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Heuristic Representation of the Swirl Velocity in the Core of 
the Bidirectional Vortex 

Brian A. Maicke* and Joseph Majdalani† 
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In this article, we discuss the merits of a heuristic, piecewise representation of the swirl 
velocity in the core of the bidirectional vortex.  This combined vortex representation is based 
on the notion that a uniform, Couette-like, shear stress distribution may be assumed in the 
inner vortex region, especially at high Reynolds numbers.  At the outset, direct integration of 
the shear stress enables us to retrieve an expression for the swirl velocity that overcomes the 
inviscid singularity at the centerline.  The solution we obtain must be patched to the outer, 
free vortex approximation at some intermediate position in the chamber. The resulting 
piecewise distribution is then used to represent the swirl velocity throughout the chamber.  
Two Rankine-type patching schemes are explored for this heuristic model. In the first, the 
core solution, along with its first derivative, are patched to the free vortex at the mantle 
location of 0.707 found by Vyas and Majdalani (Vyas, A. B., and Majdalani, J., “Exact 
Solution of the Bidirectional Vortex,” AIAA Journal, Vol. 44, No. 10, 2006, pp. 2208-2216).  
In the second, the patching is performed at a point that is representative of the thickness of 
the forced vortex core.  The more general representation provides the freedom of using 
either laminar or turbulent models to estimate the thickness of the core boundary layer at a 
given vortex Reynolds number.  The first model that we explore assumes that the outer, 
annular region of the bidirectional vortex is driven by free vortex motion, whereas the inner 
region (inside the mantle) is entirely dominated by constant shear. Being purely inviscid and 
insensitive to the vortex Reynolds number, it is discarded in favor of a more portable model 
that can be set to mimic laminar or turbulent profiles.  The second, more general 
approximation is subsequently compared to the existing laminar solution derived directly 
from first principles.  Its pressure distribution is calculated and shown to be non-singular 
even in the purely inviscid case.  The versatility of the piecewise solution is illustrated by 
specifying a constant shear radius that scales with the existing laminar core layer thickness. 
Other heuristic schemes are discussed and the conclusion is reached that further refinements 
for high Reynolds number flows must await the advent of sufficient laboratory and 
numerical experiments. 

Nomenclature 
a  = chamber radius 

iA  = inlet area 
b  = chamber outlet radius 
l  = chamber aspect ratio, /L a  
L  = chamber length 
p  = normalized pressure, 2/( )p Uρ  

iQ  = inlet volumetric flow rate 

iQ  = normalized volumetric flow rate in, 2 1/( )iQ Ua σ −=  

oQ  = normalized volumetric flow rate out, 2/( )oQ Ua  
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Re  = injection Reynolds number, / 1/Ua ν ε=  
r , z  = normalized radial or axial coordinates, /r a , /z a  
S  = swirl number, / iab Aπ πβσ=  
u  = normalized velocity ( ru , zu , uθ )/U  
uθ  = normalized swirl/spin/tangential velocity, /u Uθ   
U  = mean inflow velocity, ( , )u a Lθ  

V  = vortex Reynolds number, 1( / ) ( )iQ Re a L lεσ −=  
 
Greek 
β  = normalized outlet radius, /b a  

cδ  = normalized core radius, /c aδ  
ε  = perturbation parameter, 1/ /( )Re Uaν=  

κ  = inflow parameter, 1/(2 ) (2 )iQ l lπ πσ −=  
ν  = kinematic viscosity, /μ ρ  
ρ  = density 

σ  = modified swirl number, 1 /( )iQ S πβ− =  
 
Subscripts and Symbols 
i  = inlet property 
r  = radial component or partial derivative 
z  = axial component or partial derivative 
θ  = azimuthal component or partial derivative 

