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We investigate the hydrodynamic instability of the full-length, cylindrical models of solid and
hybrid rockets with headwall injection. Our baseline is the rotational incompressible flowfield
proposed in a recent study �Majdalani and Vyas, “Inviscid models of the classic hybrid rocket,”
AIAA Paper 2004-3474�. The local nonparallel approach is implemented in which the amplitude
functions are assumed to be radially dependent at fixed streamwise locations. The usual singularity
along the chamber axis is eliminated using Taylor series expansions. As a result, three compatibility
relations are derived and substituted for the local boundary conditions along the axis. These depend
on whether the tangential wave number q is 0, 1, or larger. Our rotational model is shown to exhibit
a range of instability that broadens with successive increases in headwall injection. The lowest
frequency below which the flow remains unconditionally stable is observed at �=28.5 regardless of
the headwall injection rate. As usual, the zeroth order tangential mode is found to be the most
amplified. Using a representative headwall injection velocity for hybrid rockets, we identify a range
of frequencies along which large excursions in pressure and velocity amplitudes are possible. These
surges signal the presence of a resonant-like mechanism that is akin to an acoustic instability
response. The most excited frequencies vary between 387 and 415 in the vicinity of the headwall.
These frequencies are spatially delayed and lowered to 93.8–163.5 when the headwall injection rate
is reduced to the level associated with solid rockets. For the most critical streamwise stations, these
resurging wave amplitudes are quantified and shown to exhibit spectra that mimic the waterfall data
acquired in acoustic instability tests. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2434797�

I. INTRODUCTION

In this study, three-dimensional linear instability theory
is applied to an idealized representation of a full-length, cy-
lindrical, hybrid rocket. The analysis also considers a full-
length solid rocket motor �SRM� with reactive headwall. The
local nonparallel �LNP� approach is used in which all of the
nonzero components of the basic flow are retained in the
viscous Navier-Stokes equations. In recent studies, Casalis
and co-workers1–4 have implemented this approach while in-
vestigating the stability of injection driven motions in both
the porous channel and tube using axisymmetric or planar
flow conditions; in their work, the mean flow expressions
due to Taylor5 and Culick6 were used to describe the bulk gas
motion in simulated slab and circular-port rocket motors.
Their results have been corroborated by cold-flow
experiments—referred to as VECLA �Veine d’Etude de la
Couche Limite Acoustique� and VALDO �Veine Axisym-
métrique pour Limiter le Développement des Oscillations�—
and have helped to point out the critical abscissas beyond
which the flow becomes unstable �see Avalon, Casalis, and
Pineau7�. These were found to occur around 5 and 3 for the
planar �VECLA� and axisymmetric �VALDO� cases, respec-

tively. This investigation follows suit by applying the LNP
approach to a similar geometric setting that is germane to the
conventional hybrid grain shape and that of a solid propellant
motor with reactive forward closure. Here the headwall is
made permeable to permit the imposition of an inlet profile
that observes Berman’s similarity equation.8

The first numerical study of hydrodynamic instability in
an SRM model was carried out by Varapaev and Yagodkin.9

This was followed by several studies on flow field instability
and turbulence by Beddini,10 Beddini and Roberts,11 and Lee
and Beddini.12,13 Totally independently, an extended investi-
gation that included laboratory measurements and full
solutions of the Navier-Stokes equations was performed by
Casalis and co-workers;1,3 this work helped to explain the
effects of radial disturbances and the inconsistencies between
the two available techniques: the one that relied on perturb-
ing the primitive variables versus the one that employed the
streamfunction.10–13 Other pioneering studies include, first,
those on the unsteady wave characteristics in solid rocket
motors by Avalon and Comas,14 and Vuillot and Avalon;15

and, second, those on parietal vortex shedding and its con-
nection to hydrodynamic instability by Vuillot,16 Couton
et al.,17 Ugurtas et al.,18 and Avalon et al.7 Two excellent
surveys may be found in Ugurtas et al.19 and Fabignon
et al.20

In a similar context, the purpose of the present analysis
is to explore the hydrodynamic instability of the idealized
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solid and hybrid rockets. This will be accomplished by em-
ploying as a baseline model the core flow of the cylindrical
rocket with headwall injection presented by Majdalani and
Vyas.21 Therein, two flowfield solutions were proposed, one
being irrotational. In this work, the emphasis will be placed
on the rotational model because of the minimal value gained
from the irrotational solution.

