) 
incompressible, (iv) rotational, and (v) non-reactive.  In 
accordance with the stated assumptions, the kinematic 
equations of motion can be written in vector and scalar 
notations.  In the interest of clarity, these are: 

   p ρ⋅∇ = −∇u u  (1) 

   2
θ ψ− = ∇Ω  (2) 

   1r r
z r

u u pu u
z r rρ

∂ ∂ ∂
+ = −

∂ ∂ ∂
 (3) 

   1z z
z r

u u pu u
z r zρ

∂ ∂ ∂
+ = −

∂ ∂ ∂
 (4) 

   
2

2
1 1
r r r rzθ

ψ ψ∂ ∂ ∂⎛ ⎞−Ω = + ⎜ ⎟∂ ∂∂ ⎝ ⎠
 (5) 

B. Boundary Conditions 
  While it is apparent that a radial component does 
exist at the interface, one should note that it does not 
contribute to the mass crossing into the tapered region; 
hence, it is not required to obtain a solution (see Fig. 2).  
The key constraints consist of: (i) the axial inflow 
condition arising from mass balance across the taper 
interface (accounting for the bulk flow from the parallel 
portion of the motor); (ii) no flow across the centerline 
(axisymmetry); and (iii) uniform, constant, normal 
injection at the burning surface.  Mathematically, the 
boundary conditions can be evaluated and expressed in 
cylindrical coordinates.  They give:  

  

( ) ( )2 21
0 0 02

s b

s b

0,   ,   cos /

,  ,   sin                        
,  ,   cos                   

0,   ,   0                                

z b

z

r

r

z r u V L R r R

r r z u V
r r z u V
r z u

π π

α
α

⎧ = ∀ =
⎪
⎪ = ∀ =
⎨

= ∀ = −⎪
⎪ = ∀ =⎩

 (6) 

where bV  is the velocity at the burning surface. 

C. Normalization 
  Normalization of the variables associated with the 
mathematical model provides a descript and compact 
solution.  One may set 

   0
0

0 0 0

;  ; ; 
Lz rz y L R

R R R
= = = ∇ = ∇  (7) 

   2
b b b

;  ;  z r
z r

u u pu u p
V V Vρ

= = =  (8) 

   0

0 b b

;  
R

R V V
ψψ

Ω
= Ω =  (9) 

Normalizing the boundary conditions, it follows that 

   

( )21
2

s

s

0,  ,   cos

,  ,  sin  
,  ,  cos

0,  ,   0

z

z

r

r

z r u L r

r r z u
r r z u
r z u

π π

α
α

⎧ = ∀ =
⎪

= ∀ =⎪
⎨

= ∀ = −⎪
⎪ = ∀ =⎩

 (10) 

D. One-Dimensional Velocity  
  The geometry is based on the cylindrical 
coordinate system (as depicted in Fig. 3) where z  is 
the dimensional axial coordinate and r  is the 
dimensional radial coordinate.  The area of the tapered 
burning surface is known to be 

   ( )1
b 0 22 tan secA R z zπ α α= +  (11) 

Also, the tapered chamber cross-sectional area is  

   ( )2
0( ) tanA z R zπ α= +  (12) 

The inflow cross-sectional area at the interface of the 
tapered and straight portion of the chamber is given by 

   2
0 0A Rπ=  (13) 

As a result of a mass balance in the straight segment of 
the chamber, the corresponding inflow velocity 
becomes 

α
bV

sinz bu V α=

cosr bu V α= −

z( )0 axisymmetryru =

r

 
Fig. 2  Schematic of physical boundary conditions. 
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Fig. 3 Mass balance over a tapered segment. 
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   0 0 0 b(2 / )u L R V=  (14) 
Here 0L  can be defined as the bulk flow parameter 
because it is directly proportional to the average 
velocity at the entrance to the tapered portion.  Due to 
mass conservation, the cross-sectional average velocity 
of the fluid at any axial location z  may be expressed 
by 

   0 0 b b
ave( )

( )
A u A V

u z
A z

+
=  (15) 

By substituting Eqs. (11)–(14) into Eq. (15), the 
average velocity becomes 

   ( ) ( )
( )

1
2

ave 2

sec 1 tan
2

1 tan

L z z
u z

z

α α

α

+ +
=

+
 (16) 

For the case 0α = , Eq. (16) reduces to 

   ( ) ( )ave 2u z z L= +  (17) 
which describes the bulk flow in a straight circular-port 
motor. To determine the behavior of the gases when 
sufficiently removed from the head end, one may 
manipulate Eq. (16) and compute the limit of the 
resulting expression.  One gets 

( )
2

1
ave 2

1 12 tan sec tanLu z
z z z

α α α
− ⎡ ⎤⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (18) 

The limit at z → ∞  furnishes 

   ( )ave
1lim

sin
u z

z α
=

→ ∞
 (19) 

  From Eq. (19), it can be seen that the velocity in a 
tapered chamber converges to a constant value as the 
motor length approaches infinity.  This behavior is also 
illustrated in Fig. 4.  Thus, it can be deduced that the 
flow does not continue to accelerate due to an increase 
in cross-sectional area that is open to the flow.  This is 
unlike the case of a parallel port motor, where the 
velocity continues to increase.  Typically, combined 
motor configurations have a parallel segment 
immediately followed by a tapered segment.  In light of 

this, it is physically impossible for the velocity of the 
gases to increase beyond the limiting value as 
prescribed by the tapered geometry of the following 
segment.  Essentially, mass conservation requires that 
the average velocity throughout the parallel segment of 
the motor remains less than or equal to the limiting 
value.  This is equivalent to setting  

  ( ) ( ) ( )ave ave0

1  2
sin

u z u z L
α α=

≤ ∞ ⇒ + ≤  (20) 

With subsequent manipulation and expressing Eq. (20) 
in dimensional variables, one obtains 

   
( )0

0

1
2

L z
R

α +
≤  (21) 

where sinα α≈ .  The geometric parameters of the 
motors must be chosen such that the relationship shown 
in Eq. (21) is satisfied.  Compliance with this criterion 
ensures a valid solution. 

