










0 0.005 0.01 0.015 0.02
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t [s]

p 
[P

a]

(a) p

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mode m

|A
m

 |

(b) Am

Figure 6. Case 1. Fig. 6(a) presents the comparison between the signal sp
ac (dashed line) and the combination of 100

acoustic modes (solid line with +) for a sensor located at (x, r) = (6.667, 0.985). The function Fµ (solid line) stands for
the envelope of the combination. The circles in Fig. 6(b) show the values {Am} of the coefficients with respect to the

mode number m. They are compared to the line 1/m
2
.
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Figure 7. Case 1. Comparisons between the signals sux
ac (dashed lines) of three sensors and the combination of 100

acoustic modes (solid lines with +) given by the coefficients {Am}. The envelope of the theoretical acoustic signals is
related to the function Fµ.

Before leaving this baseline case, it may be instructive to note that by choosing Xe = 8 and ω0 = 40.409−
9.164i, the DNS model has been shown to faithfully reproduce both circular frequency ωr and temporal
damping rate ωi predicted by the biglobal stability analysis. The separate contributions of boundary-driven
vortico-acoustic disturbances are found to contain a linear distribution of acoustic modes that are well
predicted by Majdalani’s analytical solution. Despite the excellent agreement obtained heretofore, it remains
to be established whether reconciliation between theory and simulation will continue to hold, specifically, in
predicting the temporal growth rate ωi as the length of the chamber is changed.

IV.B. Case 2

The instability mode in question is ω0 = 40.367 − 7.302i. This is essentially the same mode as in Case 1,
i.e. ω0 = 40.409 − 9.164i, except that it has shifted slightly. Its temporal growth rate has decreased as a
result of increasing the domain of investigation from Xe = 8 to Xe = 10 (see Fig. 3). As usual, only the real
parts (ûx)r and (ûr)r of the mode ω0 = 40.367− 7.302i are added to Ūx and Ūr in the DNS calculations at
t = 0 s. The method of least squares is then used to calculate the coefficients {Am} of the first 100 acoustic
modes of the vortico-acoustic signal which corresponds to a pressure signal sp

ac. The function Fµ(t) is also
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used to mimic the effects of viscous dissipation.

Figure 8 compares the key flow ingredients using DNS and stability calculations at a sensor location
(x, r) = (8, 0.809). The agreement is excellent in Fig. 8(a) showing that sur

fluc = sur

th . As one may infer
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Figure 8. Case 2. The signals are originating from a sensor located at (x, r) = (8, 0.809). Parts 8(a) and 8(b) compare
signals s

ux
fluc and s

ur
fluc (dashed lines) and their respective theoretical evolutions s

ux
th and s

ur
th (solid lines with +).

Parts 8(c) and 8(d) compare signals s
p
ac and s

ux
ac (dashed lines) and a combination determined by the coefficients {Am}

of the first 100 acoustic modes (solid lines with +) calculated from a pressure signal s
p
fluc at the section x = 1.

from Fig. 8(a), it is gratifying that both ωr and ωi anticipated from the stability analysis are confirmed in
the DNS calculations. We conclude, in particular, that the evolution of the temporal growth rate ωi with
respect to Xe is not a spurious numerical artifact. Being confirmed by both DNS and stability models, we
rule out the possibility of ill-conditioning in the numerical procedure for computing the stability eigenvalues.
The shift in eigenvalues may be ascribed to the increase in Xe. This increase leads to higher axial velocities
within the domain of investigation. Of course, there may be other factors that promote the dependence of ωi

on Xe. As Xe continues to increase, ωi will tend toward zero. It is possible for the temporal growth rate to
switch sign for sufficiently long domains, specifically, for Xe = 16. Switching sign will cause the associated
eigenmode to become temporally unstable, hence leading to significant change in the mean flow, specifically,
to turbulence.

Figure 8(b) illustrates the difference that exists between sux

fluc and sux

th . In Case 1 the difference is
due to the acoustic modes that develop in the chamber. Using the results of the least squares method,
i.e. the coefficients {Am}, the pressure signal sp

ac ≈ sp
fluc is compared to the combination of the first 100

acoustic modes given by Eqs. (4-10) in Fig. 8(c). Additionally, the coefficients {Am} are used to calculate
the acoustic part of the longitudinal velocity, then compared to sux

ac = sux

fluc − sux

th . The good agreement
obtained in Fig. 8(d) is due, in part, to the relevance of the combination of analytical acoustic modes found
by Majdalani.
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IV.C. Case 3

