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Abstract

This paper considers a porous channel in which a suction-driven flow is modulated by arbitrary levels of fluid extraction

acting uniformly along its porous boundaries. When small longitudinal oscillations are enabled, a rotational wave motion

is established that this study attempts to analyse. For an elongated channel, two asymptotic methods are used. The first

technique is based on a two-variable multiple-scale expansion that takes into account the thin boundary layer near the

wall. While retaining generality of expression, the multiple-scale procedure is carried out until a closed-form solution for

the velocity field is obtained for an arbitrary mean-flow function. An alternative approach based on WKB exponentials is

also employed. The WKB expansion is then pursued to arbitrary order. These asymptotic formulations are shown to agree

with one another and with numeric simulations of the problem for three specific mean-flow functions.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The fate of shear layers in well-established flows remains a central topic in fluid mechanics despite the
considerable attention that it has received in the past. Almost every prototypical flow has undergone much
scrutiny in this manner, including channel flows with porous walls. So far a number of boundary layer studies
have been undertaken in the context of better understanding the multiple solutions originating from Berman’s
equation with wall suction or injection [1]. Examples abound and, for a thorough investigation of solution
attributes that accompany suction-driven flows, the reader is referred to the survey by Zaturska et al. [2]. For
multidimensional considerations, the work of Cox [3] and Taylor et al. [4] may be found useful. For injection-
driven flows, one may refer to the time-dependent analyses and citations in Ref. [5]. While past studies seem to
have concentrated on the existence and multiplicity of mean-flow solutions, recent focus has somewhat shifted
to solutions resulting from temporal perturbations of Berman’s equation.

In a previous study [5], harmonic pressure disturbances were superimposed on the injection-driven field
inside a porous channel. The resulting oscillatory motion was found to exhibit rich vortical patterns displaying
large penetration depths and near-wall velocity overshoot. The problem was also found to exhibit a nonlinear
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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scaling structure due to the co-existence of several physical mechanisms within a sandwiched boundary layer.
Although paradoxical at first glance, increasing viscosity led to faster vortical attenuation and reduction in the
rotational depth of penetration. Furthermore, the traditionally thin viscous layer was blown off the wall to
some intermediate position near the core. Under those circumstances, the penetration depth simply denoted
the rotational region extending from the wall to the location of the shear layer. Obtaining asymptotic solutions
required a careful application of multiple-scale and WKB theories over different ranges of the crossflow
Reynolds number R.

The main purpose of this article is to extend the time-dependent study described in Ref. [5] to suction-driven
flows. Despite the expected similarity with the injection-based flow analogue [5,6], it will be shown that the
presence of suction significantly alters the flow character. This is due to several physical reasons. As pointed
out by Catherall [7], the viscous shear layer in injection-driven flows is pushed a distance from the wall in a
manner to delineate two regions of virtually inviscid flow: the first is the axial main stream, and the second
consists of the permeating fluid. According to Cole and Aroesty [8], an added difficulty arises due to the
inability to predict the position of the viscous layer. Our knowledge appears to be limited to the expectation
that the shear layer (of order Rj j�1=2) will draw nearer to the core with successive increases in injection (cf. Ref.
[9]). These features precipitate, according to Refs. [5,6], a nonlinear scaling composition that does not conform
to conventional transformations which rely on linear distortions of the independent coordinate.

In the presence of suction, however, the salient mean-flow features change considerably. Streamlines switch
direction as the flow heads to the closed end before it is withdrawn. Instead of being blown-off the wall, the
shear layer is now formed distinctly above the porous surface. The resulting boundary layer is consistent with
Prandtl’s usage of the term and increases in size with viscosity. It also coincides with the rotational depth of
penetration that accompanies steady and periodic flows over hard walls [10]. Unlike the injection-induced
penetration depth that increases with injection, the suction-induced layer diminishes as suction levels are raised. By
virtue of these mean-flow differences, one expects dissimilarities in the oscillatory wave motion and its underlying
scaling structure. The same can be said of the asymptotic treatment that must accompany the resulting boundary-
value problem. In view of these interesting dissimilarities, the intent of this analysis is to provide the formalism
needed to obtain rigorous approximations for the oscillatory suction-driven channel flow.

Suction-induced flows were first analysed by Taylor [11] in a manufacturing process that involved running
watery suspensions of fibres over porous sheets through which the fluid could be drained to form paper. Other
applications have risen in the modelling of isotope separation [1], irrigation systems [12], sweat cooling [13,14],
boundary layer control [15], and other filtration mechanisms. They have also been important in the modelling
of the respiratory function in the lungs [16].