E. Stream Function along the Burning Surface 
  A crucial component to the formulation of the 
flowfield under study is the development of the stream 
function at the simulated burning surface.  It is clear 
that the behavior of the stream function depends on the 
angular orientation of the propellant surface.  As a 
result, the directional derivative assumes the form  

   sd
cos sin

ds z r
ψ ψ ψα α∂ ∂

= +
∂ ∂

 (22) 

As shown in Fig. 5, the normalized variables along the 
burning surface can be readily determined to be 

   cosz s α=  (23) 

   s 1 sinr s α= +  (24) 

   sinzu α=  (25) 

   cosru α= −  (26) 
The stream function relations at the simulated burning 
surface can be defined as 

   1 1,    z ru u
r r r z

ψ ψ∂ ∂
= − =

∂ ∂
 (27) 

secs z α
=

z

r
s 1 tanr z α= +α

 
Fig. 5 Schematic of burning surface quantities. 
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Fig. 4 Axial variation of average velocity for L = 0. 
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Insertion of the stream function definitions into Eq. (22) 
yields 

( ) ( )2 2s sd d
cos sin 1 sin

d d
r s

s s
ψ ψ

α α α= − + ⇒ = − + (28) 

Subsequent integration and conversion of Eq. (28) back 
to spatial coordinates yields ( ) ( )21

s 2 sins s sψ α= − + , 
hence 

   ( ) ( )1
s 2sec 1 tanz z z Cψ α α= − + +  (29) 

where C  is a constant that can be evaluated by 
applying the boundary condition, ( )s 0 Lψ = − .  
Application of this constraint gives 

   ( ) ( )1
s 2sec 1 tanz z z Lψ α α= − + −  (30) 

F. Axial Pressure Gradient 
  The axial pressure gradient is deemed to be the 
primary source of vorticity.  As a result, we may begin 
by expressing the axial variation of pressure in the form 
of Bernoulli’s equation as 

   ( ) ( )21
0 max2p z p u z= −  (31) 

  At this juncture, it is necessary to recall that the 
pressure variation is sensitive to the shape of the axial 
velocity profile.  One should also note that the shape of 
the profile changes at each axial location and that the 
maximum velocity is unknown.  It is helpful to define 
an expression that captures the shape of the axial profile 
at any location z  as the gases make their way toward 
the nozzle inlet.  In that vein, we define the ratio of 
maximum to average velocities as 

   ( ) ( )
( )

max

ave

u z
z

u z
β =  (32) 

The form of ( )zβ  will be later determined from 
imposition of the no-slip requirement at the burning 
surface. By substituting Eq. (32) into Eq. (31), one is 
left with 

   ( ) ( )2 21
0 ave2p z p u zβ= −  (33) 

The pressure gradient is determined along the simulated 
burning surface by evaluating the derivative of Eq. (33).  
The result is 

  ( ) ( ) ( ) ( )
( )

( )ave ave2
ave

d dd
d d dz

u z u z zp z u z
z z z

β
β

β
⎡ ⎤

= − +⎢ ⎥
⎢ ⎥⎣ ⎦

 (34) 

Differentiating Eq. (16) and substituting the known 
surface quantities furnishes  

   ave s
3

s s

d tansec2 4
dz
u

r r
ψ αα

= +  (35) 

Substituting Eq. (35) into Eq. (34) and simplifying, it 
follows that 

2 s s s
3 2

ss s
4

sec sin cosd 1 2
d
p
z rr r

β
ψ α ψ α ψ α β

β
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

′= + −   

    (36) 

where  

   d
dz
ββ ′ =  (37) 

G. Surface Vorticity 
  Having determined the relationship between 
chamber vorticity and pressure, the momentum 
equation for steady, inviscid flows may be evaluated at 
the surface.  To begin, one may recall the normalized 
form of Euler’s equation 

   p ρ⋅∇ = −∇u u  (38) 
With some rearrangement, the momentum equation can 
be expressed in terms of the vorticity.  This classic form 
is given by 

   ( )1
2p× = ∇ + ⋅u Ω u u  (39) 

The normalized velocity vector at the simulated burning 
surface can be expressed in terms of the taper angle via 

   ˆ ˆsin cosα α= −u i j  (40) 
Evaluating the expression at the surface by substitution 
of Eq. (40) into (39) gives 

   s s
ˆ ˆ ˆsin cosα α⎡ ⎤× = −Ω − = −Ω⎣ ⎦u Ω i j s  (41) 

Here ŝ  represents the unit vector parallel to the burning 
surface.  Accordingly, the pressure gradient along the 
burning surface can be expressed as 

   d d dˆ ˆcos sin
d d d
p p p
s z r

α α⎡ ⎤+⎢ ⎥⎣ ⎦
s = s  (42) 

Equating the expressions provided by Eqs. (41) and 
(42) yields 

   s
d dcos sin
d d
p p
z r

α αΩ = − −  (43) 

With values of α  between 1  and 3 , the term 
containing sinα  may be neglected.  Naturally, Eq. (43) 
can be reduced to  

   ( )2
s b

d cos
d
p O V
z

α αΩ = − +  (44) 

Finally, the surface vorticity can be expressed as 

 2 s s s
s 3 2

ss s

sin cos
4 1 2

rr r
ψ ψ α ψ α ββ

β
⎡ ⎤′⎛ ⎞

Ω = − + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (45) 

