
International Journal of Heat and Mass Transfer 48 (2005) 4779–4796

www.elsevier.com/locate/ijhmt
Effective thermal conductivity of common geometric shapes
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Abstract

This work explores the porous block paradigm based on replacing an actual heat sink by the volume of fluid that
once enveloped the fins. Thermal equivalence is achieved by increasing the thermal conductivity of the lumped fluid
above the base plate until the thermal resistance of the actual heat sink is matched. The popularity of the porous block
model can be attributed to its ability to approximate the three-dimensional isotherms corresponding to a detailed heat
sink. While previous investigations have focused on a numerically calculated, effective thermal property of the compact
model, we employ a methodology leading to a closed-form alternative. The explicit solutions that we provide are not
limited to the rectangular porous block models used in former studies. Rather, we extend the analysis to cover most
fundamental body shapes and flow configurations under both free and forced convection modes. The exact or approx-
imate formulations that we provide apply to most common Nusselt number correlations and obviate the need for guess-
work or user-intervention to reach convergence.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The introduction of the microprocessor by Intel Cor-
poration in 1971 has been accompanied by a rapid
development of large-capacity memory chips whose
packing density has increased from 10 million compo-
nents in 1990 to 10 billion in 2000 [1]. Pressing demands
for size reduction and improved performance of elec-
tronic equipment have resulted in the development of
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high-power components dissipating significant amounts
of heat per unit volume. Since the failure rate of elec-
tronic components increases exponentially with operat-
ing temperatures, the need for quick thermal-control
remedies has gradually become a chief concern in the
design and reliability assessment of electronic equip-
ment. This is especially true of electronic enclosures,
cabinets, or cases, in which several hundred PCBs,
racks, brackets, switches, lights, connectors, control
interfaces, and other peripherals have to be packaged.
In addition to the daunting task of determining proper
cooling loads and solutions, the thermal engineering
team is confronted with the need to build a well-
designed housing that offers ease of access for replacing
failed components, minimizing downtime, and facilitat-
ing maintainability.
ed.
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Nomenclature

A0 lCpGrL
B0 a1Am

0 ; a1, m are constants
Cp constant pressure specific heat
g acceleration due to gravity
GrL Grashoff number, gbDTL3q2l�2

h effective heat transfer coefficient
k thermal conductivity
L characteristic length
Pr Prandtl number, lCp/k
RaL Rayleigh number, gbDTL3q2l�2Pr

RT overall thermal resistance ( junction-to-
ambient)

Tb bulk mean coolant temperature, (Ti + To)/2
Tf film temperature, (Ts + Tb)/2

Ti inlet coolant temperature
Tj junction temperature
Tmax maximum surface temperature, Tj

To outlet coolant temperature
Ts surface temperature
T1 ambient coolant temperature
U overall heat transfer coefficient, _Q= ADTð Þ
a thermal diffusivity, k/qCp

b volumetric thermal expansion coefficient,
1/Tf

DT Ts � Tb

l, m dynamic and kinematic viscosities
q density
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A number of exotic cooling methods are available to-
day and these are summarized in a survey by Bar-Cohen
and Kraus [2]. Generally, these methods rely on a vari-
ety of concepts including, but not limited to, free and
forced air and liquid cooling, air impingement, liquid
immersion, thermoelectric cooling, and heat pipes. So
far it appears that the use of heat sinks has been the
most widely adopted vehicle for heat removal in popu-
lated PCBs. Historically, these compact heat exchangers
have been introduced by Kays and London [3] and then
carefully explored by Tuckerman and Pease [4]. They
continue to receive favor in the works of Goldberg [5],
Sasaki and Kishimoto [6], Hwang, et al. [7], Nayak
et al. [8], Phillips [9], Gavali et al. [10], Butterbaugh
and Kang [11], Visser and Gauche [12], and many others
[13].

Heat sinks can be operated under free or forced con-
vective modes depending on the cooling load require-
ment. Free convection remains the most desirable and
deliberate form of cooling being quiet, reliable, simple,
and inexpensive. Nevertheless, thermally induced buoy-
ancy currents have not always been adequate in cooling
high-density chip packages. Thermal-enhancement tech-
niques are often needed to lower the resistance of a heat
sink by increasing its effective surface area beyond the
optimal value granted by free convection. To do so,
higher fin densities per base plate are needed, and these
require better air circulation than is possible naturally.
The push or pull air cooling approach is usually resorted
to and this is routinely realized through the use of intake
and exhaust fans [14].

In its early development, heat sink implementation
was slow and expensive as it mostly relied on a blend
of theory [13,14] and experimentation [15–17]. With
the dramatic growth in computer technology, this focus
has shifted to the use of computational fluid dynamics
(CFD) [10–14]. The latter has appeared to offer a fast
and reliable alternative, especially when applied to
small-scale assemblies.

The adoption of CFD as the method of choice has
not been without challenges. Despite modern leaps in
processor speed, the discretization demands in modeling
increasingly more sophisticated arrays of microchips
have been in constant catch-up mode with available
computer resources. This is especially true when con-
sidering the significant number of boards, pads, high fre-
quency interconnects, and space constraints in designing
populated assemblies of multichip modules (MCMs).
While a detailed CFD treatment may be practical in
analyzing small subassemblies, it clearly becomes overly
time-consuming and unaffordable in many applications
of real concern.

In order to better cope with the accelerated product
development cycles confronting thermal engineers,
lumped, coarse, or compact heat sink models have been
recently proposed. Examples abound and one may cite
the forced convection simulations by Bar-Cohen et al.
[18], Krueger and Bar-Cohen [19], Culham et al.
[20,21], Linton and Agonafer [22], Butterbaugh and
Kang [11], Visser and Gauche [12], Patel and Belady
[23,24], Kim and Lee [25], and Narasimhan and Kusha
[26]. The same principle has been extended to physical
settings involving free convection by Narasimhan and
Majdalani [27,28]. All in all, the main idea has been to
replace the heat sink with a simpler model that is cap-
able of providing the same thermal and fluid resistance
properties exhibited by the actual device. For added
convenience, compact modeling has relied on known
empirical correlations for predicting flow attributes.
Based on the thermal resistance concept, three tech-
niques have been employed so far. These are the �boun-
dary condition independent BC-model,� the �flat plate
boundary-layer model,� and the �porous block� or
�volume resistance model.�
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The BC model is based on the notion that a chip
package can be characterized by a limited number of
well-chosen thermal resistances. At the outset, the model�s
level of complexity and detail can vary significantly
depending on the thermal design requirements. In simple
models, a single lumped thermal capacitance is used for
each distinct component. In more sophisticated repre-
sentations, multiple resistors, nodes and shunts can be
used in representing top, bottom, side and lead areas
that provide passage to heat. The purpose is for the
resulting thermal network to provide acceptable approx-
imations for chip temperatures and flow contours. While
the original name and formulation must be attributed to
Bar-Cohen et al. [18], the BC-approach seems to have
evolved from the works of Andrews et al. [29], Andrews
[30], and Mahalingam [31]. Since its inception, it has
been used by Gautier [32], Le Jannou and Huon [33],
Lemczyk et al. [34,35], Lasance et al. [36], and several
others.

The flat plate model is also based on an effective ther-
mal resistance concept that has been thoroughly
described by Culham et al. [21]. In short, it is imple-
mented by determining the overall thermal resistance
RT from the heat sink and then assigning it either to
the base plate, the extended base plate, the raised fin,
or the raised fin with base plate assembly.

Instead of assigning the effective thermal resistance to
a two-dimensional surface, the porous block model is
different in that it distributes RT uniformly over the
three-dimensional volume of fluid that was once occu-
pied by the fins. Following Patel and Belady [23] or
Narasimhan and Majdalani [28], reducing the thermal
resistance of the volume of fluid above the base plate
can be accomplished by artificially increasing its thermal
conductivity. An effective thermal conductivity ke can
thus be determined and assigned to the volume of fluid
in an attempt to match the overall thermal resistance
RT. Being capable of reproducing three-dimensional
temperature maps and heat transfer pathways in an
actual heat sink, this approach has been recently
adopted by Narasimhan et al. [37].