The paper is organized as follows. In the first section, we
introduce the representative mean flowfield and define its
geometry. We then pursue the linear instability analysis
based on small perturbations by normal mode decomposi-
tion. We implement the numerical procedure while paying
particular attention to the indivisible treatment of singularity
along the axis. In fact, the treatment of singularity enables us
to derive the remaining boundary conditions needed to
achieve closure. Next, the algorithm is verified by ensuring
its ability to reproduce the same stability information for an
SRM with nonreactive headwall. The corresponding flow-
field is often referred to as Culick’s6 �or Taylor’s5� and hap-
pens to be an important special case of the rotational hybrid
model for which the headwall injection velocity is set to
zero. After gaining confidence in the proposed methodology,
results for the solid and hybrid models are presented and
discussed.

II. GEOMETRY AND MEAN FLOW EQUATIONS

A. Geometry

For the hybrid core flow model mentioned above the
motor is represented as a cylindrical chamber of length L and
radius a �see Fig. 1�. The headwall injection velocity is as-
sumed to be Berman’s cosine function with a maximum cen-
terline velocity equal to U0. This velocity can be adjusted to

reproduce the rate of mass addition at the injector faceplate
of a hybrid rocket. On the other hand, the independent side-
wall injection Uw is used to capture the regression rate of the
solid fuel �Fig. 1�. All coordinates are normalized by the
chamber radius and velocities are normalized by Uw. In par-
ticular, the headwall injection constant is defined as uh

=U0 / ��Uw�. Note that z=0 stands for the upstream edge of
the porous wall. The corresponding mean flow components
are given by21

Ur = −
1

r
sin�1

2
�r2� ,

Uz = ��z + uh�cos�1

2
�r2� , �1�

U� = 0.

Before presenting the attendant analysis, it may be useful to
recall that the headwall injection constant germane to hybrid
rockets falls in the range of 50�uh�500.21 At present, we
start with uh=0 for the purpose of providing a benchmark
that can be compared to existing solutions developed for
SRMs with impervious headwalls.2 Another rotational case
that is worth considering is uh= 1

2 . This ratio ensures that the
headwall rate of mass addition is equal to ��a2Uw, as if the
headwall is allowing the same mass flux as that produced by
a uniformly burning propellant placed at z=0. Evidently, the
use of a cosine injection pattern instead of a uniform profile
introduces a small error near the headwall. This error, how-
ever, quickly diminishes in the downstream direction. It fol-
lows that the validity of using a similarity-conforming cosine
profile becomes more precise in a sufficiently long solid pro-
pellant grain burning equally uniformly along its headwall
and sidewall.

B. Governing equations

In this problem, three-dimensional incompressible flow
is treated using cylindrical coordinates; using tildes in denot-
ing instantaneous quantities, the normalized Navier-Stokes
and the continuity equations are written as:
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FIG. 1. Sketch of the rotational full-length rocket model permitting mass
addition along both sidewall and headwall boundaries.
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�Ũ�
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+ Ũz

�Ũ�
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where r ,� ,z are dimensionless coordinates and the normal-
ization is based on the standard use of

r =
r̄

a
, z =

z̄

a
, t = t̄

Uw

a
, u =

ū

Uw
, U =

Ū

Uw
,

�6�

p =
p̄

�Uw
2 , P =

P̄

�Uw
2 , Re =

Uwa

�
, l =

L

a
.

Here the overbar is used to denote a dimensional quantity.

III. STABILITY EQUATIONS

A. Linear instability theory

The linear instability principle consists of introducing a
small sinusoidal disturbance into the Navier-Stokes equa-
tions in order to compute the range of unstable frequencies.
A small perturbation m̆ is hereby superimposed on the mean
flowfield in each of its principal variables M. Assuming a

total solution of the form M̃ =M + m̆, the small disturbances
can be synthesized using normal mode decomposition
vis-à-vis

ŭr = ur�r�exp�i�q� + �z − �t�� ,

ŭ� = u��r�exp�i�q� + �z − �t�� ,

�7�
ŭz = uz�r�exp�i�q� + �z − �t�� ,

p̆ = p�r�exp�i�q� + �z − �t�� ,

where q is the tangential �i.e., azimuthal� wave number. Note
that the complex amplitudes are only dependent on r. In the
general case, � and � are complex and can be expressed by

� = �r + i�i and � = �r + i�i. �8�

Here, �r is the longitudinal wave number and �r is the cir-
cular frequency. While −�i represents the growth rate in
space, �i denotes the growth rate in time. Using the temporal
disturbance argument, one may track the temporal growth of
disturbances by setting �i=0. Conversely, the spatial distur-
bance argument enables us to concentrate on the spatial

growth �with no temporal damping� by setting �i=0. Ac-
cording to available experimental evidence, it may be argued
that the spatial theory is more suitable to treat this problem.
At the outset, �r / �2�� will provide the dimensionless fre-
quency of the disturbances with f =�rUw / �2�a� representing
the Hertzian frequency.