Since past studies have focused on steady-flow conditions, this work attempts to account for small
amplitude oscillations that are often introduced by inevitable fluctuations in the suction rate. In other
occasions, it is possible for the periodic motion to be induced by moving boundaries such as those arising in
the modelling of the respiratory and circulatory functions in biological organisms. Regardless of the source of
periodicity, this study will seek approximate solutions for the oscillatory field in the presence of uniformly
distributed wall suction.

The analysis begins in Section 2 with a description of the physical geometry and system constraints. In
Section 3, the governing equations are briefly presented in their general dimensional form. Subsequently,
equations and variables are normalized, linearized and decomposed into steady and time-dependent sets. The
temporal field is further decomposed using the momentum transport formulation. In Section 4, the multiple-
scale approach is applied using two linear coordinate transformations. Next, the WKB approach is applied in
Section 5. Therein, an nth order approximation is offered. A discussion is presented in Section 6 in which
comparisons with numerics are reported. Finally, concluding remarks are noted in Section 7.

2. The basic flow model

A long low aspect ratio channel is considered having porous top and bottom surfaces that are separated by
a distance 2h. The side walls are assumed to be rigid and the channel width is given by w. As shown by Terrill
[17], imposing the condition w=hX8 enables us to simplify the problem to two space dimensions. Additionally,
the solution domain is reduced in size by assuming symmetry about the channel’s midsection plane. The basic



ARTICLE IN PRESS

Fig. 1. System geometry showing streamlines calculated for: (a) small; (b) type I–II; and (c) type III mean-flow suction in a channel.
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geometry is illustrated in Fig. 1 where a planar cross-section is shown; therein, the mean-flow streamlines are
calculated based on the small and large suction solutions alluded to in Refs. [2,17]. Under these auspices, the
solution domain is restricted to 0pxnpL and 0pynph, where L is the channel length.

Under the influence of small variations in the suction rate, a channel that is closed at the head end and open
at the aft end can develop longitudinal pressure oscillations of amplitude A [18]. The corresponding frequency
can be specified by os ¼ m� 1=2

� �
pas=L, where as refers to the stagnation speed of sound, and m is the

oscillation mode shape number.
In order to simplify the forthcoming analysis, several restrictions are imposed. For example, only a laminar

fluid is considered. Also, A is taken to be small in comparison with the product of stagnation pressure ps and
ratio of specific heats g. At the outset, the dimensionless wave parameter becomes ē � A=ðgpsÞ51.

Pursuant to the upcoming normalization, several nondimensional parameters will naturally emerge in the
governing equations. Among them are the Mach number M � vw=as, the Strouhal number S � osh=vw, and
the small perturbation parameter e � 1=R ¼ n=ðvwhÞ. Following Ref. [5], we shall restrict our analysis to cases
for which M2oēoM51.

3. Problem formulation

3.1. Flow decomposition

Using a similar nomenclature to that adopted in Ref. [5], the governing equations are normalized and
linearized. First, spatial coordinates, velocity, pressure, density, and time are made unitless by setting

x ¼ xn=h; y ¼ yn=h; u ¼ un=as; p ¼ pn=ðgpsÞ; r ¼ rn=rs; and t ¼ tnos. (1)

Here, asterisks denote dimensional variables and rs is the stagnation density. At the outset, the solution
domain translates into 0pxpl and 0pyp1, where l ¼ L=h. Second, density, pressure and velocity are
perturbed in the pressure wave amplitude ē. The result is

p x; y; tð Þ ¼ p0ðx; yÞ þ ēp1 x; yð Þ exp �itð Þ, (2)

r x; y; tð Þ ¼ 1þ ēr1 x; yð Þ exp �itð Þ, (3)

u x; y; tð Þ ¼Mu0 x; yð Þ þ ēu1 x; yð Þ exp �itð Þ. (4)
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3.2. Leading-order decomposition

After inserting Eqs. (1)–(4) into the governing equations, one collects terms of leading order in ē; one finds

rdu0 ¼ 0, (5)

M2 u0drð Þu0 ¼ �rp0 þM2e 4r rdu0ð Þ=3� r� r� u0ð Þ
� �

. (6)

Following Berman [1], a stream function can be defined such that C ¼ �xF yð Þ. This permits writing

u0 ¼ u0 îþ v0 ĵ ¼ ð�xF 0;F Þ. (7)

The mean-flow momentum equation is then transformed into

Fiv þ R F 0F 00 � FF 000ð Þ ¼ 0, (8)

with

F 0 1ð Þ ¼ F 0ð Þ ¼ F 00 0ð Þ ¼ 0; F 1ð Þ ¼ 1. (9)

For the small suction case, Berman [1] has shown that the leading-order solution for Eq. (8) is

F ðyÞ ¼ 1
2yð3� y2Þ þ OðR=100Þ; Ro20. (10)