In forced convection models, an effective pressure
loss coefficient needs to be additionally determined in
order to account for the flow resistance across the finned
space. This problem is further exacerbated by the �flow
bypass effect� caused by the presence of complicated flow
pathways through and around the heat sink. In practice,
this effect is often manifested by the formation of horse-
shoe vortices around the heat sink. These vortices are
attributed to the increased hydraulic resistance resulting
from the narrowing down of flow passages. The higher
flow impedance causes the cooling fluid to escape
through the side or top clearance above the fin tips fol-
lowing the path of least resistance [25]. Inevitably, the
flow bypass effect becomes significant in unducted heat
sinks where no shroud is available to suppress the flow
bypass. Studies aiming at improving the prediction of
hydraulic loss coefficients include those by Souza et al.
[15], Vogel [16], Wirtz et al. [17], Butterbaugh and Kang
[11], Patel and Belady [23], Teertstra et al. [38], and
Narasimhan et al. [39]. In the free convection models
examined by Narasimhan and Majdalani [27,28],
calculating the small pressure loss in the detailed heat
sink simulation has posed a lesser challenge. Conversely,
determining the effective thermal conductivity has
been considerably more difficult due to the increased
algebraic complexity of empirical correlations for
buoyancy-driven flows.

It should be noted that, throughout these studies,
standard heat transfer correlations have been used in
calculating equivalent thermal properties. This is espe-
cially true of porous block models that require evaluat-
ing the effective thermal conductivity ke of the detailed
heat sink. In previous investigations, ke had to be deter-
mined numerically from standard heat transfer correla-
tions (e.g., those by Churchill and Chu [40]) for
laminar and turbulent flow over a flat plate. Further-
more, applications have been limited to tetrahedral heat
sinks that give rise to rectangular porous blocks. In real-
ity, electronic cooling applications involve a diverse mix
of geometric configurations, sizes, shapes, and orienta-
tions. In cylindrical heat sinks, for example, base plates
have circular cross-sections. Since non-rectangular heat
sinks and base plates have not been considered in com-
pact heat sink modeling, it is the intent of this article to
present closed-form solutions for the effective thermal
conductivity of geometric configurations that could be
encountered in industrial units. To that end, we will seek
either exact or asymptotic solutions for those cases in
which ke has been iteratively determined in previous
studies. It is hoped that the direct solutions for ke will
obviate the need for numerical root solving, bracketing,
and user-intervention. Considering that the operating
environment for compact heat sinks is not known
beforehand, the explicit solutions that we seek for ke
will be presented in a general form to facilitate portabil-
ity. After covering the widely used rectangular geome-
try, our approach will be extended to other physical
configurations that constitute the building blocks of
complex heat sinks. In this vein, the forthcoming analy-
sis will encompass both free and forced convection
modes under laminar, turbulent and combined flow
regimes.
2. The equivalent thermal resistance

In order to ensure that the overall thermal resistance
of a compact model matches that of a detailed heat sink,
a few steps must be carried out before the effective ther-
mal conductivity of the corresponding porous block can
be determined. The key is to obtain the overall heat
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transfer coefficient characterizing the actual heat sink.
These steps are described in several articles including
those by Patel and Belady [23], Kim and Lee [25], and
Narasimhan and Majdalani [28]. They are summarized
here for the sake of clarity.

The key step consists of calculating the overall ther-
mal resistance RT of the actual heat sink. This parameter
is an important figure-of-merit used in characterizing the
efficacy of competing chip layouts [36]. For a constant
heat dissipation rate _Q, it is calculated from RT ¼
DT= _Q. The temperature excess DT = Tmax � Tb is based
on the maximum surface temperature Tmax and the cool-
ant temperature Tb. In free convection studies, Tb can be
equated to the ambient temperature T1. To find RT,
Tmax is conveniently acquired from a detailed heat sink
solution. It can also be obtained from experimental mea-
surements or theoretical relations available for a similar
heat sink. This value is determined only once for a given
cooling load _Q. Thus, as a large-scale system is being
developed, only compact properties are calculated and
allocated to each heat sink. This allocation is usually
based on a preliminary heat sink sizing that results
in a simple model. As the mesh remains unmodified,
re-initialization is eliminated, and convergence is faster
achieved. A flowchart describing the efficacy of compact
models in reducing turnaround times is provided by
Patel and Belady [23]. Surely, a detailed heat sink simu-
lation is greatly expedited when a validated numerical
model is supplied by the vendor (cf. [18]).

Under forced convection conditions, the temperature
excess DT can be made more sensitive by basing it on the
log-mean temperature difference (LMTD) suggested by
Kraus and Bar-Cohen [41]. This value can be calculated
from DT = (To � Ti)/ln[(Ts � Ti)/(Ts � To)], where Ti

and To represent the inlet and outlet temperatures di-
rectly upstream and downstream of the heat sink. The
outlet temperature can be obtained from the cool-
ant flowrate _m, and specific heat Cp, via T o ¼ T iþ
_Q=ð _mCpÞ.

Regardless of the technique used in determining RT,
the next step consists of evaluating the overall heat
transfer coefficient U between the base plate and sur-
rounding fluid. This is readily obtainable from
U = (RTAb)

�1 where Ab is the surface area of the base
plate. The use of an overall heat transfer coefficient in
the porous block model constitutes a minor departure
from the flat plate boundary-layer model where an effec-
tive conductance he is employed (see [21,10,16]). In the
base plate surface model, for example, the Nusselt num-
ber correlation for flow over a vertical plate is used to
calculate the heat transfer coefficient hhs from an actual
heat sink with total surface area Ahs. Recalling that the
thermal resistance at the base plate is (heAb)

�1, the
equivalent he is then calculated by setting heAb = Ahshhs.
If Tmax estimated by the flat plate model is made to coin-
cide with the maximum surface temperature obtained
numerically, both models will then possess the same
overall thermal resistance, RT = (heAb)

�1. Conse-
quently, one would have U = he. The symbol U instead
of he is presently used because RT = (UAb)

�1 combines,
in most models, the effects of convection and radiation.
This is due to both modes of heat transfer being
accounted for in the detailed CFD simulations used
by most investigators in the process of evaluating RT.
This is also true of laboratory measurements in which
radiation effects are implicitly captured.

Once U is determined, one can proceed to the third
and final step of calculating the effective thermal con-
ductivity of the compact model. This step involves
substituting U for he in an accepted form of the Nusselt
number correlation for the specific case at hand. In free
convection studies, the archetypical example consists of
a laminar buoyancy-driven flow along a vertically ori-
ented base plate. Since the presence of fins is suppressed
in the compact representation, the empirical correlation
by Churchill and Chu [40] for flow over a vertical plate
becomes appropriate. Using standard descriptors, one
may write

NuL ¼ UL=ke

¼ 0.68þ 0.67Ra1=4L ½1þ ð0.492=PrÞ9=16��4=9 ð1Þ

where the Rayleigh number is given by RaL = gbDTL3/
(ma). Customarily, the isothermal surface condition
Ts = Tmax is used. This assumption is adopted by most
thermal analysts to ensure design safety for given cool-
ing load and geometric constraints. In the foregoing
relation, all properties are either known or prescribed
by the cooling requirement except for ke. One must also
recognize that this effective thermal conductivity is not
that of the coolant at film temperature. Rather, it is an
artificially adjusted value that must be assigned to the
parallelepiped of fluid above the base plate that once
enveloped the fins. Hence, by properly increasing the
thermal conductivity of the block of fluid above the base
plate, its resistance is reduced in a manner to reproduce
the same three-dimensional thermal resistance associ-
ated with the actually finned heat sink. According to
the porous block paradigm, the thermal conductivity
of the coolant is locally increased while entering the
�finned� space above the base plate. This is done for
the purpose of promoting the same overall heat transfer
coefficient characterizing the detailed heat sink. The
reduced resistance above the base can thus produce
gradual temperature variations that mimic the three-
dimensional temperature maps projected by a detailed
CFD analysis. The porous block approach differs from
the flat plate model in which the temperature drop
Tmax � Tb is applied across the thin base plate.