Equations �2�–�5� can be perturbed using Ũ=U+ ŭ and
p̃= P+ p̆. The resulting set is then expressible as function of
the disturbance amplitudes by substitution of the normal
mode transformations given by Eq. �7�. After some algebra,
one finds the linearized set

dur
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This system encapsulates the interactions between mean
components of velocity and the unsteady disturbances u�r�
and p�r�. The implicit assumption is that while the steady
�Ur, Uz� prescribe the motion and growth of unsteady waves,
they themselves remain indifferent to the oscillations that
they engender. In a recent study by Venugopal,22 it was
shown that fluctuations are highly sensitive to the mean flow
distribution, particularly, along the axis. This reiterates the
need to use the most suitable mean flow model for a given
application. It also justifies the quest for refined mean flow
models of rocket chambers, such as the ones incorporating
the effects of grain taper23 or compressibility.24,25 In what
follows, a careful set of boundary conditions is presented and
discussed.

B. Vital boundary conditions

Equations �9�–�12� are second order in ur, u�, and uz;
upon close examination, it may be determined that the total
order is equal to 6 when q�0 and reduces to 4 when q=0
�see Sec. III C�. Of the required boundary conditions, three
may be inferred from the velocity adherence condition at the
sidewall. As no slip is observed at leading order by the mean
flow ingredient, the fluctuations must vanish at the sidewall
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to avoid local interference. It should be noted that in com-
bustion instability studies, two other types of fluctuations are
considered: a purely acoustic, irrotational fluctuation û and a
boundary driven, rotational fluctuation ũ �see Griffond26�.
Unlike the hydrodynamic instability waves that evolve over
short lengthscales due to mean flow breakdown, the
acoustico-vortical û and ũ travel at much higher speeds
�comparable to the speed of sound� and over longer length-
scales. On the one hand, the parallel components of these
two waves cancel each other at the surface independently of
the hydrodynamic wave ŭ. On the other hand, their radial
components do not vanish; they remain related to the oscil-
latory acoustic pressure p̂ via the surface admittance function
Aw and the wall injection Mach number Mw.27,28 Using � to
represent the gas ratio of specific heats, the acoustic and
vortical radial fluctuations at the sidewall are generally re-
lated through: ûr	−MwAw�p̂ /��, ũr	−Mw�p̂ /��. Thus, while
setting u��1�=uz�1�=0 is prescribed by the no-slip condition
at the wall, using ur�1�=0 is an assumption that is required to
obtain a solution. Accordingly, injection noise is entirely
captured by the acoustico-vortical fluctuation; this enables us
to set

ur = u� = uz = 0 at r = 1. �13�

Three conditions are still missing. To compensate, we ex-
pand the principal variables and substitute them into the lin-
earized Navier-Stokes system. Suppression of singular terms
is then used to extract the three desired constraints. Thus,
using a polynomial expansion for the fluctuations,

ur = 	
n=0




vnrn, u� = 	
n=0




wnrn,

�14�

uz = 	
n=0




unrn, p = 	
n=0




pnrn

and, similarly, for the steady field,

Uz = f�z�	
n=0




Anrn, Ur = 	
n=0




Bnrn, U� = 0, �15�

these series may be substituted into Eqs. �9�–�12� and rear-
ranged. Forthwith, singularities of order r−1 and r−2 are iden-
tified in the mass conservation and momentum equations. To
ensure a uniformly valid outcome, these terms are set to zero.
Collecting based on the orders in the chosen series expan-
sion, one obtains

System 1 

v0 + iqw0 = 0,

�1 + q2�v0 + 2iqw0 = 0,

2iqv0 − w0�1 + q2� = 0,

− q2u0 = 0,
� �16�

System 2 

2v1 + iqw1 = − i�u0 from continuity at O�1� ,

− q2v1 − 2iqw1 = 0,

2iqv1 − q2w1 = − Re�iqp0 + w0B0� ,

u1�1 − q2� = 0.
��17�

At this juncture, the full momentum equation is transformed
into a gigantic system of equations that can be resolved to
any order of accuracy depending on the summation integer n.
This set is given by System 3 �n�0�:

�n + 3�vn+2 + iqwn+2 + i�un+1 = 0, �18�

��n + 2�2 − �1 + q2��vn+2 − 2iqwn+2 − Re�n + 1�pn+1

= Re�� �2

Re
− i��vn + 	

j=0

n

��i�fAj + �j + 1�Bj+1�vn−j

+ �n − j + 1�Bjvn−j+1
� , �19�

2iqvn+2 + ��n + 2�2 − �1 + q2��wn+2 − B0wn+1 − iq Re pn+1

= Re�� �2

Re
− i��wn + 	

j=0

n

�Bj+1 + i�fAj

+ �n − j + 1�wn−j+1�� , �20�

��n + 2�2 − q2�un+2 − ��2 − i Re ��un − i� Re pn

= Re 	
i=1

n

���f� + i�f�Aj�un+1 + �n − j + 1�un−j+1Bj

+ f�j + 1�Aj+1vn−j
 �21�

In this study, System 3 is not used but only reproduced for
the sake of completeness. System 1 can be readily expressed
in terms of velocity fluctuations. Depending on the tangential
wave number, one can put, along the centerline,

q = 0 → ur�0� = u��0� =
duz

dr
�0� = 0,

q = 1 →
dur

dr
�0� =

du�

dr
�0� = uz�0� = 0, �22�

q � 2 → ur�0� = u��0� = uz�0� = 0.

The three original boundary conditions due to no slip may
now be supplemented by Eq. �22� to provide a complete set
of auxiliary conditions for the velocity. To secure the pres-
sure at q=0, one can substitute the findings in Eq. �22� back
into Eq. �10�. This enables us to deduce that p��0�=0, where
the prime is used to denote differentiation with respect to r.
However, for q�1, the first three equations of System 2 can
be solved to obtain, along the centerline, the trivial set cor-
responding to v1=w1=0 and p0� p�0�=0. We are thus com-
pelled to apply a normalization condition for the pressure at
the sidewall that does not affect the solution. Without loss in
generality, we therefore set p�1�=1. By so doing, the pres-
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sure magnitude becomes a normalizing factor for all remain-
ing amplitudes.

C. Shooting procedure

Equations �9�–�12� can be rearranged and manipulated
into six first-order ordinary differential equations �ODEs�.
Our approach follows precisely that of Malik.29 Thus, ur� is
taken from mass conservation and inserted into the
r-momentum equation. The latter is reduced to a first-order

ODE with two boundary conditions. The extra condition is
used to secure convergence at the opposing boundary �here,
we choose the sidewall as our shooting target�. The six ODEs
that must be solved form a linear set that can be expressed as

d�Z�
dr

= �C��Z�, �Z� = �ur ,u� ,
du�

dr
,uz ,

duz

dr
,p�T

. �23�

The coefficient matrix �C� is prescribed by

�C� =�
C11 C12 0 C14 0 0

0 0 C23 0 0 0

C31 C32 C33 0 0 C36

0 0 0 0 C45 0

C51 0 0 C54 C55 C56

C61 C62 C63 C64 C65 0

� ; 

C11 = −

1

r
, C12 = −

iq

r
, C14 = − i�, C21 = 1,

C31 = −
2iq

r2 ,

C32 = Re�− i� +
Ur

r
+ i�Uz� +

1

r2 �q2 + 1� + �2,

C33 = Re Ur −
1

r
, C36 = Re

iq

r
,

� �24�

and

C45 = 1, C51 = Re Uz�, C54 = Re�i�Uz − i� +
�Uz

�z
� +

q2

r2 + �2,

C55 = Re Ur −
1

r
, C56 = Re i�, C61 = i� − Ur� − i�Uz +

Ur

r
−

1

Re
�q2

r2 + �2� , �25�

C62 = iq�Ur

r
−

1

Re

1

r2�, C63 = −
1

Re

iq

r
, C64 = i�Ur, C65 = −

1

Re
i� .