Conversely, Sellars [19] has found that F ðyÞ ¼ y is true for the large suction case. Sellars’ result is also
obtainable, in the limit as R!1, from Terrill’s higher-order approximation [17]

F ðyÞ ¼ y� R�1e�Rð1�yÞ
� �

=ð1� R�1Þ þ OðR�2Þ ¼ yþ OðR�1Þ; R � 20; type I� II. (11)

In recent analyses, Zaturska et al. [2] have confirmed the existence of three possible solutions for R!1.
Particularly, two of their solutions labelled type I and II exhibited the same leading-order term given by
Eq. (11). The type III trigonometric solution has been investigated independently by Cox and King [20] and
Lu [21]. According to Lu, it could be evaluated from

F yð Þ ¼
ð1� 1=DÞ sin py= 1� Dð Þ

� �
=p; 0pypze

y� 1þ Dð Þ=D; zeoyp1; ze ¼ 1� D

(
; 2p9D exp RDþ 1ð Þ ¼ R7; RX20; type III. (12)

These mean-flow solutions will be later used to illustrate the behaviour of the conceptual function F.
3.3. Time-dependent equations

By collecting terms of order ē in the governing equations, one reaps

�ior1 þ r � u1 ¼ �Mr � r1u0
� �

, (13)

�iou1 ¼ �M r u0 � u1ð Þ�½ u1 � r� u0ð Þ�u0 � r� u1ð Þ� � rp1 þMe 4r r � u1ð Þ=3
�

�r � r� u1ð Þ�. (14)

To make headway, the temporal field is decomposed into an acoustic, pressure-driven, irrotational wave, and
a rotational, vorticity-driven, solenoidal wave. This is effectuated by letting u1 ¼ ûþ ~u, where r � û ¼ 0 and
r � ~u ¼ 0. This vector decomposition can be substituted into Eqs. (13) and (14) which can be subsequently
solved for the acoustic velocity and pressure. Following Ref. [5], one finds

p̂ ¼ cos oxð Þ þ O Mð Þ; û ¼ i sin oxð Þîþ O Mð Þ, (15)

where o � osh=as is the dimensionless wave frequency. Collecting terms describing the vortical set, and using
Eq. (7), a solution for the axial rotational velocity is possible through the use of separation of variables. By



ARTICLE IN PRESS
T.A. Jankowski, J. Majdalani / Journal of Sound and Vibration 294 (2006) 880–893884
letting ~u ¼ X xð ÞY yð Þ, the solution becomes

~u x; yð Þ ¼ �i
X1
n¼0

�1ð Þn oxð Þ2nþ1

2nþ 1ð Þ!
Y n yð Þ. (16)

Completing the solution requires determining Y n from the boundary-value problem prescribed by

e
d2Y n

dy2
� F

dY n

dy
þ iS þ 2nþ 2ð ÞF 0½ �Y n ¼ 0, (17)

with

Y n 1ð Þ ¼ 1 and Y 0n 0ð Þ ¼ 0. (18)

Here S ¼ o=M ¼ osh=vw is the Strouhal number based on the suction speed. It should be noted that Eq. (17)
is identical to its counterpart arising in the injection-driven flow analogue except for the sign of F multiplying
the second term. Being negative, this convective coefficient (due to the steady efflux in the normal direction)
will be shown to visibly alter the flow behaviour and its required asymptotic treatment.

4. Multiple-scale analysis

Eq. (17) can be solved using a two-variable multiple-scale expansion provided the correct coordinate
transformations are known. After several trials, one finds that the unique set of scales that must be resorted to
consists of y ¼ y and z ¼ ð1� yÞ=e. Note that y is the outer scale, while z is the inner variable obtained by
stretching the original coordinate near the wall. Therein, a boundary layer can be expected due to the form of
Eq. (17).

Insertion of the inner scale into Eq. (17) gives

d2Y n

dz2
þ F

dY n

dz
þ iS þ 2nþ 2ð ÞF 0½ �eY n ¼ 0. (19)

By assuming that Y n is a function of two space coordinates, the derivatives are transformed into pairs of fast
and slow contributions, namely,

dY n

dz
¼

qY n

qz
� e

qY n

qy
;
d2Y n

dz2
¼

q2Y n

qz2
� 2e

q2Y n

qyqz
þ O e2

� �
. (20)

Now letting Y n ¼ Y 0 þ eY 1 þ O e2
� �

, Eq. (19) becomes

q2Y 0

qz2
þ e

q2Y 1

qz2
� 2e

q2Y 0

qyqz
þ F

qY 0

qz
þ eF

qY 1

qz
� eF

qY 0

qy
þ e iS þ 2nþ 2ð ÞF 0½ � Y 0 þ eY 1ð Þ ¼ 0. (21)