In the past studies, an iterative approach has been
resorted to every time to calculate ke from (1) by solving
the transcendental expression
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� UL=ke þ 0.68þ 0.67ðqCpgbDTL3Þ1=4ðmkeÞ�1=4

� ½1þ 0.492keð Þ9=16ðlCpÞ�9=16��4=9 ¼ 0 ð2Þ

In the current work, a direct asymptotic solution for ke
will be proposed such that the need for numerical itera-
tions is eliminated. The same approach will be applied to
other fundamental configurations whose effective ther-
mal conductivities have not been evaluated yet.
3. General free convection

The technical literature is filled with empirical corre-
lations aimed at predicting free convection heat transfer
from an isothermal body to a quiescent fluid. These
correlations vary in complexity from the simplest
form, NuL ¼ CRamL, to the more general form, NuL ¼
a0 þ a1RamL [40]. The latter extends over a wider range
of Rayleigh numbers and contains two constants a0
and a1 that depend on both geometry and flow regime.
The leading-order constant a0 is added to account for
thermal diffusion effects as they become increasingly
more important at smaller values of RaL. Based on
boundary-layer theory, m is taken to be 1

4
or 1

3
depending

on whether the flow is laminar or turbulent [1]. When
the cooling fluid is not air, the Rayleigh number is often
multiplied by a universal Prandtl number function
exhibiting the familiar form F(Pr) = [1 + (a2/Pr)

n]r.
Here, the right-hand side gives the form of F for laminar
flow over a flat plate (see [42]). For the sake of general-
ity, this factor can be incorporated by writing

NuL ¼ a0 þ a1RamL ½1þ ða2=PrÞn�mr ð3Þ

The resulting equation can be used to simultaneously
represent free convection over a vertical plate, a horizon-
tal, vertical or inclined cylinder, a cube in several orien-
tations, a sphere, a bisphere, a prolate spheroid, and an
oblate spheroid. The constants a0, a1, a2, m, n, and p are
given in Table 1.

In addition to (3) a particularly useful form proposed
by Churchill and Chu [40] stretches over the entire range
of Rayleigh numbers. Using our nomenclature, this cor-
relation can be expressed by

NuL ¼ fa0 þ a1Ra
m=q
L ½1þ ða2=PrÞn�mr=qgq ð4Þ

Eq. (4) is appropriate of vertical flat plates, inclined flat
plates, vertical or horizontal cylinders, vertical cones,
spheres, inclined disks, and sphere-like surfaces. Con-
stants in (4) are listed in Table 1.

In what follows, we present the explicit solution for
ke depending on the equation type. By going from sim-
ple to complex, we not only cover a broad range of cor-
relations, but also provide sufficient examples to
illustrate the attendant methodology. Such methodology
could later be used to derive ke in those physical settings
that are not covered here.
4. Exact ke for free convection

For a correlation of the type NuL ¼ CRamL, an exact
solution ke is available directly from

ke ¼ GrLlCp½UL=ðCGrLlCpÞ�1=ð1�mÞ ð5Þ

However, when NuL ¼ a0 þ a1RamL, a solution must be
obtained by solving for the meaningful root of

a0ke þ a1ðGrLlCpÞmk1�m
e � UL ¼ 0 ð6Þ

Two special cases arise depending on whether the flow
under consideration is laminar (m = 1/3) or turbulent
(m = 1/4). For laminar flow, (6) yields the cubic
polynomial

k3e þ ða1=a0Þ3GrLlCpk
2
e � ðUL=a0Þ3 ¼ 0 ð7Þ

In this instance, the physical root ke may be determined
using Cardano�s method [43]. Two possibilities
emerge depending on the sign of Cardano�s discrimi-
nant, D = (UL/a0)

6 � [(a1/a0)
3GrLlCp]

3(UL/a0)
3. When

D < 0, a trigonometric root emerges. This is

ke ¼ 1
3
b0ð2 cos h� 1Þ

h � 1
3
cos�1 27

2
b1b

�3
0 � 1

� �
b0 � ða1=a0Þ3GrLlCp; b1 � ðUL=a0Þ3

ð8Þ

In the less probable case of D P 0, an ordinary root is
precipitated. One gets

ke ¼ 1
6
b2 þ 2

3
b20b

�1
2 � 1

3
b0

b2 � 108b1 � 8b30 þ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81b21 � 12b30b1

q� �1=3 ð9Þ

The trigonometric root may be safely used in most chip
cooling applications where the characteristic length L is
on the order of 1 cm or larger. Eq. (9) should be de-
faulted to under the rare circumstances in which (8) fails.

For turbulent flows, (6) yields a fourth-order poly-
nomial. The meaningful root can be written as

ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2ð1þ c1Þ�1=2 � c1

q
� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c1

p� �
c�1
0 ð10Þ

where

c0 � ða1=a0Þ4GrLlCp

c1 � 2ð2
3
c2c3Þ1=3½ð23 Þ

1=3 � 8c1=32 c�2=3
3 �c�2

0

c2 � ðUL=a0Þ4

c3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81c40 þ 768c2

p
� 9c20

8>>>><
>>>>:

ð11Þ
5. Approximate ke for laminar free convection

The difficulty arises when considering the familiar
expression [40]



Table 1
Effective thermal conductivity of common geometric shapes under free convection

Description Free convection correlation Effective thermal conductivity

1

L

W

vertical plate 

NuL ¼ 0.68þ 0.67Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9
laminar, Churchill and Chu [40]

ke ! Eq. (31), 100 6 RaL 6 109

ðm; n; pÞ ¼ ð14 ; 9
16 ;

4
9Þ, ai = (0.68, 0.67, 0.492)

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)

2 NuL ¼ 0.825þ 0.387Ra1=6L

ð1þ 0.671Pr�9=16Þ8=27

" #2

laminar or turbulent,
Churchill and Chu [40]

ke ! Eq. (46), 100 6 RaL 6 1013

ai = (0.825, 0.387, 0.492)

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0463, 1.0304)

3
NuL ¼ 0.59Ra1=4L
laminar, McAdams [48]

ke ¼ 2.03
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðULÞ4=ðGrLlCpÞ3

q
, 104 6 RaL 6 109

4
NuL ¼ 0.1Ra1=3L

turbulent, Warner and Arpaci [49],

ke ¼ 31.62
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðULÞ3=ðGrLlCpÞ

q
, 109 6 RaL 6 1013

5
NuL ¼ 0.021Ra2=5L

turbulent, Eckert and Jackson [50]

ke ¼ 1.6� 10�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðULÞ5=ðGrLlCpÞ2

q
,

109 6 RaL 6 1013

6 ∞

L

horizontal plate 
A

L
P

=

NuL ¼ 0.27Ra1=4L , hot side down
ke ¼ 62.9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðULÞ4=ðGrLlCpÞ3

q
, 105 < RaL < 1011

Lloyd and Moran [51]

7 NuL ¼ 0.54Ra1=4L , hot side up
ke ¼ 2.274

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðULÞ4=ðGrLlCpÞ3

q
, 104 6 RaL 6 107

laminar, Lloyd and Moran [51]

8 NuL ¼ 0.15Ra1=3L , hot side up
ke ¼ 0.0581

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðULÞ3=ðGrLlCpÞ

q
, 107 6 RaL 6 1010

turbulent, Lloyd and Moran [51]

9

θ

L

W

inclined pate with heated 
surface facing downward 

NuL ¼ 0.56ðRaL cos hÞ1=4 ke ¼ 2.166
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðULÞ4=ðGrLlCp cos hÞ3

q
;

Tf ! Te = Ts � 0.25(Ts � T1)