The realization that no sources are present within the 
domain of interest enables us to invoke Crocco’s known 
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theorem according to which it will be sufficient to 
determine vorticity along the boundaries.  In the 
absence of sources and frictional losses, the vorticity 
traveling along a (steady) streamline cannot be 
attenuated (see Fig. 6).  It remains constant along a 
streamline and, therefore, throughout the chamber.  
This mechanism is captured by Eq. (45) and will be 
examined further in forthcoming sections to 
substantiate the form of the vorticity as well as the 
relationship between the surface and chamber vorticity.  
By equating the chamber vorticity to the surface 
vorticity, the following expression is obtained 

   s
s

( , ) ( )rr
r

ψ ψΩ = Ω  (46)  

Substituting Eq. (45) into (46) yields 

( ) 2
4 2

ss s

sin cos, 4 1 2z r r
rr r

ψ ψ α ψ α ββ
β

⎡ ⎤′⎛ ⎞
Ω = − + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (47) 

III. Approximate Solutions 
  With a complete formulation for the chamber 
vorticity, a partial, nonlinear equation that governs the 
flow is now at hand.  One should note that the subscript 
‘s’ is no longer retained now that an expression that is 
valid for the complete chamber has been developed.  
One may recall that 

2 2

2 2
1
r rz r

ψ ψ ψ∂ ∂ ∂
+ − =

∂∂ ∂
  

   2 2
4 2

ss s

sin cos4 1 2r
rr r

ψ ψ α ψ α ββ
β

⎡ ⎤′⎛ ⎞
− + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (48) 

The boundary conditions required to solve Eq. (48) are 
given by 

   ( ),0 0zψ = ,   ( )s s,z rψ ψ=  (49) 
  By numerical methods, Clayton34 noted that β ′  
and 2 2/ zψ∂ ∂  were small quantities.  Clayton’s 
observations may be verified using a scaling analysis.  
Considering that  

   
( )2

2
rru

zz
ψ ∂∂

=
∂∂

 (50) 

one may recall that ru  is independent of z  in the 
straight circular-port, thus causing Eq. (50) to vanish at 
leading order.  It is clear that the presence of small taper 
will not affect the size of this term, given the magnitude 
of sinα .  Henceforth, it is posited that the axial 
derivatives are of small magnitude and can be neglected 
in the prescribed tapered domain.  Furthermore, a 
scaling analysis will be employed once more to verify 
the magnitude of β ′ .  Using Clayton’s arguments 
regarding the numerical analysis, Eq. (48) can be 
reduced to 

   
2

2 2
2 4 2

s s

1 sin4 1 2r
r rr r r

ψ ψ ψ ψ αβ
⎛ ⎞∂ ∂

− = − +⎜ ⎟
∂∂ ⎝ ⎠

 (51) 

With a nonlinear partial differential equation at hand, 
the method of regular perturbations can be applied.  In 
concert with such a methodology, the stream function 
and velocities may be expanded in the form 

   ( )2
0 1 Oψ ψ ψ ε ε= + +  (52) 

   ( )2
s s,0 s,1u u u Oε ε= + +  (53) 

   ( )2
0 s 1 Oβ β ψ β ε ε= + +  (54) 

where the perturbation parameter is due to the small 
taper angle, namely, 

   ( )sinε α=  (55) 
A solution may now be obtained by the substitution of 
Eq. (52) and Eq. (54) into Eq. (51).  The resulting 
expression may then be expanded into a linear sequence 
of ordinary differential equations. 

A. Leading-Order Solution 
  At leading order, one obtains  

   
2 2 2

0 0 0 0
2 4

s

d d1 0
dd

r
r rr r

ψ ψ β ψ
− + =  (56) 

which is a simple, second-order, linear differential 
equation with the general solution 

z

r

( )21
2

sinL rψ π= − Lψ =

s
(

)1
2sec 1 tan

s
L z

z

ψ
α

α

= − −
+

( ) ( ) ( )2 4 2
s s s4 1 2 sin cosr r rψ β ψ ψ α ψ α β β′Ω = − + +⎡ ⎤⎣ ⎦

0ψ =
 

 
Fig. 6 Mathematical model depicting surface vorticity and stream function quantities. 
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   ( )
2 2

0 1 0 2 02 2
s s

cos sinr rr C C
r r

ψ β β
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (57) 

Straightforward evaluation of Eq. (57) at the assigned 
boundary conditions gives 

   ( )
2

0 s 0 2
s

sin rr
r

ψ ψ β
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (58) 

where 

  ( )21
s 2sec secz Lψ α ε α= − + +  and 1

0 2β π=  (59) 

It should be noted that at 0L α= = , one recovers 

   ( ) ( )2
0 0, sinz r z rψ β=  (60) 

Equation (60) reproduces Culick’s profile10 for flow in 
porous, cylindrical ducts.  The leading-order solution 
expressed by Eq. (58) is referred to as an extended 
version of the Culick profile.  This form is a result of 
the additional bulk flow produced from the extended 
burn area due to the angular divergence of the 
propellant cross section in the downstream direction. 

B. First-Order Solution 
  At first order, one obtains the following ordinary 
differential equation 

 
2 22
0 11 1

2 4
s

d d1
dd

r
r rr r

β ψψ ψ
− + + ⋅⋅ ⋅  

   
2 2 2 2

0 1 s 0 0 0
4 6

s s

8 8
0

r r
r r

β β ψ ψ β ψ
+ =  (61) 

with 

   ( )1 0 0ψ = ,  ( )1 s 0rψ =  (62) 
Applying these boundary conditions, one obtains 

( )
2 2
s

1 02 2
s s

, 6 8cos
6

rz r
r r

ψ
ψ β

⎡ ⎛ ⎞
= − + ⋅⋅ ⋅⎢ ⎜ ⎟

⎢ ⎝ ⎠⎣
2 2 2

2
0 0 1 02 2 2

s s s

cos 2 4sin 6 cosr r rr
r r r

β β β β
⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ − + ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎦

 (63) 