From Eq. (21), two equations can be segregated to determine Y 0 and Y 1. With the distinguished limit of
S�e�1, the O 1ð Þ equation can be deduced viz.

q2Y 0

qz2
þ F

qY 0

qz
þ iSeY 0 ¼ 0. (22)

Similarly, the O eð Þ terms can be collected into

q2Y 1

qz2
þ F

qY 1

qz
þ iSeY 1 ¼ 2

q2Y 0

qyqz
þ F

qY 0

qy
� 2nþ 2ð ÞF 0Y 0. (23)

Solving Eq. (22) yields

Y 0 ¼ A1 yð Þ exp 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe

p
� F

� �
z

h i
þ A2 yð Þ exp �1

2
F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe

p� �
z

h i
. (24)
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After differentiating Eq. (24) and evaluating the right-hand side of Eq. (23), one finds that prevention of
secular terms at O eð Þ can be accomplished by imposing

dA1

dy
¼

2nþ 3ð ÞF 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe
p

� FF 0

F2 � 4iSe

" #
A1;

dA2

dy
¼

2nþ 3ð ÞF 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe
p

þ FF 0

4iSe� F 2

" #
A2, (25)

where primes denote differentiation with respect to y. After integration, the solutions of Eq. (25) can be
substituted into Eq. (24). The result is

Y 0 ¼ c1 exp I1 þ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe

p
� F

� �
1� yð Þ=e

h i
þ c2 exp I2 �

1
2

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe

p� �
1� yð Þ=e

h i
, (26)

with

I1 ¼

Z y

1

2nþ 3ð ÞF 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe
p

� FF 0

F 2 � 4iSe

" #
dZ; I2 ¼

Z y

1

2nþ 3ð ÞF 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe
p

þ FF 0

4iSe� F 2

" #
dZ, (27)

where Z is a dummy variable. Note that c1 and c2 are pure constants that can be determined from
the two boundary conditions. In fact, by applying the conditions Y 0 1ð Þ ¼ 1 and Y 00 0ð Þ ¼ 0, one concludes
that c1 ¼ 0 and c2 ¼ 1. At this point, the generalized multiple-scale solution is fully realized.
One finds

Y n ¼ exp I2 �
1
2

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe

p� �
1� yð Þ=e

h i
. (28)

Note that I2 can be carefully rearranged and integrated in a manner to yield a closed-form solution for all F .
Letting B ¼ F , I2 becomes

I2 ¼ 2nþ 3ð Þ

Z F ð1Þ

F ðyÞ

dB

ðB2 � 4iSeÞ1=2
þ

Z F ð1Þ

F ðyÞ

BdB
B2 � 4iSe

, (29)

so that, by letting u ¼ Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4iSe

p
in the first term, one obtains

I2 ¼ ln
F ð1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ð1Þ2 � 4iSe

q
F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe
p

2
4

3
5
2nþ3

þ ln
F ð1Þ2 � 4iSe

F 2 � 4iSe

� 	1=2
. (30)

Recognizing that F ð1Þ ¼ 1 gives

Y n ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4iSe
p

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe
p

 !2nþ3
1� 4iSe

F 2 � 4iSe


 �1=2

exp �1
2

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe

p� �
1� yð Þ=e

h i
. (31)

By substituting Eq. (31) into Eq. (16), one arrives at

~u x; yð Þ ¼ � i
X1
n¼0

�1ð Þn

2nþ 1ð Þ!

ox 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4iSe
p� �

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe
p

" #2nþ1
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4iSe
p

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe
p

 !2
1� 4iSe

F 2 � 4iSe


 �1=2

� exp �1
2

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe

p� �
1� yð Þ=e

h i
. ð32Þ
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At this juncture, one identifies the term inside the summation to be the MacLaurin series expansion of the sine
function. This enables us to further reduce the rotational component of the axial velocity into

~u x; yð Þ ¼ � i
1� 4iSe

F2 � 4iSe


 �1=2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4iSe
p

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe
p

 !2

exp � F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe

p� � 1� yð Þ

2e

� 	

� sin
ox 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4iSe
p� �

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe
p

" #
. ð33Þ

Finally, by adding Eq. (15) the oscillatory velocity becomes

u1 x; yð Þ ¼ i sin oxð Þ �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4iSe
p

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe
p

 !2
8<
: 1� 4iSe

F2 � 4iSe


 �1=2

exp �1
2 F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe

p� �
1� yð Þ=e

h i

� sin
ox 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4iSe
p� �

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe
p

" #)
. ð34Þ

Clearly, u1 exhibits an inviscid-irrotational response followed by a wall-sensitive, visco-rotational correction
that decays exponentially as y! 0þ:

5. The WKB formulation

Eq. (17) can also be solved using the WKB method. Accordingly, the solution is assumed to have an
exponential behaviour that is consistent with a damped wave. The corresponding expansion can be
constructed from a linear combination of exponential functions of the type [22]