105 6 RaL cos h 6 1011, 0� 6 h 6 89�
b = 1/Tb, Tb = T1 + 0.50(Ts � T1)
laminar, Fujii and Imura [52]

10
NuL ¼ 0.825þ 0.387Ra1=6L

ð1þ 0.671Pr�9=16Þ8=27

" #2
ke ! Eq. (46), "RaL, g ! g cos h, h 6 60�

laminar or turbulent, Churchill [53] ai = (0.825, 0.387, 0.492)
si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0463, 1.0304)

11

θ

L

W

inclined plate with heated 
surface facing upward 

NuL ¼ 0.17ðGr�LPrÞ
1=4 ke ¼ ½0.17ðgblCpUL4 cos h=m2Þ1=4�=ðULÞ

n o2
,

1010 < Gr�LPr < 1015Gr�L ¼ gbUL4 cos h=ðkm2Þ
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Table 1 (continued)

Description Free convection correlation Effective thermal conductivity

12

D

L

vertical cylinder 

NuL ¼ 0.68þ 0.67Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9
ke ! Eq. (31), 100 6 RaL 6 109,
D=L P 35=Gr1=4L

laminar, Churchill and Chu [40]
ai = (0.68, 0.67, 0.492), ðm; n; pÞ ¼ ð14 ; 9

16 ;� 4
9Þ

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)

13 NuL ¼ 3.444þ 0.645Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9
ke ! Eq. (31), 0 6 RaL 6 108, L ¼ A1=2

w

laminar, Yovanovich [54]
ai = (3.444, 0.645, 0.492), ðm; n; pÞ ¼ ð14 ; 9

16 ;� 4
9Þ

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)

14 NuL ¼ 0.825þ 0.387Ra1=6L

ð1þ 0.671Pr�9=16Þ8=27

" #2

ke ! Eq. (46), "RaL, D=L P 35=Gr1=4L

laminar or turbulent, Churchill [53]
ai = (0.825, 0.387, 0.492)

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0463, 1.0304)

15 NuL ¼ 0.53Ra1=4L ke ¼ 2.02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðULÞ4=ðGrLlCpÞ3

q
, 104 6 RaL 6 109

laminar, McAdams [48]

16 NuL ¼ 0.1Ra1=3L ke ¼ 31.62
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðULÞ3=ðGrLlCpÞ

q
, 109 6 RaL 6 1013,

turbulent, Warner and Arpaci [49] D=L P 35=Gr1=4L

17

∞

D

horizontal cylinder 

NuL ¼ 3.444þ 0.683Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9
ke ! Eq. (31), 100 6 RaL 6 109, L ¼ 1

2Dp
1=2

laminar, Yovanovich [54]

ai = (3.444, 0.683, 0.492), ðm; n; pÞ ¼ ð14 ; 9
16 ;� 4

9Þ

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)

18 NuD ¼ 0.36þ 0.518Ra1=4D

ð1þ 0.721Pr�9=16Þ4=9
ke ! Eq. (37), 10�6 < RaD < 109, L = D

laminar, Churchill and Chu [55]
ai = (0.36, 0.518, 0.559), ðm; n; pÞ ¼ ð14 ; 9

16 ;� 4
9Þ

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)

19 NuD ¼ 0.60þ 0.387Ra1=6D

ð1þ 0.721Pr�9=16Þ8=27

" #2

ke ! Eq. (46), RaD P 109, L = D

turbulent, Churchill and Chu [55]
ai = (0.60, 0.387, 0.559)

si = (2 · 10�6, �0.0001, 0.0042, �0.087, 1.0298)

20 NuD ¼ 0.675Ra0.058D , 10�10
6 RaD 6 10�2 ke = {UL/[0.675(GrLlCp)

0.058]}1.062

NuD ¼ 1.02Ra0.148D , 10�2 < RaD 6 102 ke = {UL/[1.02(GrLlCp)
0.148]}1.174

NuD ¼ 0.85Ra0.188D , 102 < RaD 6 104 ke = {UL/[0.85(GrLlCp)
0.188]}1.234

NuD ¼ 0.48Ra0.25D , 104 < RaD 6 107 ke = {UL/[0.48(GrLlCp)
1/4]}4/3

NuD ¼ 0.125Ra1=3D , 107 < RaD 6 1012 ke = {UL/[0.125(GrLlCp)
1/3]}3/2

Morgan [56]

21

D

L

θ

inclined cylinder 

NuL ¼ ½2.9� 2.32ðsin hÞ0.8�
�Gr�1=12

D ðGrLPrÞ0.1 sin hþ0.25
ke =

h
ULB�1(GrLlCp)

�1/4�0.1 sin h
i
1.75�0.1 sin h

ðGrLPrÞcr ¼ 2.6� 109 þ 1.1� 109 tan h
B ¼ 2.9� 2.32ðsin hÞ0.8Gr�1=12

laminar, Al-Arabi [57]
9.88 · 107 6 GrLPr 6 (GrLPr)cr
1.08 · 104 6 GrDPr 6 6.9 · 105

22 NuL ¼ ½0.47� 0.11ðsin hÞ0.8�
�Gr�1=12

D ðGrLPrÞ1=3
ke ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðULÞ3Gr�3=4

L

�
0.47� 0.11ðsin hÞ0.8
h i

lCp

n os

ðGrLPrÞcr ¼ 2.6� 109 þ 1.1� 109 tan h (GrLPr)cr 6 GrLPr 6 2.95 · 1010

turbulent, Al-Arabi [57] 1.08 · 104 6 GrDPr 6 6.9 · 105

23 NuL ¼ 3.444þ 0.673Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9
ke ! Eq. (31), 100 6 RaL 6 109, L ¼ A1=2

w

h = 45�, laminar, Yovanovich [54]
ai = (3.444, 0.673, 0.492), ðm; n; pÞ ¼ ð14 ; 9

16 ;� 4
9Þ

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)

(continued on next page)
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Table 1 (continued)

Description Free convection correlation Effective thermal conductivity

24

θ H

vertical cone 

NuL ¼ 0.63ð1þ 0.72eÞGr1=4L

e ¼ 2 cotðh=LÞGr�1=4
L , 0.2 6 e 6 0.8

ke ¼ 1.6ULGr�1=4
L =ð1þ 0.72eÞ

laminar or turbulent,
Oosthuizen and Donaldson [58]

3 · 107 6 GrL 6 5 · 108, 3� 6 h 6 12�

25 NuL ¼ 0.735þ 0.387Ra1=6L

ð1þ 0.671Pr�9=16Þ8=27

" #2
ke ! Eq. (46), "RaL, L ¼ 4

5H

laminar or turbulent, Churchill [53]

ai = (0.735, 0.387, 0.492)

si = (4 · 10�7, �4 · 10�5, 0.0018, �0.0576, 1.0283)

26

D

sphere

NuD ¼ 2þ 0.43Ra1=4D ke ! Eq. (53), "RaL, L ¼ 4
5H

laminar or turbulent, Yuge [46] 1 < GrD < 105, Pr � 1

27 NuD ¼ 2þ 0.589Ra1=4D

ð1þ 0.653Pr�9=16Þ4=9
ke = Eq. (31), RaD 6 1011, Pr > 0.5, L = D

laminar or turbulent, Churchill [53]

ai = (2, 0.589, 0.469), ðm; n; pÞ ¼ ð14 ; 9
16 ;� 4

9Þ

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)

28 NuL ¼ 1.77þ 0.387Ra1=6L

ð1þ 0.671Pr�9=16Þ8=27

" #2
ke ! Eq. (46), "RaL, L ¼ 1

2 pD

laminar or turbulent, Churchill [53]

ai = (1.77, 0.387, 0.492)

si = (4 · 10�10, �3 · 10�7, 6 · 10�5, �0.0103, 1.0336)