The first-order velocity ratio, 1β , must be determined 
such that the no-slip condition is satisfied along the 
tapered surface.  The corresponding surface velocity 
may be expressed as 

   s ,s ,scos sinz ru u uα α= −  (64) 
therefore, 

 ( ) ( )s cos sinu
r z
ψ ψα α∂ ∂

= +
∂ ∂

 

   ( ) ( ) ( ) ( )0 1 0 1cos sin
r z

ψ ψ ε α ψ ψ ε α= + + +  (65) 

Noting that 0ψ  already satsifies the no-slip condition at 
the wall, the first-order surface velocity may be written 
as 

   ( ) ( )1 1
s,1 cos sinu

r z
ψ ψ

α α
∂ ∂

= +
∂ ∂

 (66) 

Again, it can be seen that the term containing sinα  is 
negligibly small, being of ( )O ε . Setting Eq. (66) equal 
to zero and evaluating the resulting expression at the 
tapered surface, one obtains 

   1 2
s

4
3r

β =  (67) 

The required forms of the leading and first-order 
velocity ratios, 0β  and 1β , are presently known.  Here, 
one may use a scaling analysis to justify neglecting 
their derivatives.  Expressing the expanded velocity 
ratio in the form of its derivative, it is clear that 

   ( )2
s 0 s 1 Oβ β ψ β ε ε′ ′ ′ ′= + +  (68) 

With the known values of the velocity ratios, it is seen 
that 

   ( )2
s s s3 sin yβ α ψ ′′ =  (69) 

Evaluation of the derivative yields 

   ( ) ( )
2

3 24
s 3 2

sin1 tan
cos

z Oαβ α ε
α

−′ = − + ≈  (70) 

As seen in Eq. (70), 1β  is of order 2sin α .  This result 
justifies our original premise and confirms the 
numerical prediction by Clayton.34 

C. Method of Variation of Parameters 
  Aside from the perturbation approach, another 
approximate solution may be sought with the use of 
variation of parameters.  To begin, one may recall the 
governing equation for tapered flow 

 
2 2

2 2
1
r rz r

ψ ψ ψ∂ ∂ ∂
+ − =

∂∂ ∂
 

   2
4 2

ss s

sin cos4 1 2r
rr r

ψ ψ α ψ α ββ
β

⎡ ⎤′⎛ ⎞
− + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (71) 

This may be reduced to obtain 

   
2 2

2 2
2 2 4

s

1 4 0r
r rz r r

ψ ψ ψ ψβ∂ ∂ ∂
+ − + =

∂∂ ∂
 (72) 

Clearly, the most general solution assumes the form 

  ( ) ( ) ( )
2 2

1 22 2
s s

, sin cosr rz r C z C z
r r

ψ β β
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (73) 

Inserting Eq. (73) into (72), one may write 
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( ) ( ) ( )
2 2

1 2 3 42 2
s s

, sin cosr rz r K z K K z K
r r

ψ β β
⎛ ⎞ ⎛ ⎞

= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (74) 
The boundary conditions at the simulated burning 
surface can be ascertained by evaluating the stream 
function at the surface.  For the idealized circular-port 
motor with tapered bore, one has 

   ( ) ( )1
s 2sec 1 tanz z z Lψ α α= − + −  (75) 

Applying the definition of the stream function, one 
secures 

   
( )s s

s

,1 0z
z

z r
u

r r
ψ

∀

∂
= − =

∂
 (76) 

   
( )s s

s

,1 secr
z

z r
u

r z
ψ

α
∀

∂
= = −

∂
 (77) 

The inflow condition is determined by a mass balance 
at the interface.  This condition includes the bulk flow 
parameter and is expressed mathematically as  

   
( ) ( )s s 21

2
s

0,1 cosz
r

r
u L r

r r
ψ

π π
∀

∂
= − = −

∂
 (78) 

The final boundary condition requires no flow across 
the centerline.  It is also known as the condition for 
axisymmetry.  As usual, we express this condition as 

   
( )s

s

,01 0r
z

z
u

r z
ψ

∀

∂
= − =

∂
 (79) 

With an available general solution and required 
boundary conditions, a particular solution may be 
sought.  Initially, it may be observed that the condition 
for axisymmetry reduces the general solution to 

   ( ) ( )
2

1 2 2
s

, sin rz r K z K
r

ψ β
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 (80) 

Next, the no-slip condition at the simulated burning 
surface can be applied to render 

   
( )s s

s

,1 0z
z

z r
u

r r
ψ

∀

∂
= − =

∂
 (81) 

hence 

   ( ) ( ) 2cos 0 2 1 ,  0n nπβ β= ⇒ = + =  (82) 
For uniform, normal injection at the simulated burning 
surface, one gets 

   
( )s s

s

,1 secr
z

z r
u

r z
ψ

α
∀

∂
= =

∂
 (83) 

or 

   ( )1
1 12sin sec ; secK Kπ α α= =  (84) 

The final constant of integration is determined by 
applying the bulk flow condition at the cylinder-taper 
interface ( 0z = ).  Doing so, one finds 

   ( )
2

21
2 223 2

s s

cos cos ;
2

rK L r K L
r r
π π π π

⎛ ⎞
− = − =⎜ ⎟

⎝ ⎠
 (85) 

Finally, the particular solution becomes 

   ( ) ( )
2

2
s

, sec sin rz r z L
r

ψ α β
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

 (86) 

  It is gratifying to note that, despite the disparities in 
approaching this problem, the solution garnered by the 
variation of parameters technique begets a final 
expression that is identical to the leading-order solution 
furnished by the method of regular perturbations. 