 = overbars denote dimensional variables 
 
Superscripts 
c  = composite 
i  = inner core 
w  = near sidewall 

I. Introduction 
ROM the pioneering days of Rankine1 to the present era, swirling flows have remained the subject of ceaseless 
scientific inquiry both because of their interesting theoretical challenges and their effective utilization in several 

industrial applications.  Historically, the earliest theoretical models have been fundamentally connected with 
unbounded geophysical flows that spontaneously occur in nature.  In this vein, hurricanes and tornadoes have been 
sporadically modeled using a variety of vortex flowfields.2  Even stellar phenomena have been subjected to similar 
exploratory lines of inquiry.3  While large-scale vortex patterns have constituted the motivation for much of the 
earlier work, modern investigations have constantly strived to harness the power of swirl in emerging products and 
mechanical equipment, both domestic and commercial.  One may also classify applications into those that employ 
unidirectional swirl (e.g., swirl combustors) and those that rely on a more complex, self-reversing motion often 
termed bidirectional.   
 In the context of wall-bounded bidirectional swirl, one may cite the work of ter Linden4 that has focused on 
studying the efficiency of cyclone separators.  Later, Bloor and Ingham5 have analyzed the incompressible fluid 
motion in conical cyclones using spherical coordinates.  More recently, Vyas and Majdalani,6,7 Vyas, Majdalani and 
Chiaverini,8 Majdalani and Rienstra,9 and Batterson and Majdalani10 have developed both exact and asymptotic 
solutions to describe bidirectional flow motions in cylindrical and spherical geometries.  Their work has been 
motivated by a propulsive application, specifically by the need to extend the understanding of gaseous motions in 
the Vortex Combustion Cold-Wall Chamber (VCCWC). This innovative liquid thrust engine is being developed by 
Chiaverini et al.11 under the auspices of Orbital Technologies Corporation. 
 While witnessing a continually renewed interest in cyclonic flows, especially of the confined type, there can also 
be seen a dearth of rigorous analytical models to describe these flowfields.  One reason for this impropriety may be 
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attributed to the complexity in the required and the complacency in the available.  Given that seemingly inviscid 
solutions regularly capture basic features of swirl, more elaborate models are often deemed either intractable or 
unnecessary.  In practice, inviscid solutions may be sufficiently suitable for unbounded, swirling flows, but they can 
fail to capture the physics of confined motions.  Because the flowfield is tightly surrounded by solid boundaries, the 
effects of no slip at the walls and singularities at the core can significantly alter the bulk motion.  The characteristics 
of the core are relatively well understood and have been described by Vatistas et al.,12 Ogawa,13 Hoekstra et al.,14 
and more recently by Derksen and Van den Akker,15 Fang et al.,16 Rom et al.,17 Murray et al.,18 and Hu et al.19  
Nonetheless, a rigorous analytical model for the core is still lacking, especially under high speed conditions.  
Another reason that new models for confined vortex flows are scant may be linked to the complexity of their 
governing equations.  Despite this complication, Vyas and Majdalani6,7 have managed to develop an exact inviscid 
model, followed by a laminar boundary layer model to capture the effects of viscosity on the tangential velocity in 
the bidirectional vortex chamber.  Along similar lines, Batterson and Majdalani10 have extended the viscous analysis 
to account for axial and radial boundary layers.  These solutions have not only furthered our understanding of the 
flowfield but they have also opened up new lines of inquiry.   
 Since the existing solutions stem from fundamental equations that govern laminar flow motion, it would be 
useful to follow tradition and employ them as a springboard for developing approximations to turbulent flows.  With 
this in mind, it is the goal of this study to present an alternate model that can possibly mimic the inner vortex 
behavior in a bidirectional vortex chamber. The model will be based on the notion that a constant shear stress may 
be assumed in the inner vortex region.  A Rankine-type patching radius will then be specified to grant the model 
generality in reproducing the essential features of a swirl-dominated pattern.  Two specific examples of the patching 
technique will be described. In the first, the piecewise approximation is compared to the viscous core boundary layer 
treatment of Vyas, Majdalani and Chiaverini.8  In the second, the heuristic model is set to predict turbulent-like 
behavior. Other matching schemes may be conceived, but these are deferred to later work. In the interim, it may be 
helpful to pursue further refinements at the outset of extensive experimental tests to validate and anchor the model 
for high vortex Reynolds number flows. 