29 NuL ¼ 3.545þ 0.685Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9

ke ! Eq. (31), 0 < RaL < 108, L ¼ ðp3 Þ
1=2D

laminar, Yovanovich [54]

ai ¼ ð3.545; 0.685; 0.492Þ; ðm; n; pÞ ¼ ð14 ; 9
16 ;� 4

9Þ

si ¼ ð2� 10�7;�2� 10�5; 0.0012;�0.0465; 1.0311Þ

30

D

bi-sphere

NuL ¼ 3.475þ 0.622Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9
ke ! Eq. (31), 0 < RaL < 108, L ¼ ð2p3 Þ

1=2D

laminar, Yovanovich [54]

ai = (3.475, 0.622, 0.492), ðm; n; pÞ ¼ ð14 ; 9
16 ;� 4

9Þ

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)

31

B

C

oblate spheroid 

NuL ¼ 3.529þ 0.651Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9
C=B ¼ 0.5

ke ! Eq. (31), 0 < RaL < 108, L ¼ A1=2
w

laminar, Yovanovich [54]

ai ¼ ð3.529; 0.651; 0.492Þ; ðm; n; pÞ ¼ ð14 ; 9
16 ;� 4

9Þ

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)

32 NuL ¼ 3.342þ 0.515Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9
C=B ¼ 0.1

ke ! Eq. (31), 0 < RaL < 108, L ¼ A1=2
w

laminar, Yovanovich [54]

ai = (3.342, 0.515, 0.492), ðm; n; pÞ ¼ ð14 ; 9
16 ;� 4

9Þ

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)
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Table 1 (continued)

Description Free convection correlation Effective thermal conductivity

33

C

B

prolate spheroid 

NuL ¼ 3.566þ 0.678Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9C=B ¼ 1.93,

ke ! Eq. (31), 0 < RaL < 108, L ¼ A1=2
w

laminar, Yovanovich [54]

ai = (3.566, 0.678, 0.492), ðm; n; pÞ ¼ ð14 ; 9
16 ;� 4

9Þ

si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)

34 Sphere-like surface with area
AS and volume # NuL ¼ 3p#

AS
þ 0.387Ra1=6L

ð1þ 0.671Pr�9=16Þ8=27

" #2
ke ! Eq. (31), "RaL, L ¼ A3=2

S =ð6#Þ

laminar or turbulent, Churchill [53]

ai = (3p#/AS, 0.387, 0.492)

si = (4 · 10�10, �3 · 10�7,6 · 10�5, �0.0103, 1.0336)

35

θ
D

inclined disk 

NuL ¼ 0.748þ 0.387Ra1=6L

ð1þ 0.671Pr�9=16Þ8=27

" #2
ke ! Eq. (46), "RaL, L ¼ 9

11D

laminar or turbulent, Churchill [53]

ai = (0.748, 0.387, 0.492)

si = (3 · 10�7, �3 · 10�5, 0.0017, �0.0553, 1.027)

36

cube (H3) with base in plane 

NuL ¼ 3.388þ 0.637Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9
ke ! Eq. (31), 0 < RaL < 108, L ¼

ffiffiffi
6

p
H

laminar, Yovanovich [54]

ai = (3.388, 0.637, 0.492), ðm; n; pÞ ¼ ð14 ; 9
16 ;� 4

9Þ
si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)

37

cube oriented 45˚ to base plane 

NuL ¼ 3.388þ 0.663Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9
ke ! Eq. (31), 0 < RaL < 108, L ¼

ffiffiffi
6

p
H

laminar, Yovanovich [54]

ai = (3.388, 0.663, 0.492), ðm; n; pÞ ¼ ð14 ; 9
16 ;� 4

9Þ
si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)

38

cube oriented with diagonal ⊥
to base plane 

NuL ¼ 3.388þ 0.679Ra1=4L

ð1þ 0.671Pr�9=16Þ4=9
ke ! Eq. (31), 0 < RaL < 108, L ¼

ffiffiffi
6

p
H

laminar, Yovanovich [54]

ai = (3.388, 0.679, 0.492), ðm; n; pÞ ¼ ð14 ; 9
16 ;� 4

9Þ
si = (2 · 10�7, �2 · 10�5, 0.0012, �0.0465, 1.0311)
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Fig. 1. Relative size of leading terms arising in the expansion of
the universal Nusselt number correlation for free convection
laminar flow over (a) vertical plates, (b) cylinders, and (c)
spheres. Note that while Term 1 dominates for small U, both
Terms 1 and 2 are simultaneously needed to evaluate the
leading-order term of the large-U approximation.
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NuL ¼ UL=ke ¼ a0 þ a1RamL ½1þ ða2=PrÞn�p ð12Þ

which can be obtained by setting p = mr in (3). This rela-
tion applies to a number of important shapes whose
characteristic constants are furnished in Table 1. In
short, the difficulty stems from ke being simultaneously
present in the Nusselt, Rayleigh, and Prandtl numbers.
This can be seen by rearranging (12) into

UL=ke ¼ a0 þ a1 A0=keð Þm 1þ ½a2ke=ðlCpÞ�n
	 
p

A0 � lCpGrL
ð13Þ

The power-law embedment of ke in the universal Prandtl
number function eliminates the possibility of obtaining
an exact expression for ke. An asymptotic approxima-
tion of the form ke � k0 + k1 will have to be settled
for. To proceed, the Prandtl number function has to
be expanded first. Letting j = a2/lCp, it follows that
two cases must be considered separately depending on
the size of U, and therefore, ke.

5.1. Type I: Laminar regime, small U case

For small jke, one can expand F(Pr) straightfor-
wardly viz.

½1þ ðjkeÞn�p ¼ 1þ pðjkeÞn þ
p p � 1ð Þ

2!
ðjkeÞ2n

þ p p � 1ð Þ p � 2ð Þ
3!

ðjkeÞ3n

þ p p � 1ð Þ p � 2ð Þ p � 3ð Þ
4!

ðjkeÞ4n

þ 	 	 	 ð14Þ

By substituting (14) into (13), one then gathers the
multi-order polynomial

UL ¼ a0ke
1

þB0k
1�m
e
2

þC0k
1�mþn
e
ð�Þ

þD0k
1�mþ2n
e
3

þ E0k
1�mþ3n
e
ð�Þ

þ F 0k
1�mþ4n
e
4

ð15Þ

where

B0 � a1A
m
0

C0 � pB0j
n

D0 �
p p � 1ð Þ

2!
B0j

2n

E0 �
p p � 1ð Þ p � 2ð Þ

3!
B0j

3n

F 0 �
p p � 1ð Þ p � 2ð Þ p � 3ð Þ

4!
B0j

4n

ð16Þ

It should be noted that, in our search for the most influ-
ential term in (15), quantities that are negative have been
discounted as they lead to unphysical thermal conduc-
tivities. By considering each of the four enumerated
terms as leading-order candidates, the zeroth-order
expression for ke is narrowed down to
ke ¼ UL=a0; ðUL=B0Þ1=ð1�mÞ
; ðUL=D0Þ1=ð1�mþ2nÞ

n
;

ðUL=F 0Þ1=ð1�mþ4nÞ
o

ð17Þ

These terms are plotted in Fig. 1 alongside the numerical
solution. This is carried out for three different geometric
shapes to ensure portability. From the plot, it is clear
that Term 2 has the most influence since it closely
approximates the numerical solution. The parameters
used in this comparison correspond to a commercial
heat sink modeled by Narasimhan and Majdalani [28].
It is characterized by L = 0.0762 m, Ab = 0.00314 m2,
q = 1.1 kg m�3, l = 1.95 · 10�5 kg m s�1, Cp = 1007
J kg�1 K�1, and Tb = 293.15 K. By trying other cases,
the dominant position of Term 2 is found to be rather
independent of this particular choice. Having identified
k0 = (UL/B0)

1/(1�m), the next step is to put

kIe ¼ ðUL=B0Þ1=ð1�mÞ þ k1 ð18Þ

where the superscript is used to denote a type-I solution.
To solve for the first-order correction k1, the notion of
successive approximations is used. Accordingly, (18)
is substituted back into Term 2 of (15) while only the
leading-order part k0 is used in the remaining terms.
This permits extracting k1 from

k1 ¼ �½ULð1� mÞ��1ða0k20 þ C0k
2�mþn
0

þ D0k
2�mþ2n
0 þ E0k

2�mþ3n
0 þ F 0k

2�mþ4n
0 Þ. ð19Þ
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Eq. (18) is valid for all L and B0 as long as 0 < kIe 6 kk,
where kk is a cut-off value that varies on average between
0.01 and 0.13 W m�1 K�1. This physical limitation is
due to the divergence of the Taylor series at larger values
of U.