D. Velocity, Pressure and Vorticity 
  With the proper form of the stream function 
available, it is now possible to evaluate the physical 
characteristics of the flowfield.  Since the variation of 
the chamber radius is of ( )sinO α , sr  is treated as a 
constant for purposes of obtaining the quantities 
necessary to characterize the flow.  Using the 
relationship between the velocity and stream function, 
the leading and first-order axial velocity profiles are 
expressed by 

   
2

0 s
,0 02 2

s s

2
cosz

ru
r r

β ψ
β

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (87) 

and 

 
2 2 2
s

,1 0 0 0 04 2 2
s s s

8 cos 16 sin
6z

r ru
r r r

ψ
β β β β

⎡ ⎛ ⎞ ⎛ ⎞
= −⎢ ⎜ ⎟ ⎜ ⎟

⎢ ⎝ ⎠ ⎝ ⎠⎣
 

  
2 2

0 0 1 02 2
s s

8 sin 2 12 cosr r
r r

β β β β
⎛ ⎞ ⎛ ⎞

+ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

   
2

2
0 1 0 2

s

12 sin rr
r

β β β
⎤⎛ ⎞

+ ⎥⎜ ⎟
⎥⎝ ⎠⎦

 (88) 

Following suit, the leading-order radial velocity can be 
expressed as 

   
2 2

s
,1 0 2

s

sec
sin ( )r

r ru O
r r

α
β ε

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (89) 

  From the velocity profiles, the spatial variation of 
the pressure can be ascertained.  The substitution of the 
velocity components into the z - and r -momentum 
equations yields 

   
2
0 s
4

s

4
secp

z r
β ψ

α∂
− =

∂
 (90) 
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and 

 
2

2
03 2 2

s s

1 sec sinp r
r r r r

α β
⎧ ⎛ ⎞∂ ⎪− = ⎜ ⎟⎨

∂ ⎪ ⎝ ⎠⎩
 

   
2 2

4 2
s 0 0 02 2

s s

sin cosr rr r
r r

β β β
⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎪− +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎬

⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎪⎣ ⎦⎭
 (91) 

By integrating and combining Eqs. (90) and (91), one is 
able to produce the spatial variation of the pressure that 
satisfies both momentum equations.  By inspection, one 
comes to the conclusion that the radial component of 
pressure is of marginal importance, being of 2(sin )O α .  
At leading order, Eq. (90) may be integrated to obtain 

 ( ) ( )
2

20 1
24

s

4 sec
sec  constantp z z Lz

r
β α

α− = + +  (92) 

  One can now apply the head-end boundary 
condition, ( ) Culick0,0p p= , where 2 2

Culick 2p L π= − ; 
the constant becomes equal to Culickp .  Setting 

( ) Culick,p p z r p∆ = − , one can express the leading-order 
expression for the pressure drop as 

   ( )
2

20 1
0 24

s

4 sec
secp z Lz

r
β α

α∆ = − +  (93) 

  Knowing that sr  is treated as a constant for first-
order approximations, it may be argued that some error 
may be incurred as a result of performing multiple 
differentiation and integration operations that neglect 
the axial dependence of the radius.  Also, the evaluation 
of the derivatives and subsequent integration of the 
resulting expression produce higher-order terms that, 
for purposes of exacting a leading-order solution, may 
be dismissed.  In an attempt to recover accuracy, one 
may seek a higher-order correction for the pressure 
drop.  This higher-order correction accounts for the 
second-order axial derivative of the stream function as 
well as the variation of sr  with axial distance. 
Evidently, this variation becomes more significant at 
larger taper angles.  Our second-order accurate 
approximation for the pressure drop can be expressed as 

 ( )
2 4

4 2 30
4

s

2 sec 1 1 ; sin 2
4 2

p z z z
r

β α
ε ε α⎡∆ = − + + ⋅⋅⋅⎢⎣

 

   ( )2 2 3cos 1 2 cosz L Lzα ε α ⎤+ + ⎦  (94) 

  In addition to the formulation of the velocity and 
pressure gradients, one may evaluate the vorticity in 
order to complete the extraction of standard physical 
parameters that characterize this flowfield. This can be 
accomplished via 

   ( ), z ru u
z r

r zθ
∂ ∂

Ω = −
∂ ∂

 (95) 

Inserting the relations for the velocity components into 
Eq. (95) produces the expression for the spatial 
variation of chamber vorticity.  One finds 

 ( )
2

s
04 2

s s

41 sec tan, sin
r rz r

r r r rθ
ψα α β

⎛ ⎞ ⎛ ⎞
Ω = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (96) 

  Each of the required flowfield characteristics 
particular to tapered cylindrical motors is now at hand.  
The effect of the bulk flow parameter will be examined 
along with the taper angle.  One should note that this 
parameter is also the normalized chamber length 

0 0/L L R= . 

E. Ideal Momentum Thrust  
  Of particular interest here is the behavior of the 
thrust at various values of the taper angle α .  One may 
theorize that the thrust responds to the taper angle in the 
same manner as the pressure drop.  This behavior may 
be ascribed to the fact that both the pressure drop and 
thrust produced exhibit a strong dependence on the gas 
velocity in the combustion chamber.  In pursuit of an 
expression that reveals the response of the thrust to the 
taper angle, one may employ the momentum thrust 
equation given by 

   ( )
cv cs

ˆd  dF V V A
t

ρ υ ρ∂
= + ⋅

∂ ∫ ∫ V n  (97) 

One may also utilize the expressions for the average 
velocity and the chamber cross-sectional area 
(introduced previously) to aid in the formulation of an 
expression for the thrust.  Specifically, one can put 

   
( )

1
2

ave 2

sec (1 tan )
2

1 tan

L z z
u

z

α α

α

+ +
=

+
 (98) 

   ( ) ( )21 tanA z zπ α= +  (99) 
One should bear in mind that only the steady state 
solution is of interest here.  Equation (97) becomes 

   ( )
cs

ˆ  dF V Aρ= ⋅∫ V n  (100) 