This system admits a nontrivial solution by virtue of the
pressure condition being nonhomogeneous. In order to expe-
dite convergence, we find it instructive to discretize all terms
in Zi� using Chebyshev’s spectral collocation method �see the
Appendix�.30 At present, 200 collocation points are used in
conjunction with Muller’s root solving algorithm; this is a
higher order representation of the secant method using three
points to determine the zero of a quadratic interpolating
curve.31 The stencil density is found to be sufficient to insure
the desired tolerance set at 10−9 in �.32 In marching forward,
our dispersion relation linking all primitive variables and pa-
rameters takes the form of f�� ,� ,q ,z ,Re,uh�=0. Thus, in
order to make headway, we choose for each tangential wave
number q a certain frequency ���r at a fixed set of oper-
ating parameters �Reynolds number and headwall injection
constant uh�. We then iterate at every spatial position of in-
terest z on the complex � until the target velocity amplitude
ur is made to vanish at the sidewall. This yields the ampli-
tude vector �Z� in addition to the spatial growth rate −�i, and
the wave number �r. From �r, one may calculate the spatial
wavelength, �=2� /�r and the axial speed of propagation �or
phase velocity�, ẋ=� /�r. After determining our first two �r

values, we linearly extrapolate for the subsequent initial
guess. Throughout this simulation, we fix the Reynolds num-
ber at 5000 and uh for the application at hand. At this level of
sidewall injection, it is universally accepted that inviscid
conditions will prevail to the extent that our steady-state
model becomes an accurate representation of the incom-
pressible core flow described by Eq. �1�. For solid rocket
motor applications, one may contemplate an order of magni-
tude increase in the sidewall Reynolds number above 5000;
under these auspices, compressibility effects may become
quite important, depending on the length of the motor. The
criteria that establish the error in using Eq. �1� are presented
in a paper by Majdalani.24 Accordingly, one may need to use,
at sufficiently high wall Mach numbers, a compressible mean
flow solution in conjunction with the compressible Navier-
Stokes equations to re-address this problem.

The second parameter that is left invariant for a given
simulation is the tangential wave number q. Thus, for each
frequency �, we march in space up to the point prescribed by
z=20. The axial extent is covered in equal spatial increments
of 0.1. After completing each sweep, we then increase the
frequency by a variable amount: at low �, we use a fine step
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size of 1 to capture the critical frequency at the nose-tip of
the iso-n curves; these are defined and illustrated in the next
section. The step size is then increased to 5 and 10 as we
approach linear behavior in the iso-n curves. The maximum
frequency we explore depends on the headwall injection con-
stant. For uh=0.5, our maximum frequency reaches 175,
whereas for uh=50 we find it necessary to raise the bar to
800. The highest � that we investigate is the one that enables
us to capture the most amplified value of n at z=15. This
typically coincides with the iso-n curve reaching an amplifi-
cation factor of n=11. Based on existing experimental data
with no headwall injection, transition to turbulence takes
place between n=7 and 9 according to stability theory2 and
experiments.33 For uh=0.5, a similar behavior is expected. It
can thus be argued that any evolution beyond n=9 may no
longer observe linear instability theory or help to delimit the
unstable domain. More experimental work with headwall in-
jection is therefore required to substantiate further refinement
to this analysis.

IV. RESULTS AND DISCUSSION

A verification of the numerical procedure used to solve
Eq. �23� subject to Eq. �22� can be carried out by applying
our algorithm to the special case of uh=0. Results are illus-
trated in Table I for the first three eigenvalues that are pre-
cipitated by the numerical routine. These so-called eigen-
modes are compared to published data in descending order of
criticality.4 Note the favorable agreement �in five to ten sig-
nificant digits� between the present eigenvalues and those
obtained by Griffond and Casalis.4 In the remainder of this
work, only the most critical eigenmode will be considered
for each set of parameters.

From a practical standpoint, we recognize that the effect
of the headwall injection constant uh must be carefully in-
vestigated alongside the effect of varying the tangential wave
number. The graph for the iso-n factor is first computed for
four cases involving uh=0.5, Re=5000, and q=0,1 ,2 ,3;
these cases represent the first four tangential fluctuation
modes of an SRM with headwall burning �see Fig. 2�. The
iso-n factors represent the spatial amplification of the flow
and can be computed from fixed values of Re, q , z, and �.
The amplitude of the wave A is calculated by integrating the
local amplification growth rate �−�i� as described in Eq.
�26�: the value of z0���, the first axial position where mar-
ginal stability is reached, depends on these fixed values via

A�z,�� = A0en with n�z,�� = − �
z0���

z

�i�x,��dx . �26�

Here, A0 represents the last stable amplitude along the neu-
tral curve prescribed by n=0. The iso-n graph in Fig. 2 pro-
vides several useful flow-related features.