5.2. Type II: Laminar regime, large U case

Recalling that the effective thermal conductivity of
the artificial block of fluid is commensurate with the
overall heat transfer coefficient of the actual heat sink,
the series expansion in (14) can become divergent as U
is increased. When jke is no longer small, one needs to
re-expand (14) in the reciprocal of jke. One obtains

ðjkeÞnp½1þ 1=ðjkeÞn�p

¼ ðjkeÞnp
�
1þ pðjkeÞ�n þ p p � 1ð Þ

2!
ðjkeÞ�2n

þ p p � 1ð Þ p � 2ð Þ
3!

ðjkeÞ�3n þ 	 	 	
�

ð20Þ

When (20) is substituted back into (13), several terms are
precipitated. Some are so small that they can be ignored.
The remaining terms are found to be

UL ¼ a0ke
1

þB1k
1þnp�m
e
2

þC1k
1�nþnp�m
e
ð�Þ

þ D1k
1�2nþnp�m
e

3

þE1k
1�3nþnp�m
e
ð�Þ

ð21Þ

where

B1 � B0j
np

C1 � B0pjnp�n

D1 �
p p � 1ð Þ

2!
B0j

np�2n

E1 �
p p � 1ð Þ p � 2ð Þ

3!
B0j

np�3n

ð22Þ

By dismissing negative terms that cannot possibly dom-
inate the solution, three terms are identified in (21) as
possible leading-order candidates. These are

ke ¼ fUL=a0; ðUL=B1Þ1=ð1þnp�mÞ
; ðUL=D1Þ1=ð1�2nþnp�mÞg

ð23Þ
By comparing these approximations to the exact solu-
tion in Fig. 1, one realizes that no single term dominates
by itself. Rather, one finds that the leading-order behav-
ior is prescribed by the balance of Terms 1 and 2.
Assuming a type-II expansion, kIIe � K0 þ K1, the solu-
tion must be produced from

�ULþ a0K0 þ B1K
1þnp�m
0 ¼ 0 ð24Þ

Fortunately, all cases presented in this paper are charac-
terized by a single exponent, 1 + np � m = 1/2. This
simplifying power leads to a quadratic equation. The
ensuing two-term expansion for kIIe becomes
kIIe ¼ ULþ 1

2
B1 B1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 þ 4a0UL

q� ��
a0

� ��
a0 þ K1

ð25Þ

Using successive approximations, (25) is now substituted
into Terms 1 and 2 of (21). However, only K0 is substi-
tuted in all other occurrences of kIIe . Once completed, K1

is found to be

K1 ¼ 16k0ðE1 þ D1K
9=16
0 þ C1K

9=8
0 Þ=ð19E1 þ 10D1K

9=16
0

þ C1K
9=8
0 � 8B1K

27=16
0 � 16a0K

35=16
0 Þ ð26Þ

For the general case of an arbitrary exponent in (24), the
correction K1 takes the form

K1 ¼K0ðE1K
2þ2np�2m�3n
0 þD1K

2þ2np�2m�4n
0 þC1K

2þ2np�2m�5n
0

þB1K
4þ4np�4m�6n
0 Þ=½E1 1þnp�m�3nð ÞK2þ2np�2m�3n

0

þD1 1þnp�m�2nð ÞK2þ2np�2m�4n
0

þB1C1ð1�nþnp�mÞK2þ2np�2m�5n
0

�a0K
5þ4np�4m�6n
0 �B1K

4þ4np�4m�6n
0 � ð27Þ

Eq. (25) is valid for all L and B1 as long as kIIe > kk. The
range of applicability is limited by the divergence of the
Taylor series expansion involved in the solution.

5.3. Cut-off value kk

The cut-off value that delimits the small and large ke
solutions can be determined by carefully examining the
convergence criteria for the two cases at hand. Based
on (14), the requirement for the type-I expansion can
be seen to be jp(jke)nj < 1. The small series expansion
will thus diverge whenever

ke < kþe ; kþe � j p�1=nj�1j ð28Þ

Similarly, the large series expansion of (20) diverges for
jp(jke)�nj < 1 or ke > k�e ; k

�
e � jp1=nj�1j. The presence of

two asymptotic bounds motivates the search for a cut-off
kk 2 ½k�e ; kþe � that can be taken as the simultaneous upper
and lower caps for the type-I and type-II approxima-
tions. By setting

kk ¼ xk�e þ ð1� xÞkþe ; x 2 ½0; 1� ð29Þ

x is then chosen in a manner to minimize the maximum
asymptotic error in both kIe and kIIe . After some effort,
the optimal value is computed and correlated using a
polynomial of the form

x ¼ s0 þ s1�k þ s2�k
2 þ s3�k

3 þ s4�k
4

�k ¼ 2UL=ðk�e þ kþe Þ
ð30Þ

where the si = (s0, s1, s2, s3) coefficients are provided in
Table 1. These constants are determined using a para-
metric study involving 2000 runs per geometric shape
and a correlation coefficient exceeding 0.998. Using
(30), the maximum asymptotic error at the delineation
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Fig. 2. Numerical verification of the analytical solutions
obtained for three geometric shapes and typical operating
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point where both approximations are optimally patched
is contained within 2% if ke is at least 5% away from kk.
In practice, once the cut-off kk is calculated for a given
heat sink application, one may safely use the appropri-
ate correlation depending on the actual operating range:

ke ¼
kIe; 0 < ke 6 kk
kIIe ; ke > kk

(
ðlaminar regimeÞ ð31Þ

where both approximations are equivalent at the cut-off
point. The degree of precision associated with Eqs. (18)
and (25) is illustrated in Fig. 2 where analytical and
numerical predictions for ke are compared over a wide
range of U and three fundamental configuration shapes.
6. Approximate ke for laminar and turbulent free

convection

For a broader correlation that remains applicable
under turbulent conditions, Churchill and Chu [40] have
introduced an expression for flow over a flat plate that
has also been adopted in diverse physical settings. Theirs
can be generically written as

NuL ¼ UL=ke ¼ fa0 þ a1Ram=2½1þ ða2=PrÞn�p=2g2 ð32Þ

Clearly, (32) can be restored from (4) when q = 2. To
make headway, one uses a quadratic expansion to
expose individual exponents via

UL=ke ¼ a20 þ 2a0a1Ram=2½1þ ða2=PrÞn�p=2

þ fa1Ram=2½1þ ða2=PrÞn�p=2g2 ð33Þ

Subsequently, one may set A2 � (gbDTL3q2Cp/l)
m/2 and

rearrange (33) into

UL ¼ a20ke þ 2a0a1k
1�m=2
e A2f1þ ½a2ke=ðlCpÞ�ngp=2

þ a21k
1�m
e A2

2f1þ ½a2ke=ðlCpÞ�ngp ð34Þ

From (34) a solution for ke must be carefully obtained
based on the size of U. As usual, two asymptotic approx-
imations can be constructed for small and large U.
6.1. Type I: Dual regime, small U case

To ensure convergence to the desired solution
ke � k0 + k1, we first put w = [a2ke/(lCp)]

n into (34).
This yields

UL ¼ a20ke þ 2a0a1A2k
1�m=2
e T 1 þ a21A

2
2k

1�m
e T 2 ð35Þ

where

T 1 ¼ 1� 1
2
pwþ 1

8
pðp � 2Þw2 þ 	 	 	

T 2 ¼ 1� pwþ 1
2
pðp � 1Þw2 þ 	 	 	

ð36Þ

At this point the powers of ke can be exposed by insert-
ing (36) into (35). One gets