The definitions of cross-sectional area and average 
velocity presented in Eqs. (98) and (99) can be inserted 
into the steady momentum thrust equation to give 

( )
( )

*21
2 0

d 1 tan
4 sec (1 tan )

1 tan
z L

z

z
F L z z

z
α

πρ α α
α

=

=

+
= + +⎡ ⎤⎣ ⎦ +∫  

    (101) 
The thrust can also be expressed in terms of the burning 
surface quantities.  Doing so, one obtains 

   
*

2 s
s 0

s

d
4

z L

z

r
F

r
πρψ

=

=
= ∫  (102) 
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  In pursuit of a complete formulation that gives the 
thrust as a function of taper angle and axial distance, 
Eq. (102) must be integrated along the maximum length 

*L  of the tapered domain.  This integration yields 

   ( )* 2
s4 ln 1 tanF Lπρ α ψ= +  (103) 

where 1
s 2sec (1 tan )L z zψ α α= + +  represents the 

stream function along the simulated burning surface. 

IV. CFD Confirmation 
  Available analytical methods have enabled us to 
obtain closed-form approximations that describe the 
mean flowfield for the circular-port motor with tapered 
bore.  By closely examining some of the terms, we have 
previously determined that they were sufficiently small 
to be ignored, in the hope that their associated errors 
would not compound. At the outset, an analytical 
solution was possible by both the method of regular 
perturbations and variation of parameters.  At this 
juncture, a numerical simulation can be invoked to 
further validate the analytical results and verify their 
assumptions and ranges of applicability which, so far, 
could only be estimated with asymptotics.  In the 
interest of simplicity, a numerical simulation will be 
performed with the use of a commercial code;35 the 
purpose will be to recreate as much as possible the 
same simulated environment that was evoked in 
deriving the analytical solutions. 

A. Geometry and Meshing Scheme 
  The geometric models are created for taper angles 
ranging from 1  to 3 .  The dimensions are chosen in 
accordance with the parameters used by the analytical 
model.  The cylindrical motor is modeled in three-
dimensional space, and the gaseous mixture (assuming 
single phase) is injected across its simulated burning 
surface. A standard meshing scheme is employed with 
an interval size of 0.1. 

B. Boundary and Operating Conditions 
  The working fluid is injected at velocities ranging 
from 0.1 m/s to 1 m/s.  These values of injection 
velocity ensure that the Mach number remains less than 
0.3, hence justifying the incompressible flow condition 
used in the analytical part.  The selection of the 
injection velocity can be further validated from 
experimental work by Brown36 and co-workers as well 
as a research team led by Dunlap.37  In fact, the selected 
injection velocity is inspired by Clayton’s CFD results 
based on practical industrial applications;34 in that 
context, Clayton determines that the taper profiles 
change minimally with increasing injection velocity 
provided that the Reynolds number, bRe V Dρ µ= , 
remains between 210  and 410 .  The reference pressure 

we use is the stagnation pressure at the head end of the 
chamber, specifically, the pressure at the origin.   
  In order to capture coherent structures that 
correspond to our analytical solution, the numerical 
scheme that we adopt is based on the laminar model.  
We recognize, however, that the flowfield inside an 
actual SRM can be turbulent, particularly, in the 
downstream portions of an elongated chamber; this idea 
is nicely described by Apte and Yang.38 

V.  Results and Discussion 
  This section seeks to examine the dissimilarities 
that exist between the numerical and analytical cases 
presented earlier.  With available information, one is 
able to determine the level of accuracy that is required 
and which physical parameters are most important. As 
noted by Clayton,34 the axial velocity profiles and the 
pressure drop are of paramount importance. However, 
the pursuit of a general expression that describes the 
flowfield in tapered geometry requires that certain 
terms be neglected during the derivation process. To 
validate the dismissal of these terms, the same problem 
is now solved numerically. In the forthcoming sections, 
the numerical results will be compared to those found 
analytically. 

A.  Pressure Approximations 
  The slow increase in cross-sectional area in the 
axial direction acts to decrease the pressure drop by 
allowing a build-up in local static pressure with the 
accompanying decrease in dynamic pressure.  By 
comparison to Culick’s solution in a straight circular-
port motor,10 Fig. 7a and Fig. 7b illustrate that there are 
substantial decreases in the pressure drop at higher 
taper angles taken at a length-to-radius ratio of 10z = .  
The value of z  corresponds to the maximum length of 
the tapered segment for a bulk flow value of zero.  
Recovering the error that has accrued as a result of the 
constant radius assumption and neglecting the second-
order axial derivative requires the addition of a higher-
order correction. 
  The behavior of the higher-order solution can be 
examined in Fig. 7b.  The addition of the higher-order 
correction seems to have much more of an impact at 
higher taper angles and larger tapered domains; this 
trend suggests that the corrections are a requisite for 
analytical pressure predictions for these cases.  
Compared to the higher-order solution, the leading-
order solution under-predicts the pressure drop at larger 
taper angles.  In later portions of this work, the higher-
order correction will prove to be essential for the 
validation of the mathematical model.  It is clear that 
there is an over-prediction in pressure drop.  The error 
increases as the gases head toward the aft end of the 
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motor.  At the edge of the solution domain, the total 
pressure drop can be over-predicted by as much as 48% 
to 75% using the leading-order expression.  The natural 
range for percent over-prediction using the higher-order 
correction varies here between 24 and 52 percent.  

Obviously, use of the leading-order solution to predict 
the total pressure drop is not acceptable. 