So far we have seen that the mode ω0 = 40.409− 9.164i, obtained for Xe = 8, shifts to ω0 = 40.367− 7.302i
when the length of the domain is increased by one diameter. In both cases, the real frequency of the
eigenmodes (40.4 rad/s) corresponds to f = 214 Hz. The natural acoustic frequencies of the chamber
may be calculated from fac = a0/(4RXe) to find f = 363 Hz and 291 Hz for chambers with Xe = 8 and
10, respectively. To explore the possible coupling between vortico-acoustic and intrinsic instabilities, we
consider a stability mode that either matches or falls close to the chamber’s acoustic frequency. In this vein,
we consider the mode ω0 = 68.679 − 7.594i calculated for Xe = 8. Its actual frequency of f = 364 Hz is
nearly equal to the first natural acoustic mode, fac = 363 Hz. At t = 0 s, this mode is superimposed on the
basic flow as DNS calculations are initiated.
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Figure 9. Case 3. Part. 9(a) compare the signal sur
fluc (dashed line)and the theoretical evolution (solid line with +) for

the sensor located at (x, r) = (8, 0.866). Part. 9(b) provides the FFT signal obtained from sur
fluc.

Figure 9(a) shows that the signal sur

fluc does not match the theoretical evolution sur
ac of the stability fluc-

tuation given by Eq. (3). To trace the source of this discrepancy, the Fast Fourier Transform (FFT) of the
signal sur

fluc is extracted and plotted in Fig. 9(b). Retrieving the FFT of such signals is difficult to perform
because the sampling frequency is quite high in relation to the amplified frequencies. Instead, the peridogram
method for power spectrum estimation is used to acquire the frequency signature of the DNS fluctuations.
As shown in Fig. 9(b), the main amplified DNS frequency is about f ≈ 335 Hz. The corresponding intrinsic
instability mode appears to be ω0 = 62.787 − 7.389i, specifically, the mode that precedes the last in Fig. 3
at Xe = 8. We posit that this mode, which has a frequency of f = 333 Hz, is induced within the DNS
computations. This behavior is unexpected because the f = 333 Hz frequency lags the natural acoustic
frequency by 30 Hz whereas the frequency of the eigenmode introduced here falls within 1 Hz of the natural
frequency. A possible explanation is that both eigenmodes are at play.

To identify the stability modes that compose the DNS signal for sur

fluc, a spatial decomposition is per-
formed at each time. The signal from each sensor is assumed to be a combination of the two highest stability
modes ω0 = 68.679 − 7.594i and ω0 = 62.787 − 7.389i. The signal is thus determined by the complex
amplitude coefficients A68 and A62 via :

sur

fluc = A62
r

(
û62

r

)
r
+A62

i

(
û62

r

)
i
+A68

r

(
û68

r

)
r
+A68

i

(
û68

r

)
i

(11)

Using the method of least squares, the coefficients A68 and A62 are calculated at each time from the whole
set of sensor signals for sur

fluc. A linear system in A68 and A62 is obtained when writing Eq. (11) for the
30 sensors located throughout the chamber. At length, one retrieves the two amplitude coefficients A68 and
A62 that depend on time t.

Once these coefficients are known, it remains to be determined whether the same combination of the
two stability modes will enable us to accurately predict the axial velocity signal for sux

fluc. To this end, the
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acoustic parts sux
ac of sux

fluc must first be estimated. This requires the use of the coefficients {Am} of the first
100 acoustic modes of Eqs. (4-10) that can be retrieved from a DNS pressure signal, sp

fluc ≈ sp
ac . Then

given the function Fµ(t), the signal sux
ac can be obtained.
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Figure 10. Case 3. Comparison between the signals s
ux
fluc − s

ux
th (dashed lines) and the theoretical acoustic evolution

s
ux
ac (solid lines with +) for three sensors.

Using the modal decomposition A68 and A62, one can access the part of the signals due to the stability
modes, noted so far as sux

th . To confirm our analysis, we compare in Fig. 10 the vortico-acoustic contribution
retrieved from the DNS-based sux

fluc − sux

th to the theoretical evolution of vortico-acoustic modes given by
sux

ac . The three Figs. 10(a), 10(b), and 10(c) correspond to three distinct sensor locations. The excellent
conformity of the two sets of calculations supports the hypothesis that the modal decomposition found from
sur

fluc corresponds to the intrinsic instability contribution to sux

fluc. In other words, the existence in the DNS of
the eigenmode ω0 = 62.787− 7.398i, not artificially introduced in the computation, is confirmed. This mode
has naturally merged in the flow due to the coupling mechanism between the mode ω0 = 68.679 − 7.594i
and the acoustic modes.