First, one may recognize the unstable region to be en-
closed within the classic L-shaped boundary. The vertical
range of unstable frequencies increases in the streamwise
direction. By the same token, for each specific frequency
above the horizontal branch of the curve, the n-factor in-
creases as the flow approaches the downstream end of the
chamber. Second, the axial position of the most amplified
frequency seems to change very gradually with successive
increases in q. Only a minor shift in the neutral curve is
detected. Third, flow stability at a spatial position seems to
increase at higher wave numbers as a result of the curves
shifting in the positive z direction. This point can be seen
more clearly by comparing the neutral curves at several tan-
gential wave numbers.

Figure 3 displays the neutral curves of Fig. 2 for
q=0,1 ,2 ,3. These represent the lines along which the flow
begins to destabilize. It can be seen that the largest unstable
frequency at a given z is nearly the same at all tangential
wave modes. This can be attributed to the overlapping of the
upper branch of the neutral curves past z=6. For a suffi-
ciently high frequency, the neutral curves at different wave
numbers begin to overlap to the extent of becoming nearly
imperceptible; this duplicitous behavior is confounding to
the extent of making it difficult to isolate modes at a given
frequency during experimental measurements.2,33 On the
other hand, due the continual spatial shifting of the lower
branch in the streamwise direction �as the wave number is
increased�, the q=0 case appears to be the most amplified. In
fact, the two lowest modes �q=0,1� are nearly indiscernible;
this trend can make them difficult to decipher from experi-
mental measurements.

Note that a double shooting technique has been devel-
oped to specifically calculate the lines along which both �i

and �i vanish simultaneously. This approach serves a dual
purpose. First, it enables us to directly and expeditiously
locate the neutral points, thus obviating the need to sweep
horizontally across the domain to tag each of the neutral
points individually. Second, as a consequence to the first, a
larger number of points can be collected in a shorter period
of time. This improves our resolution by permitting the use

TABLE I. Eigenvalues of the Taylor-Culick profile at �=80, z=10, q=0, and Re=4500.

Mode

Published data
�Ref. 4� Present solution

�r �i �r �i

1 6.095 294 565 6 −1.078 799 814 0 6.095 294 572 4 −1.078 799 810 1

2 3.326 428 536 6 −0.109 552 558 9 3.326 428 538 0 −0.109 552 558 1

3 2.601 322 331 0 0.132 287 031 5 2.601 322 355 4 0.132 283 002 5
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of finer increments and, thereby, deducing smoother curves.
Another observation that can be made based on Fig. 3 is

that the flow is always stable below a certain frequency; in
that respect, each neutral curve shows a tip that depends on
the fixed parameters, Re, q, and uh. For example, in the most
dominant cases of q=0 and 1, the flow is always stable be-
low a threshold frequency of �r=28.5; the critical values
�i.e., the tips of the neutral curves� are captured at z�2.6 and
2.7 with a common �r=43 and �r��6.40,6.23�, respec-
tively. For q=2, the frequency above which instability starts
increases to �r=34; this occurs at �r=47, z�3, and �r

�6.67. Similar trends depicting an upward shift in frequency

are reported with further increases in the wave number. This
behavior confirms the q=0 case as being the most critical.

To examine the effect of the injection headwall constant,
neutral curves for different values of uh are processed and
plotted in Fig. 4�a�. Clearly, as uh increases, the flow be-
comes gradually more unstable; the corresponding neutral
curves steadily shift upstream. The critical value, in this case,
starts at the headwall injection point when the injection con-
stant reaches uh�3.168.

When uh
3.168, there will exist a range of frequencies
for which the flow becomes unstable starting at the injection
point itself �z=0�; the spectrum of frequencies widens with
further departures from uh=3.168. One should point out that
the critical value of uh varies with the tangential wave num-
ber. However, the q=0 case shown here remains the most
critical.

As the headwall-to-sidewall injection ratio becomes
large ��see Fig. 4�b��, the flow streamlines start to resemble
those of a circular-port hybrid rocket chamber.21 By way of
illustration, two values of uh, �10,50�, are selected. Here,
too, the range of unstable frequencies is seen to expand sig-
nificantly at higher headwall injection rates. It may be help-
ful to mention that the lowest frequency where the flow starts
to amplify �i.e., the frequency where the lower, horizontal
segment of the neutral curve starts to swerve� is weakly sen-
sitive to uh �see Fig. 4�a�� In contrast, the tip location and the
highest unstable frequency are strongly affected by uh. The
tip moves upstream and the highest frequency increases as uh

is augmented. Additionally, as illustrated previously in Fig.