Y n� exp d�1
X1
j¼0

djQj

 !
, (35)

whose derivatives exhibit the form

Y 0n� d�1
X1
j¼0

djQ0j

 !
exp d�1

X1
j¼0

djQj

 !
; Y 00n� d�2

X1
j¼0

djQ0j

 !2

þ d�1
X1
j¼0

djQ00j

2
4

3
5 exp d�1

X1
j¼0

djQj

 !
. (36)

By substituting Eqs. (35) and (36) into Eq. (17), one can put

ed�2
X1
j¼0

djQ0j

 !2

þ ed�1
X1
j¼0

djQ00j � Fd�1
X1
j¼0

djQ0j þ iS þ 2nþ 2ð ÞF 0 ¼ 0 (37)

and so, to order Q1,

ed�2Q0
2
0 þ 2ed�1Q00Q

0
1 þ eQ021 þ ed�1Q000 þ eQ001 � Fd�1Q00 � FQ01 þ iS þ 2nþ 2ð ÞF 0 ¼ 0. (38)

For the distinguished limit S�e�1, d can be determined so that dominant terms appear at the same asymptotic
order. Thus, by balancing leading terms stemming from the three main parts of Eq. (17), one obtains d�e.
Without loss in generality, we let d ¼ e so that Eq. (38) becomes

e�1Q020 þ 2Q00Q
0
1 þQ000 � Fe�1Q00 � FQ01 þ iS þ 2nþ 2ð ÞF 0 þ O eð Þ ¼ 0. (39)

From Eq. (39), two defining equations can be deduced for Q0 and Q1. At O e�1
� �

, one collects the so-called
eikonal equation [22]

Q0
2
0 � FQ00 þ iSe ¼ 0. (40)
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In like fashion, the transport equation appears at O 1ð Þ as Q01 ¼ ½Q
00
0 þ 2nþ 2ð ÞF 0�=ðF � 2Q0Þ. Solving Eq. (40)

gives dual solutions representing left and right-travelling waves; these are

Q0 ¼
1
2

Z y

1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe

p
þ F

� �
dZ. (41)

The leading-order WKB solution can then be constructed from the linear combination of the two possible
solutions; one finds

Y n ¼ c1 exp 1
2
e�1
Z y

1

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe

p� �
dZ

� 	
þ c2 exp

1
2
e�1
Z y

1

F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe

p� �
dZ

� 	
, (42)

where the integration constants must be determined from the problem’s boundary conditions, Y nð1Þ ¼ 1 and
Y 0nð0Þ ¼ 0. One concludes that c1 ¼ 1 and c2 ¼ 0. Being zero, the left-travelling wave is inconsequential. This
condition is physically plausible because the current analysis does not consider wave propagation into the
solid walls.

Solving at O eð Þ can be accomplished by integrating the transport equation. One finds

Q1 ¼ �

Z y

1

Q000 þ 2ðnþ 1ÞF 0
� �

= 2Q00 � F
� �� 


dZ. (43)

In order to evaluate Eq. (43), one must use the right-travelling wave in Eq. (41). Starting with

Q0 ¼
1
2

Z y

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe

p
þ F

� �
dZ, (44)

Eq. (43) becomes

Q1 ¼ �
1
2

Z y

1

4nþ 5ð ÞF 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe
p þ

FF 0

F 2 � 4iSe

� 	
dZ. (45)

The complete WKB solution can then be formalized by combining both eikonal and transport solutions. One
obtains

Y n ¼ exp 1
2
e�1
Z y

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe

p
þ F

� �
dZ� 1

2

Z y

1

4nþ 5ð ÞF 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe
p þ

FF 0

F2 � 4iSe

� 	
dZ

� �
. (46)

Note that the second term has been rearranged into a form that is prone to direct integration. This permits
condensing Eq. (46) into

Y n ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4iSe
p

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe
p

 !2nþ5=2
1� 4iSe

F2 � 4iSe


 �1=4

exp 1
2
e�1
Z y

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � 4iSe

p
þ F

� �
dZ

� 	
. (47)

Using Eqs. (15), (16), and (47), the axial velocity developed from the WKB approach can be completed. This
operation renders

u1 x; yð Þ ¼ i sin oxð Þ �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4iSe
p

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe
p

 !3=2
8<
: 1� 4iSe

F 2 � 4iSe


 �1=4

exp 1
2
e�1
Z y

1

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe

p� �
dZ

� 	

� sin
ox 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4iSe
p� �

F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4iSe
p

" #)
. ð48Þ

Note that, unlike Eq. (34), the WKB result is given in semi-closed form. In view of its exponential term, the
WKB velocity cannot be integrated in general for any F . For most mean-flow functions, numeric integration
of the exponential term is necessary.