B. Momentum Thrust Behavior 
  In Fig. 8, the sensitivity of idealized momentum 
thrust seems to be consistent with that of the pressure 
drop when evaluated as function of taper angle.  As the 
area increases in the axial direction, mass continuity 
requires the average velocity to slow down in an effort 
to compensate for the change in available flow area.  
Accordingly, the thrust at each axial location tends to 
decrease as well.  This trend is clearly illustrated with 
successive increases in α .  Physically, the plot 
represents a steady state, cold flow solution that does 
not account for neutral, regressive or progressive 
burning effects.  Also, the important nozzle effects are 
totally discounted.  Based on this cold flow model, the 
simulated motor may be thought of as regressive in 
nature.  Since the average velocity approaches a 
constant value, it is reasonable to theorize that the thrust 
may follow suit.  Without accounting for the taper 
effect, it may be speculated that one-dimensional 
prediction of the thrust can lead, by analogy with the 
pressure drop, to a slight over-prediction that becomes 
more appreciable with increasing taper. 

C. Axial Velocity 
  One should recall that sr  was treated as a constant 
during the evaluation of the axial and radial velocity 
components.  Consequently, it was expected that some 
error would be introduced into the solution.  In Fig. 9, it 
can be observed that there exists no discernable pattern 
for the analytical profiles and their numerical 
counterparts.  This may be attributed to the effects of 
curvature as well as the non-uniform 3-D computational 
grid used for the numerical model.  As a result, the 
numerical solution is seen to slightly overshoot or 
undershoot the numerical solution at various axial 
locations. This rather random discrepancy is more 
noticeable further down the motor chamber; it may 
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Fig. 7  Plots of a) leading order and b) first-order 
approximations for several values of α .  In c) the 
percent over-prediction at several values of α and d) 
numerical vs. first-order approximation are shown. 
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become non-negligible in very long motors. 
  At this juncture, one should note that the analytical 
solutions shown in Fig. 9 include higher-order 
corrections.  Neglecting these higher-order terms leads 
to a grossly under-predicted maximum centerline 
velocity.  From the graph, it can be inferred that the 
leading-order solution lacks valuable flow information 
and that the higher-order terms appear to be a requisite 
for accurate solutions in long chambers with large taper 
angles.  The higher-order corrections seem to slowly 
recover the second-order axial derivative that was 
omitted in the basic solution. Clearly, Fig. 9 displays 
very good agreement between the analytical and 
numerical solutions. This justifies the use of the 
analytical formula in lieu of numerical simulations in 
fundamental theoretical studies that require either a 
concrete or discretized form of the velocity field. 

D. Axial Derivatives 
  Our quest for an analytical, closed form solution 
required several assumptions.  These assumptions 
targeted several derivatives, namely: (1) 2 2zψ∂ ∂ and 
(2) d dzβ . 
  The magnitudes of the second-order axial 
derivatives of stream function have been extracted from 
the numerical solution and quantified along the axis.  
The second-order radial derivatives were also plotted 
for the purpose of comparing the two quantities.  Figure 
9a clearly depicts an oscillatory behavior as is typical of 
a small fluctuating quantity.  These fluctuations remain 
insignificant, namely, of 4(10 )O −  down the length of 
the chamber.  In contrast, the radial derivatives shown 
in Fig. 10b exhibit magnitudes of (1)O , thus justifying 
their retention in the analytical model.  
  Similarly, the magnitudes of the axial derivatives 
(described in Fig. 10c) for the velocity ratio are small 
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-0.0050

0.0000

0.0050

0.0100

0.0150 2 2zψ∂ ∂  α = 1o

 α = 2o

 α = 3o

 

 

a)

0

1.0

2.0

3.0

4.0

5.0 2 2rψ∂ ∂

 α = 1o

 α = 2o

 α = 3o

 

 

b)

0 2 4 6 8 10
0

0.025

0.050  r = 0
 r = 0.25
 r = 0.50
 r = 0.75
 r = rs

z

 

dβ/ dz

c)
 
Fig. 10  Numerical axial derivative approximations 
from FLUENTTM shown at several taper angles. 



 

–13– 
American Institute of Aeronautics and Astronautics 

enough that they would have no appreciable effect on 
the analytical solution.  This plot shows the axial 
variation of d dzβ  at several radial locations for 

3α = .  From the graph, it can be inferred that the axial 
variation of each derivative dictates the shape of the 
velocity profile.  For example, at s r r= , the axial 
derivative slowly increases.  One may recall that the 
velocity profile must adjust itself at each axial location 
to satisfy the no-slip requirement at the tapered surface.  
Bearing this in mind, it can be realized that the rate of 
change at the wall must increase due the increased axial 
variation as the gases propagate down the chamber.  At 
the axis of the chamber, one notices a decreasing 
derivative. This also indicates that the centerline 
velocity must decrease in the axial direction.  From a 
physical standpoint, these changes must occur to satisfy 
mass conservation.  The increasing rate of change at the 
wall works in conjunction with the decreasing rate of 
change at the axis to force the profile to slowly 
relinquish its radial dependence with increasing axial 
distance.  Hence, the profile may evolve into a near 
constant shape over the cross-section perpendicular to 
the flow for sufficiently long tapered domains. 
 

VI. Solution Limitations 
  For practical applications of the analytical solutions 
presented heretofore, one may be concerned with their 
parametric limitations.  Previously, such limitations 
were explored by analytically predicting the behavior of 
the gases at an infinite distance away from the head 
end.  The results of this inquiry suggest that some 
relationships, guided by mass conservation, must be 
maintained between the geometric parameters.  As 
shown in Sec. II(D), the pertinent relationship can be 
expressed as: 

   
( )0

0

1
2

L z
R

α +
≤    (104) 

This criterion was obtained using the average value of 
the velocity as opposed to the maximum centerline 
velocity.  In order to determine a maximum range for 
which the analytical solutions remain applicable, one 
must calculate the maximum relative error between 
asymptotic predictions and numerical solutions.  To do 
so, it is expedient to examine the asymptotic limit 
where the velocities in each chamber are at their 
maximum values; this can be accomplished, for 
instance, by comparing the centerline velocities 
predicted by numerics and those by asymptotics.  For 
the non-tapered segments, the relationship between 
centerline and average velocities can be easily found to 
be 