UL ¼a20ke þ 2a0a1A2 k1�m=2
e � 1

2
puk1�m=2þn

e

�
þ1

8
pðp � 2Þu2k1�m=2þ2n

e

�
þ a21A

2
2 k1�m

e � puk1�mþn
e

�
þ1

2
pðp � 1Þu2k1�mþ2n

e

�
u � a2=lCp

� �n ð37Þ

For the specific constants (m, n, p) listed in Table 1, the
leading-order term for this solution can be obtained fol-
lowing Brucker and Majdalani [44]. The result is
k0 ¼ a�2=ð1�mÞ

1 A�2=ð1�mÞ
2 ðULÞ1=ð1�mÞ. For m = 1/3, this

yields k0 ¼ a�3
1 A�3

2 ðULÞ3=2. The final solution can be
obtained from

kIe ¼ a�3
1 A�3

2 ðULÞ3=2 þ k1 þ kn ð38Þ

k1 ¼ �3
2
a20k

2
0 þ 2a0a1A2 k11=60 � 8

27
uk115=480 þ 140

729
u2k71=240

 �h
þa21A

2u 344
729
uk67=240 � 16

27
k107=480

 �i.
ðULÞ ð39Þ

The higher-order corrections at n = 2, 3, . . . can be
recovered from the recurrence relation

kn ¼ �3
2
k0kn�1 a20 þ a0a1A2

5
3
k�1=6
0 � 67

81
uk19=480

h
þ1645

2187
u2k23=240

�
þa21A

2
2u

1849
2187

uk19=240 �59
81
k11=480

 �i.
ðULÞ

ð40Þ

In [44], a two-term approximation for (38) was found
to be sufficiently adequate for problems of practical
interest. This was realized by comparing results from
the compact model with experimental and detailed
numerical simulations. Here too, (38) is valid for all L
and A2 so long as 0 < kIe 6 kk.

6.2. Type II: Dual regime, large U case

In this case, F must be expanded in the reciprocal of
(jke). This turns (34) into

UL ¼ a20ke þ 2a0a1A2u�p=2k1�m=2þnp=2
e

þ a21A
2
2u

pk1�mþnp
e � pa21A

2
2u

�p�1k1�m�np�n
e ð41Þ
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As usual, negligible terms are phased out. In seeking the
leading-order solution, we include all except for the last
term in (41). The problem becomes that of solving

� c1 þ c2k
1�m=2þnp=2
e þ c3k

1�mþnp
e þ c4ke ¼ 0

c1 � UL; c2 � a21A
2
2u

p; c3 � 2a0a1A2up=2; c4 � a20
ð42Þ

In the specific cases listed in Table 1, (42) leads to a
cubic, namely �c1 þ c2k

1=3
e þ c3k

2=3
e þ c4ke ¼ 0. Using

kIIe � K0 þ K1 as before, the root can be exacted from

K0 ¼ ðc1 � c3p21 � c2p2Þ=c4 ð43Þ

where

p0 �ð36c2c3c4þ108c1c24�8c33þp2Þ
1=3

p1 � 1
6
p0=c4� 2

3
ð3c2c4�c23Þ=ðc4p0Þ� 1

3
ðc3=c4Þ

p2 � 12
ffiffiffi
3

p
c4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27c21c4�c22c

2
3�4c1c33þ4c32c4þ18c1c2c3c4

p
8><
>:

ð44Þ

In order to account for the small correction associated
with the fourth term in (41), one can substitute the result
back into the expanded Churchill and Chu correlation
and solve for the linear correction term,

K1 ¼ �16
9
a21A

2
2K

�11=48
0 u�43=27=ð3a20 þ 4a0a1A2K

�1=3
0 u�8=27

þ a21A
2
2K

�2=3
0 u�16=27Þ ð45Þ

Eqs. (43) and (45) are valid for all L and ci so long as
kIIe > kk.

6.3. Cut-off value kk

The cut-off value in the dual regime can be obtained
following the lines described above. The difference is
that the current solution depends on two Taylor series
for each approximation, as opposed to only one. This
can be seen by realizing that both expansions in (36) will
diverge for small U unless j 1

2
pukne j < 1 and jpukne j < 1.

Both criteria are fulfilled when ke < kþe ; k
þ
e � jðpuÞ�1=nj.

Here, the large U expansion diverges unless
j 1
2
pu�1k�n

e j < 1 and jpu�1k�n
e j < 1, thus giving ke > k�e ;

k�e � jðp=uÞ1=nj. Once again, the procedure summarized
in Eqs. (29) and (30) can be used to determine the opti-
mal kk. After 2000 runs per geometric shape, the coeffi-
cients of the best fit polynomial are determined with a
correlation coefficient exceeding 0.998. In comparison
to the numerical solution, the asymptotic result based
on patching both solutions at kk deviates by no more
than 2% provided that one is at least 5% away from
the delineation point. The final solution is expressible
by the piecewise form given by (31),

ke ¼
kIe; 0 < ke 6 kk
kIIe ; ke > kk

(

dual regime; laminar and turbulentÞð ð46Þ
7. General forced convection

Numerous empirical correlations are available for
predicting forced convection heat transfer from bodies
of various shapes. Generally, these correlations can be
abbreviated by using generic forms that depend on the
flow regime. In particular, one may write

NuL ¼
ClRemLPr

n; laminar

CtRe
p
LPr

q; turbulent

�
for which

Nux ¼
mClRemx Pr

n; laminar

pCtRe
p
xPr

q; turbulent

� ð47Þ

Based on these two relations for average and local Nus-
selt numbers, one can integrate for the combined lami-
nar and turbulent flow correlation if the critical
Reynolds number Recr is known for the case at hand.
One finds

NuL ¼ ½CtRe
p
L � ðCtRep�m

cr � ClÞRemcr�Prq; n ¼ q ð48Þ

For flow over an isothermal plate, one may use
Cl = 0.664, Ct = 0.037, m = 1/2, p = 4/5, n = q = 1/3,
and Recr = 5 · 105 to verify that NuL ¼ ð0.037Re4=5L �
871.3ÞPr1=3 [1]. When the base plate is subject to a suffi-
ciently uniform heat flux, only leading coefficients in (47)
need to be modified. By setting Cl = 0.906 and
Ct = 0.0385, the corresponding correlation becomes
NuL ¼ ð0.0385Re4=5L � 754.6ÞPr1=3. It should be noted
that in most compact models, an isothermal surface tem-
perature is assumed even in the presence of a uniform
heat flux. This is justified by virtue of the small surface
area and large conductivity of the base plate.

Ordinarily, regardless of the correlation used for
forced convection, determination of the effective thermal
conductivity is straightforward. This can be accom-
plished by setting NuL = UL/ke in (47) and (48) and
solving for ke. The result is

ke ¼

RemLlCp½UL=ðClRemLlCpÞ�1=ð1�nÞ
; laminar

RepLlCp½UL=ðCtRe
p
LlCpÞ�1=ð1�qÞ

; turbulent

UL=½CtRe
p
L � ðCtRep�m

cr

	
�ClÞRemcrðlCpÞq�


1=ð1�qÞ
; n ¼ q; combined

8>>>>>><
>>>>>>:

ð49Þ

Eq. (49) is instrumental in determining ke for several
shapes used in forced convection studies. These are sum-
marized in Table 2 and include empirical constants due
to Jacob [45]. The latter pertain to planar cross-sections
whose correlations collapse into the simple expression

NuL ¼ CRemLPr
1=3

for which

ke ¼ fUL=½CRemLðlCpÞ1=3�g3=2
ð50Þ



Table 2
Effective thermal conductivity of common geometric shapes under forced convection

Description Forced convection correlation Effective thermal conductivity

1

L

along flat plate (isothermal) 