FIG. 2. Iso-n factors for Re=5000 and
uh=0.5. Results are shown in �a�
through �d� for q=0,1,2,3.

FIG. 3. Neutral curves for different values of q at Re=5000 and uh=0.5.
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3, these features are dependent on the tangential wave num-
ber q. The impact of uh on controlling the tip and the upper
branch of the neutral curve is clearly seen in Fig. 4�b�; ac-
cordingly, the flow regains stability at �r� �185,770� for
uh= �10,50�, respectively.

Another interesting behavior that can be captured is the
effect of Reynolds number on motor stability. To that end,
Fig. 4�c� is used to illustrate the effect of Re on the position
and size of the neutral curve. These determine the first ab-
scissa at which instability can be experienced and the range
of amplified frequencies, respectively. For Re�2000, a clus-
tering in the neutral curves can be seen; this weak sensitivity
to the Reynolds number marks the beginning of inviscid
behavior.

As shown in Fig. 4�d�, the longitudinal wave number
and the amplification rate ��r ,−�i� become independent of
Re above a certain threshold value; namely, one that is often
termed the critical Reynolds number Rec. Essentially, both �r

and −�i reach their asymptotic values when the Reynolds
number exceeds Rec. This value represents the starting point
at which inviscid behavior prevails. For the special case
shown in Fig. 4�d�, the critical value of Reynolds number is
found to be Rec�2225. Note that the wave number tends to
the inviscid limit faster than the growth rate and that the
deviation in �i is quite minute �cf. right-hand scale�. For
Re�5000, no change may be observed and this justifies its
adoption in the present analysis.

In the process of investigating the amplitudes of distur-

bances at various frequencies and spatial stations, we have
uncovered an acoustic instability-like phenomenon, namely,
one with potentially serious implications. We have identified
the presence of rising amplitudes over a short range of fre-
quencies for the hybrid rocket model at the zeroth tangential
mode. This is illustrated in Fig. 5, where the spectrum of
wave amplitudes is shown both in waterfall and planar for-
mats. We remind the reader that the amplitudes here depend
on the wall pressure being set equal to unity. In Fig. 5�a�, the
increasing pressure resurgences are displayed at discrete
axial positions over a wide range of frequencies. The same
curves are overlaid in Fig. 5�b� to help in tracking their rela-
tive evolution with respect to both frequencies and abscissas.
Interestingly, these peaks coincide with the points at which
−�i is largest. From the design standpoint, the frequencies
that are accompanied by intense surges in pressure and ve-
locity amplitudes constitute the most detrimental and,
thereby, undesirable group. As shown on the graph, the most
excited frequencies are detected between �=387 and 415 at
z= �2,4�, near the headwall �where the LNP approach be-
comes fragile�. Spatially, their peaks are seen to slowly drift
downstream while their oscillatory amplitudes are generally
diminishing. Being capable of exceeding the burst pressure
of the rocket motor case, the dimensional frequencies asso-
ciated with �= �387,415� must be judiciously avoided in hy-
brid rocket design. In passing, it may be interesting to note
the qualitative resemblance between Fig. 5�a� and experi-
mental spectra obtained when acoustic instabilities are de-

FIG. 4. Using Re=5000 and q=0, we present the neutral curves for �a� simulated SRM with headwall burning and �b� simulated hybrid rocket engine. In �c�,
the effect of Reynolds number on the spatial shift in stability is illustrated for a simulated SRM with headwall burning �q=0 and uh=0.5�. For the same case,
the behavior of the streamwise wave number is plotted in �d� over a wide range of Reynolds numbers and fixed values of �=80 and z=9.
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tected in rockets. We also note that the same level of scrutiny
has been directed at higher tangential modes but only to
recover damped amplitudes; aside from q=0, no other modes
are found to be susceptible to this phenomenon. When the
headwall injection is reduced to uh=0.5, a similar phenom-
enon is observed except that the growth is spatially delayed
and spread over wider and dissimilar frequency ranges �see
Fig. 6�. It is most pronounced near z=10 and spread over a
range of lower frequencies, specifically, �= �93.8,163.5�.
The fact that the amplified frequency changes quite notice-
ably with z reduces the overall propensity to resonance. We
thus realize that the unsafe frequencies diminish at lower
headwall injection rates for which a more globally stable
flowfield is obtained.