   1
max ave2u uπ=  (105) 

By translating this result to the centerline velocity, the 
criteria that establish the upper limit of the solution 
domain may be extrapolated. One finds   

   
( )0

0

1L z
R

α
π

+
≤  (106) 

Equation (106) can now be solved for 0 0L =  to obtain 
the maximum conservative domain aspect ratio for a 
given taper angle.  One finds 

   cons
1z

απ
=  (107) 

where cons 0z z R= .  It is our observation that, so long 
as consz z≤ , the percent error between numerics and 
asymptotics remains less than 1%.  The conservative 
range represents a domain of asymptotic validity in 
which the accrued error is virtually insignificant.  By 
requiring a minimum chamber aspect ratio of 4 (lest 
edge effects become important), the maximum 
conservative taper angle for which an asymptotic 
solution would exhibit a smaller than 1% error can be 
readily calculated from Eq. (107).  One finds the 
maximum conservative taper angle to be 4.5 degrees.  
Therefore, a suitable range of tapers would be 

o0 4.5α< ≤ . 
  Shown in Figs. 10a and 10b are the centerline 
velocities for 1α =  and o4.5 , respectively. The 
behavior at 1α =  is quite similar, although the range is 
different (due to the difference in geometries).  In Fig. 
11a, it is seen that the maximum percent deviation is 
about 16.4%.  Here, the conservative range is 
0 18.2z< ≤ .  As predicted, the two solutions 
(numerical and analytical) begin to diverge outside of 
the conservative domain.   
  For the case of the maximum taper angle, 4.5α = , 
the conservative range is shrunk down to 0 4z< ≤ .  
The location at which there is a 20% discrepancy 
between the two solutions is found to be approximately 
17.0.  For values greater than 17.0, the deviation begins 
to increase until it reaches a maximum value of 42.2%.  
The numerical cases shown here clearly support the 
analytical criterion within the conservative range.  It 
may be inferred that the analytical solution exhibits a 
larger range of applicability for smaller taper angles.   
  For the idealized circular port motor with very 
small taper (Fig. 11a), the maximum percent deviation, 
δ , is about 16.0% (at which point the error between 
numerics and asymptotics remains approximately 
constant as the solution levels off to a constant value).  
For such small taper, one may apply the analytical 
solution with minimal error, at least in theory, over an 
infinitely long domain.  The range of aspect ratios for 
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which relative discrepancies remain under 20% is 
generally much longer than those currently used in 
practice.  For practical applications, such as cold flow 
models for SRMs, the solution presented in this work 
would consistently remain within 20% of the numerical 
cases up to cons 4z z ≅ .  
 

VII. Conclusions 
  In this study, we have presented approximate 
solutions for the mean flowfield in circular-port rocket 
motors with tapered bores.  Analytical solutions were 
obtained with the use of two methods: (1) the method of 
regular perturbations and (2) variation of parameters.  
Additionally it was found that the solution from the use 
of variation of parameters is identical to the leading-
order solution shown earlier.  Although the distance 
from the axis to the simulated burning surface varies 
with axial distance, it is assumed constant in the 
evaluation of the velocity, vorticity and most notably, 
the pressure drop. 
  In pursuit of expressions that characterize the 
chamber pressure, mathematical operations were 
performed with the assumption that the distance from 
the centerline was constant, because its variation was of 

( )sinO α .  In light of this, higher-order corrections 
were needed.  Most notably, the higher-order 
corrections were found to compensate for the 

assumption of axial independence of the chamber 
radius.  Furthermore, the higher-order corrections were 
able to recover the effect of the second-order axial 
derivative of the stream function as well as the radial 
and transverse expansion and flow deceleration.  
  In conclusion, we have demonstrated that the 
pressure drop is over-predicted if Culick’s mean 
flowfield is applied to chambers with tapered bores.  
Evidently, this suggests the modification of ballistics 
codes that attempt to predict and characterize bulk gas 
motion without giving due attention to tapering. 
  Given the methodologies used throughout this 
work to obtain the desired flowfield, the numerical 
simulation has been instrumental in substantiating the 
assumptions demanded by the analytical derivation.  
Our study confirms the usefulness of numerical models 
in validating approximate solutions, especially those 
that are asymptotic in nature.  Both theoretical avenues 
concur in that: 
 
• The incorporation of the taper is required to avoid 

over-predicting the pressure drop. 
• The taper effect is more pronounced as the gases 

move away from the head end due to the increasing 
cross-sectional flow area. 

• Long motors with 4L ≥  experience reduced 
sensitivity to taper angle.  Smaller motors 
experience increased sensitivity. 

• The mean flow approaches its asymptotic limit in 
sufficiently long motors. 

• When modeling short motors or those with smaller 
taper angles, such as 0.5 1α< ≤ , the leading 
order solution is sufficient; however, for larger 
angles and longer motors, higher-order corrections 
are required. 

• The ideal momentum thrust diminishes at higher 
taper angles and increases with motor length until it 
reaches its asymptotic limit. 

 
  In closing, it may be worth mentioning that 
accurate matching of both numerical and analytical 
solutions requires that the motor parameters be chosen 
within specified limits.  The corresponding criteria are 
discussed and shown to be practical. One shortcoming 
in the analytical solution is that it is long, albeit simple 
to implement and evaluate.  While the leading-order 
solution can be expressed concisely, it is of marginal 
accuracy as it only applies to motors with relatively 
short tapered segments and/or small taper angles.  
Better precision can be achieved when the higher-order 
corrections are utilized.  In future work, we hope to 
extend this investigation to chambers with arbitrary 
cross section. 
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Fig. 11  Numerical and analytical approximations of 
the maximum (centerline) velocity with attendant 
relative error for two taper angles. 
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