NuL ¼ 0.664Re1=2L Pr1=3 ke ¼ fUL=½0.664Re1=2L ðlCpÞ1=3�g
3=2

laminar [59] ReL 6 5 · 105, Pr P 0.6
2 NuL ¼ 0.037ðRe4=5L � 871ÞPr1=3 ke ¼ fUL=½0.037ðRe4=5L � 871ÞðlCpÞ1=3�g3=2

laminar or turbulent [59] 5 · 105 6 ReL 6 108, 0.6 6 Pr 6 60

3 NuL ¼ 0.906Re1=2L Pr1=3 ( _Q ¼ const) ke ¼ fUL=½0.906Re1=2L ðlCpÞ1=3�g
3=2

laminar [1] ReL 6 5 · 105, Pr P 0.6

4 NuL ¼ ð0.0385Re4=5L � 755ÞPr1=3 ( _Q ¼ const) ke ¼ fUL=½0.0385ðRe4=5L : �755ÞðlCpÞ1=3�g3=2

laminar or turbulent [1] 5 · 105 6 ReL 6 108, 0.6 6 Pr 6 60

5
L

across vertical flat plate 

NuL ¼ 0.2Re2=3L ke ¼ 5ULRe�2=3
L

laminar or turbulent, Sogin [60] 1 6 ReL 6 4 · 105, Pr = 0.7

6
L

across square plate 

NuL ¼ 0.93Re1=2L Pr1=3 ke ¼ fUL=½0.93Re1=2L ðlCpÞ1=3�g3=2
laminar or turbulent,
Tien and Sparrow [61]

2 · 104 6 ReL 6 105, air

7
D

across sphere 

NuD ¼ 2þ ð0.4Re1=2D þ 0.06Re2=3D ÞPr0.4ðl=lsÞ1=4 ke ! Eq. (53)
laminar or turbulent, Whitaker [47] 3.5 6 ReD 6 7.6 · 104, 0.7 6 Pr 6 380

8
D

across disk 

NuD ¼ 1.05Re1=2D Pr0.36 ke ¼ fUD=½1.05Re1=2D ðlCpÞ�g1.563
turbulent, Sparrow and Geiger [62] 5 · 103 6 ReD 6 5 · 104, 0.7 6 Pr 6 380

9

D

along disk 

NuD ¼ 0.591Re0.564D Pr1=3 ke ¼ fUD=½0.59Re0.564D ðlCpÞ�g3=2
laminar or turbulent, Wedekind [63] 9 · 102 6 ReD 6 3 · 104, 0.7 6 Pr 6 380
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Geometry [45] C n Range

10

D
0.989 0.330 0.4 < ReD < 4

11 0.911 0.385 4 < ReD < 40
12 0.683 0.466 40 < ReD < 4 · 104

13 0.193 0.618 4 · 104 < ReD < 4 · 105

14 0.0266 0.805 4 · 105 < ReD < 4 · 106

15 D 0.104 0.675 5 · 104 < ReD < 1 · 106

16 0.180 0.699 2.5 · 104 < ReD < 8 · 104

17 D 0.251 0.588 5 · 104 < ReD < 1 · 106

18 0.293 0.624 2.5 · 104 < ReD < 7.5 · 104

19 D 0.252 0.612 2.5 · 104 < ReD < 1.5 · 105

20 D 0.096 0.804 3 · 104 < ReD < 1.5 · 105

21 D 0.232 0.731 4 · 104 < ReD < 1.5 · 105

22 D 0.156 0.638 5 · 104 < ReD < 1 · 106

23 D 0.163 0.638 5 · 104 < ReD < 1 · 106

24 0.039 0.782 1.95 · 105 < ReD < 1 · 106
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It may be instructive to note that, for flow over a flat
plate, the special equation used in a recent study by
Narasimhan and Majdalani [27,28] or Narasimhan
et al. [37] can be restored from (49). In these studies,
results based on (49) were shown to fall within ±7%
of both computational and experimental measure-
ments.
8. Approximate ke for laminar and turbulent forced

convection across a sphere

Some correlations exist for which a standalone diffu-
sive constant is added to the term containing the Prandtl
number. An illustrative case arises in the context of a
laminar or turbulent flow across a sphere of diameter
D. This form of the equation applies to the natural con-
vection correlation proposed by Yuge [46] for laminar
heat transfer from a sphere. The pertinent Nusselt num-
ber relation has been developed by Whitaker [47] over
the range 3.5 6 ReD 6 7.6 · 104 and 0.7 6 Pr 6 380. It
exhibits the form

NuD ¼ C0 þ C1Pr
n

n � 2=5; C0 � 2

C1 � ð0.4Re1=2D þ 0.06Re2=3D Þðl=lsÞ
1=4

ð51Þ

where both C0 and C1 are independent of ke. Eq. (51)
can be rearranged into

ke þ Akme � B ¼ 0

m � 1� nA � ðlCpÞnðC1=C0Þ; B � UD=C0

ð52Þ

then solved asymptotically. Since all physical problems
exhibit 0 < n < 1, a reasonably accurate two-term expan-
sion can be obtained from

Akm0 � B ¼ 0; k0 small

K0 � B ¼ 0; K0 large

�
or

ke ¼
m

1=BþmðA=BÞ1=m
; ke 6 kk

B½1� 1=ðmþ B1�m=AÞ�; ke > kk

(
ð53Þ

where the maximum error remains bounded within
±9.1% for n 6 0.4. The delimiting value for the small
range is kk = (0.08 + 0.727m � 0.314m2)A. For 0 < n 6

0.4, the error remains bounded within ±2.5%; further-
more, the range for kk reduces to 0.40 6 kk/A < 0.50.
9. Other correlations

The analytical expressions obtained in the preceding
sections enable us to provide direct estimates for ke
in diverse physical settings. This is due to the forego-
ing generalizations being applicable to a considerable
number of flow regimes and geometric configurations.
Exact or approximate solutions for ke can now be in-
stantly determined for a number of geometric shapes
starting with the widely used flat plate model. Based
on their fundamental correlations found in the litera-
ture, these different cases have been compiled and in-
cluded in Tables 1 and 2 for free and forced
convection, respectively. It should be noted that some
common shapes exhibit multiple correlations depend-
ing on the choice of coolant and characteristic ranges.
Of particular use to compact models are flows along
or across arbitrarily inclined flat plates, disks, and
squares. Circular cross-sections become suitable, for
instance, when tube-mounted heat sinks are being con-
sidered. When a three-dimensional component is being
cooled from all sides, three-dimensional objects such
as tetrahedrons and spheroids may be resorted to.
Although some models may not be immediately essen-
tial to ongoing industrial designs, they can still hold
value in the rapidly growing research into advanced
cooling technologies. This is especially true in view
of current trends to explore �shelf technologies� that
provide thermal analysts with the valuable and much
needed lead-time for future implementation. Since the
ke-value associated with longitudinal flow over a flat
plate has been previously validated under free and
forced convection conditions, it is hoped that the re-
sults derived for other configurations will be tried in
future tests.
10. Closing remarks

In this article, several analytical expressions are de-
rived for ke. These explicit solutions embody many pos-
sible heat pathways and base plate geometries that arise
in microelectronic packages. From a physical stand-
point, the effective thermal conductivity represents a fig-
ure-of-merit that assumes an intermediate value greater
than that of the coolant (0.026 W m�1 K�1 for air),
and smaller than that of the metal (240 W m�1 K�1 for
aluminum and 400 W m�1 K�1 for copper). In forced
convection studies, ke typically varies between 8 and
16 W m�1 K�1. However, it can be smaller than unity
under natural convection conditions. In principle, the
sole purpose of using a lumped thermal concept has
been to provide an expedient approach in modeling
populated chip packages. In some research circles, the
efficacy of compact models in predicting temperature
distributions has made them indispensable to the effi-
cient development of competitive packaging designs.
Ultimately, lumped thermal models may be needed not
just for compact heat sink representations, but also
for other components used in electronic enclo-
sures. These may include combinations of heat sinks
and other emerging technologies that are currently
underway.
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