V. CONCLUSIONS

In this article we have applied linear spatial theory to
characterize the hydrodynamic instability of solid and hybrid
rockets with headwall injection. We have determined that
headwall injection plays a destabilizing role considering that
the range of unstable frequencies is broadened with succes-

sive increases in uh. This is also accompanied by an up-
stream translation of the critical abscissas and attendant shift-
ing of the neutral curves.

By using the extended Taylor-Culick profile proposed by
Majdalani and Vyas,21 we are able to study the effect of
headwall injection on stability. By using uh=0.5, our model
is capable of mimicking the core flow in long solid rocket
motors with reactive forward closure. Such motors are only
slightly more unstable than SRMs with inert headwalls.
When uh is increased to 3.168, the most critical point along
the neutral curve �i.e., the tip� is shifted upstream to the
extent of reaching the headwall �by contacting the frequency
axis�. Thus, at z=0 and �=40, the flow becomes unstable at
the injection point. Further increases in uh cause the concave
portion of the neutral curve to fall behind the frequency axis,
namely, in the negative z domain. Under such conditions, the
flow becomes unstable even at z=0 over an increasing range
of frequencies. This range is bracketed by the intersection of
the neutral curve and the frequency axis. The forward trun-
cation of the neutral curve prevents us from calculating the
amplification n-factors.

FIG. 5. Spectrum of pressure amplitudes versus frequencies along a circular radius of r=0.5 and increasing distance from the headwall. Note the presence of
large bumps in the pressure �and similarly in the unsteady radial and streamwise velocities� over a range of undesirable frequencies. As usual, we use Re
=5000 to mimic inviscid behavior, uh=50 for a hybrid rocket model, and q=0 for the most unstable scenario.

FIG. 6. Same as previous except for uh=0.5 corresponding to a solid rocket model with reactive headwall.
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One of the most interesting aspects of this study is the
discovery of a range of frequencies at the zeroth tangential
mode along which enormous surges in pressure amplitudes
are possible. These large excursions in pressure signal the
presence of a pronounced resonant-like phenomenon that is
reminiscent of an acoustic instability response. The most ex-
cited frequencies where the engine experiences the most ap-
preciable excursions are detected in the vicinity of the head-
wall. These appear to slowly decrease and shift away with
successive decreases in headwall injection. As we march
downstream we observe a quasi-steady depreciation in pres-
sure amplitudes. From a practical standpoint, these resurging
amplitudes may be the most relevant to the designer; when
the amplification rates are high, they do not necessarily have
a bearing on the mean pressure unless the corresponding
wave amplitudes are large. It is interesting that, as the head-
wall injection velocity is increased, the character of the so-
lution approaches that of parallel mean flow motion; specifi-
cally, the frequencies associated with pressure resurgences
become nearly uniform; i.e., ∀z. This may be highly condu-
cive to resonance by way of coupling with chamber acoustics
whose frequencies are always independent of z. In future
work, we plan to further investigate this phenomenon in the
hope of unraveling additional connections with acoustic in-
stability theory, especially in what regards wave amplitudes
and energy accumulation rates.
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APPENDIX: DISCRETIZATION

Discretization of the disturbed system is based on a
spectral collocation method.30 Accordingly, we define �=2r
−1� �−1,1� and choose TN to be the Nth-order Chebyshev
polynomial. The N+1 collocation points are

�i = cos��i

N
�, i = 0, . . . ,N . �A1�

Equation �A1� enables us to calculate the so-called Gauss-
Lobatto points. Subsequently, the amplitude function � can
be interpolated using the polynomial form ����=	�i���i�,
where �i denotes a Lagrangian multiplier

�i��� = �1 − �i
2

� − �i
��− 1�i+1 TN�

N2ci
. �A2�

Here, TN� is the derivative of Nth Chebyshev polynomial. The
N+1 discrete values of �i=���i� are originally unknown.
Their accuracy depends on the size of N. As � is a solution
of a differential problem, a tacit relation can be obtained
between the derivative �� and � itself. After some algebra,
one finds

Dik =
ci

ck

�− 1�k+i

��i − �k�
, i � k; Dii = −

�i

2�1 − �i
2�

,

�A3�

i = 1, . . . ,N − 1; D00 = − DNN =
2N2 + 1

6
,

where c0=cN=2, ci=1, i=1, . . . ,N−1, and the discretized
equations can be written as

d�

d�
��i� = 	

k=0

N

Dik�k, �A4�

where � represents the amplitude components; namely,
�= �ur ,u� ,uz , p�.
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