A WKB solution to any desired order may also be obtained from the higher corrections given by

Q2 ¼ �

Z y

1

Q001 þQ0
2
1

� �
= 2Q00 � F
� �h i

dZ; Q3 ¼ �

Z y

1

Q002 þ 2Q01Q02
� �

= 2Q00 � F
� �� �

dZ (49)
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and so on. For jX2, these can be reproduced from a single recurrence relation, namely,

Qjþ2 ¼ �

Z y

1

Q00jþ1 þ 2Q01Q
00
jþ1

h
þ
Xj�1
p¼1

Q0pþ1Q
0
jþ1�p

� �i
= 2Q00 � F
� �( )

dZ. (50)

6. Discussion

6.1. Solution verification

The multiple-scale and WKB velocities given by Eqs. (34) and (48) can be compared to numerical solutions
of Eqs. (16)–(18). In the process, the three characteristic functions given by Eqs. (10)–(12) can be used to
describe the behaviour at small and large R. It should be noted that, for the large suction case, one may use
Sellars’ form [19], F ¼ y (for type I–II) to obtain closed-form asymptotic solutions and an exact solution
for Eqs. (16)–(18). Under these circumstances, a numerical solution becomes confirmatory. However,
both Berman’s cubic polynomial, F ¼ 1

2
yð3� y2Þ [1], and Lu’s type III trigonometric form, F ¼ ð1�

D�1Þ sin py= 1� Dð Þ
� �

=p [21], do not permit exact solutions. A numerical outcome becomes necessary and here
we use an algorithm based on Butcher’s fifth-order Runge–Kutta algorithm. To ensure accuracy, a small
tolerance is retained with a maximum step size of Dy ¼ 10�6. It should also be mentioned that both Berman’s
and Lu’s solutions preclude obtaining a closed-form WKB approximation. Instead, one must rely on a quasi-
analytical WKB solution requiring numerical integration of the exponential term in Eq. (48). The rotational
solution for Sellars’ large suction of type I–II is reported in Ref. [23]. Therein, an exact solution for Eq. (17) is
derived and put in the form

Y nðyÞ ¼ Fð�n� 1� 1
2
iS; 1

2
; 1
2
Ry2ÞF�1ð�n� 1� 1

2
iS; 1

2
; 1
2
RÞ, (51)

so that

u1 x; yð Þ ¼ i sin oxð Þ �
X1
n¼0

�1ð Þn oxð Þ2nþ1

2nþ 1ð Þ!

"
F �n� 1� 1

2
iS; 1

2
; 1
2
Ry2

� �
F �n� 1� 1

2
iS; 1

2
; 1
2
R

� �
#
, (52)

where F a; b; zð Þ is the Kummer function [24]. In this study, Eq. (52) is used to check the validity of the
numerical routine.

6.2. Error analysis

Using the exact solution as a benchmark, the maximum absolute error En in each of the asymptotic
approximations is plotted in Fig. 2 for the type I–II mean characteristic function. Therein, both the multiple-
scale and WKB solutions are systematically compared to the exact representation over a finite range of
Reynolds and Strouhal numbers. Following Bosley [25], the maximum absolute error is shown versus e for
fixed S. Plotting these curves on logarithmic scales allows for the order of the error to be displayed by the
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Fig. 2. Maximum absolute error between exact and asymptotic solutions using: (a) multiple-scale and (b) WKB approximations. Results

correspond to mean-flow solutions of type I–II at the first three eigenvalues: n ¼——, 0; - - - -, 1; - - - , 2.
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Fig. 3. Reducing viscosity or increasing suction: The oscillatory axial velocity u1 exp �itð Þ is plotted at x=l ¼ 1, m ¼ 1, and S ¼ 20: Small

suction profiles are shown for: (a) R ¼ 5 and (b) R ¼ 10. Large suction profiles are shown with R ¼ 20 for the (c) type I–II and (e) type III

mean flow solutions, and with R ¼ 50 for the (d) type I–II and (f) type III. Besides the results obtained via finite-differencing (FD), WKB

and multiple-scale (M-S) solutions are also illustrated: ——, FD; - - - -, WKB; ......; M-S.
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slope. As e! 0, the graph indicates that both approximate solutions exhibit an error of O eð Þ. This is consistent
with the truncation error arising in the asymptotic treatment.

Fig. 2 also suggests that the accuracy of these approximations does not deteriorate when the S�R condition
is deviated from. In fact, both multiple-scale and WKB solutions appear to be increasingly more accurate as S

is increased at constant e, or as e! 0 at constant S. The S�R condition remains asymptotically true because
the error approaches zero the fastest when both S!1 and R!1.