To further explore the interactions between hydrodynamic and acoustic modes, we turn our attention to
the amplitude functions, |A62| and |A68|, and their respective phase functions, ϕ62 = arctan

(
A62

r /A
62
i

)
=

arg(A62) [2π] and ϕ68 = arctan
(
A68

r /A
68
i

)
= arg(A68) [2π]. If the DNS calculations had exhibited linear

behavior, then the amplitude functions |A62| and |A68| would have matched the theoretical evolutions given
by eν62t and eν68t. Similarly, the phase functions ϕ62 and ϕ68 would have followed the theoretical evolutions
2πf62t [2π] and 2πf68t [2π]. In Figs. 11(a), 11(b), and 11(c), the comparisons of |A62|, |A68|, ϕ62, and ϕ68

are provided along with their respective modal evolutions. Graphically, one can see that the introduction of
mode ω0 = 68.679 − 7.594i has led to the development of mode ω0 = 62.787 − 7.594i. Rapidly, the mode
ω0 = 62.787−7.594i becomes dominant in the computations, oscillating around a modal evolution curve (see
the amplitude function in Fig. 11(a)). Contrary to what is expected, instead of capturing a direct interaction
between the stability mode ω0 = 68.679− 7.594i and the first acoustic mode, this DNS calculation suggests
the possibility for additional coupling between two neighboring intrinsic instability modes. This is quite
interesting because the highest mode ω0 = 68.679 − 7.594i is closer to the natural acoustic mode than its
nearest neighbor, ω0 = 62.787− 7.594i. Instead of intra-coupling between acoustic and stability modes, an
interior mode coupling is manifested.

An important mechanism that is discovered here is the possibility for a secondary stability mode to
emerge in a flow without being artificially introduced into it. For example, the mode ω0 = 62.787 − 7.594i
naturally appears in the flow in which a neighboring eigenmode, ω0 = 68.679− 7.594i, is imposed.
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Figure 11. Case 3. Part 11(a) shows the amplitude evolution for the two modes ω = 62.787 − 7.389i (solid line with

+) and ω = 68.679 − 7.594i (dashed line). These amplitudes are compared to 10eν62t and 0.01A0 ‖
“

û
68
r

”
r
‖∞ e

ν68t
.

Parts 11(b) and 11(c) compare the phase functions ϕ62 and ϕ68 (dashed lines) to the theoretical evolutions 2πf62t [2π]
and 2πf68t [2π] (solid lines with +).

V. Conclusions

In this study, we have shown that the use of DNS calculations can provide new physical insight into
understanding the results of biglobal stability analysis. For example, we have demonstrated that the critical
eigenvalues precipitated by the theoretical stability analysis are recovered when computing the unsteady
motion of an isolated fluctuation through DNS calculations. In the process, special attention has been paid
to the dependence of the temporal growth rate ωi on the chamber length Xe. Evidently, ωi controls the
stability character of these modes. As ωi approaches zero with successive increases in Xe, one expects that
for a sufficiently large value of Xe, ωi will turn positive, thus changing the temporal character from damping
to growth. Under these auspices, fluctuations will become temporally unstable to the extent of increasing
in amplitude with the passage of time. Such behavior is found to occur for Xe > 16. Interestingly, in cold
gas experiments, it has been corroborated that turbulence will ensue for Xe > 13. Once the flow becomes
turbulent, the linear stability analysis no longer holds. Nonlinear effects will have to be incorporated as
they begin to act even as the modes become unstable. Several comparisons with cold21 and reactive gas
experiments20 have demonstrated the relevance of biglobal stability analyses in accurately estimating the
temporally stable modes. The nature of the intrinsic instabilities has also led to a coherent construct that
explains the source of SRM thrust oscillations.

In addition to their important role in confirming the biglobal stability results, these DNS calculations have
illuminated the quality and accuracy of Majdalani’s analytical solution for the vortico-acoustic boundary-
driven waves associated with the Taylor-Culick flow. Moreover, we have managed to show that the proximity
of instability frequencies to natural acoustic modes can lead to the attraction and merging of neighboring
stability modes. Other DNS computations made with unsteady injection velocity have established the
presence of strong coupling between acoustic and intrinsic instability modes. For unsteady injection velocity
cases, the frequency of one mode f = Vinjωr/(2πR) becomes a function of the time t and can cross the
acoustic mode fac. Thus we reproduce what occurs in live motors where the coupling mechanism between
acoustics and intrinsic instabilities is believed to be responsible for the merging of the frequency paths.21
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