When the standard error analysis is repeated for the type III solution, an equivalently reassuring behaviour
is exhibited by the WKB solution. However, the error in the multiple-scale solution is found to be ill-behaved.
The singularity detected in the multiple-scale solution for the type-III mean flow field will be discussed below.

6.3. Velocity character

Figs. 3 and 4 are used to illustrate the oscillatory suction velocity by plotting u1 exp �itð Þ at four discrete
timelines and a range of operating parameters. In all figures, the profiles seem to agree favourably with the
classic theory of laminar periodic flows [10]. This is due to the velocity timelines being representative of a
spatially damped wave propagating in time. The travelling wave exhibits a large inviscid core that stretches
across the symmetry plane. It also exhibits a rotational boundary layer in the direct vicinity of the wall. At the
wall (y ¼ 1), the no-slip condition is satisfied. The thickness of the rotational region is also comparable in size
to the Stokes layer [10].

In Fig. 3, both multiple-scale and WKB solutions are used to illustrate the effect of increasing the Reynolds
number while keeping all other parameters constant. For the smallest suction level of R ¼ 10; the relative
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Fig. 4. Increasing frequency: the oscillatory axial velocity u1 exp �itð Þ is plotted at x=l ¼ 1 and m ¼ 1. Parameters used for the small

suction profiles are R ¼ 3 with: (a) S ¼ 10 and (b) S ¼ 100: For large suction R ¼ 30: The mean-flow solutions of types I–II are shown

with (c) S ¼ 10 and (d) S ¼ 100. The type III solution is illustrated with (e) S ¼ 10 and (f) S ¼ 100. The finite-difference (FD), WKB, and

multiple-scale (M-S) solutions are shown: ——, FD; - - - -, WKB;......; M-S.
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effect of viscosity is the most appreciable. In this case, the rotational layer penetrates deeper into the channel
than at higher suction levels. For the same physical reason, a relatively larger overshoot is observed near the
wall. As suction is increased, the relative importance of viscous effects diminishes. Profiles drawn at increasing
Reynolds numbers show that the rotational layer undergoes progressive compressions. With successive
increases in suction, the companion overshoot diminishes as well. These physical characteristics can be
explained in light of the asymptotic solutions that have been derived. For example it is possible to infer from
Eq. (34) that the rotational amplitude must be strongly influenced by exp �1

2
R 1� yð Þ

� �
. Thus, as the core is

approached, the wave amplitude decays more rapidly at bigger R. Since the wave amplitude prescribes the
boundary layer envelope, a thinner boundary layer ensues. The overshoot is similarly affected since a smaller
rotational contribution near the wall leads to a smaller total velocity.

The influence of the oscillation frequency is examined in Fig. 4 where the velocity is shown at small and
large Strouhal numbers. Overall, it can be seen that an order of magnitude increase in frequency (for either
small or large suction) causes a reduction in penetration depth and an increase in overshoot. This effect can be
ascribed to the reduced spatial wavelength which, from Eq. (34), is inversely proportional to the Strouhal
number. For larger S, the correspondingly shorter wavelength allows for the pairing between acoustic and
rotational wave components to take place closer to the wall. Since the rotational velocity is larger near the
wall, the vortical excess is appreciably higher when high frequency oscillations are present. When this
supplemental contribution is added to the inviscid amplitude, a slightly larger overshoot is observed. The
increased frequency also leads to faster particle reversals and, therefore, to more rapid viscous dissipation of
the rotational disturbances born at the surface. This mechanism explains the reduced depth of penetration at
higher frequencies.
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Fig. 5. Streamline patterns corresponding to the type III characteristic function exhibiting sharp flow turning near the wall and complete

reversal near the core (0oyo1� D). The figures correspond to: (a) R ¼ 30; (b) R ¼ 60; and (c) R ¼ 120. Note that D! 0 as R!1.

Fig. 6. For the first three oscillation modes, the modulus of u1 exp �itð Þ is plotted at evenly spaced locations along the channel’s length.

Also shown are the corresponding acoustic velocity mode shapes (top part). Using the type-III mean-flow function, the effect of increasing

the oscillation mode number is captured by fixing the suction Reynolds number at R ¼ 30; and varying the Strouhal number according to

S ¼ 30m; where (a) m ¼ 1; (b) m ¼ 2 and (c) m ¼ 3: Note that the smallest disturbances take place at the interior velocity nodes for

x=l ¼ n=ðm� 1=2Þ; nom:
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When the multiple-scale solution is used in conjunction with the type-III function, a noticeable discrepancy
is seen by comparison with the numerical or WKB predictions. This discrepancy is more significant at smaller
values of R: The singularity in the multiple-scale solution can be attributed to the failure of linear distortions
of the coordinate in regions where Fo0, namely, for 0oyo1� D. In this interval, the flow direction switches
such that fluid layers are pushed away from the porous surface as in the injection-driven problem (see Fig. 5).
The convection of the mean flow layers away from the porous wall leads to a nonlinear scaling structure that
cannot be captured by the linear coordinate transformation used here. As illustrated in Fig. 5, complex
streamline patterns are formed at different suction levels. The sign reversal in the normal velocity mimics the
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effect of injection, a mechanism that has been proven to exhibit nonlinear scales where Fo0 (see Ref. [5]). This
region of nonuniformity for the type-III multiple-scale solution expands with increasing R: It is narrowest near
R ¼ 13:7 where the largest value of D ¼ 0:5108 can be obtained.

The spatial evolution of the type-III oscillatory solution is displayed in Fig. 6 at the fundamental and first
two harmonic mode shapes. This is accomplished by plotting the modulus of the time-dependent wave at
equally spaced intervals along the length of the closed-open channel using either the numerical or the
equivalent WKB solution. For each value of m, the amplitude of the inviscid response is superposed in order
to illustrate the strong connection between the pressure-driven, acoustic amplitude, and the rotational,
boundary-driven component. Most notably, both acoustic and rotational wave amplitudes are suppressed at
the downstream locations of acoustic velocity nodes. This is contrary to the effect observed in the injection-
driven flow analogue wherein rotational disturbances are spread deeper into the core and throughout the
chamber. Here vortices are strictly confined to the thin boundary layer above the wall. A similar spatial
evolution is displayed by the other cases of F.

7. Concluding remarks

This study provides two general asymptotic forms of the oscillatory suction flow in a porous channel. Both
multiple-scale and WKB expansions coincide in predicting the form of the rapidly damped wave using
Berman’s and Sellar’s type I–II mean flow solutions. For Lu’s type-III solution, the multiple-scale solution
based on linear stretching of the coordinate becomes inadequate over the interval in which the flow reverses.
This result confirms the need for a nonlinear scaling transformation emphasized in the injection-driven flow
problem [5]. The oscillatory wave bears a striking resemblance to the Stokes profile in exhibiting small
penetration depths and near-wall overshoot factors. Its advantage lies in its inclusion of two space dimensions
that take into account the finite length of the channel. The solution also accounts for different oscillation
mode shapes and end-wall boundary conditions. Since the current study is carried out for a closed-open
channel, the same can be extended to other geometric shapes and acoustic configurations. Another interesting
finding is the identification of the inner scale that can lead to a uniformly valid solution for suction-dominated
flows. The conventional presence of a boundary layer near the wall has, to some extent, enabled us to apply a
linear distortion of the normal coordinate y. This linear stretching has provided the necessary resolution to
achieve closure in the two-variable multi-scale expansion associated with both Berman’s and Sellar’s type I–II
mean flow solutions for which FZ0. Similar linear transformations of the independent variable were not
useful in the injection-driven flow analogue [5,6]. Previously, nonlinear transformations and a generalized-
scaling technique had to be pursued in order to identify the multi-scale structure. In the current study, the
multiple-scale solution has led to an unconditionally closed-form expression for an arbitrary mean-flow
function FZ0. Its simplicity has also enabled us to understand or confirm the observed dependence on several
operating parameters. The WKB technique, on the other hand, has been instrumental in providing higher
approximations to any desired order. In comparison to the injection-driven problem, the rotational effects are
much smaller here. Suction acts to suppress the spreading of unsteady vorticity by convective withdrawal at
the wall. In both physical settings, increasing the frequency or Strouhal number leads to smaller penetration
depths and larger overshoot factors. However, a contrasting behaviour accompanies changes in viscosity. In
studies concerned with injection [5,6], higher viscosities have induced shorter depths of penetration. This is due
to the wave decay being controlled by the damping parameter x ¼ no2h=v3w. At present, the damping role is
transferred to the suction Reynolds number R ¼ vwh=n. A reversal in the role of viscosity is precipitated.
Another dissimilarity lies in the size of the viscous layer. As confirmed by the distinguished limits demanded by
WKB formalism, the thickness of the inner layer decreases from d ¼ �Rð Þ

�1=2 for injection to d ¼ R�1 for
suction. Thus, for the same physical properties and absolute speed vwj j, a thinner inner layer is formed during
suction. Apparently, more rapid changes in gradually smaller distances are distinguishing attributes of both
mean and oscillatory components of suction-driven flows. This behaviour is commensurate with the increased
stiffness that has often prevented former investigations from exploring higher suction Reynolds numbers (see
Ref. [26] or, recently, Ref. [27]). While the increased stiffness with R requires progressively higher mesh
resolutions during numerical integrations, the physical models presented heretofore must remain hypothetical
until corroborated by laboratory experiments.
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