II. Mathematical Model 

A. Geometry 
 This work focuses on the axisymmetric, incompressible, steady, rotational flow spiraling inside a cylindrical 
chamber of length L  and radius a .  The origin of the coordinate system is fixed at the center of the inert headwall, 
and a partially open downstream end is taken to have a radius b .  The radial and axial directions are denoted by r  
and z  respectively.  A single phase, non-chemically reactive fluid is injected at the base of the chamber, at r a= , 
in a purely tangential manner and at an average circumferential velocity of .u Uθ =   The attendant geometric 
parameters consist of the fraction of the radius open at the base, defined as /b aβ = , and the aspect ratio of the 
chamber, given by /l L a= . Both are shown in Fig. 1. 

B. Basic Formulation 
 The normalization follows precisely that presented by Vyas and Majdalani.6  For the reader’s convenience, the 
dimensional governing equations are reproduced here, assuming axisymmetric conditions and an axially invariant 
swirl velocity: 

 
 

Figure 1. Geometric characteristics of the bidirectional vortex chamber. 
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When normalized, these become 
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As usual, the swirl velocity is assumed to be independent of both axial and azimuthal variations.  As a result, Eq. (2) 
is decoupled from the other velocity terms.  This enables us to employ the stream function-vorticity relation, given 
by Eq. (9), to solve for the axial and radial components.  It is this ( , )r z  versus θ  separation that permits advancing 
a swirl velocity model after Vyas and Majdalani.6  The exact inviscid solution is simply 
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The corresponding quasi-viscous solution that captures the forced vortex near the core has also been derived by 
Vyas, Majdalani and Chiaverini.8  It can be written as 

   

( )21
4

2 21 1
2 4

2
2

2 2 2 2 21
2

2 2 2 21 1 1
2 2 4

sin( ) 1 1 2 cos( )

1 8 1 cos(2 )1
2 2 Ei( ) Ei( )

Vr
r θ z

Vr Vr

r e z r
r r

r z r
p

r e e r V Vr Vr

πκ πκ π

κ π π
Δ

−

− −

⎧
= − + − +⎪

⎪⎪
⎨ ⎧ ⎫⎡ ⎤+ + −⎣ ⎦⎪ ⎪⎪ = − ⎨ ⎬⎪ ⎡ ⎤+ − + − − −⎪ ⎪⎣ ⎦⎪ ⎩ ⎭⎩

u e e e

 (11) 

where the vortex Reynolds number is given by 

   iQRe aV
L Lσ ν

= =  (12) 

In what follows, Eq. (11) will be referred to as the laminar core model (LCM). 

III. Constant Shear Stress Model 
 The free vortex motion in the outer domain is dictated by the inviscid solution which is summarized in the 
previous section.  Our main focus here is directed to the inner region, specifically to the development of a model that 
can capture the behavior of the flow in the core vortex at high Reynolds numbers.  We also require the model to 
remain consistent with the outer motion, merging smoothly with the outer vortex without becoming unbounded at 
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the centerline.  Since the flow under turbulent conditions can deviate from the inviscid representation, one must 
carefully conceive a suitable model.  Following Townsend20 or Tennekes and Lumley,21 one may examine  

   
( ) p⋅∇ = −∇ +∇ ⋅u u τ  (13) 

For fully developed motion in the tangential direction, it follows that an equilibrium may be maintained between 
shear and pressure terms under either laminar or turbulent conditions. Then considering a flow with a zero tangential 
pressure gradient, the dominant shear stress in the tangential direction may be assumed to be spatially uniform.  This 
enables us to set 

   1
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where the viscous parameter ε  is small, being inversely proportional to the Reynolds number 
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It may be instructive to note that the forced vortex solution, for which vorticity is uniformly distributed in the core 
region, u rθ ∝ , may be restored from Eq. (14) by setting 1 0.C =   To obtain a more general expression, we assume 
Couette-like shear in the core region.20-22  We then integrate Eq. (14) to obtain 
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Here, the superscript (i) denotes a solution in the inner region.  The two undetermined constants can be manipulated 
to patch the inner solution with the outer, free vortex expression at their intersection point.  Since the patch-point 
radius is not known a priori, it must be carefully specified.  The most elementary choice will be to patch the two 
solutions at the theoretical mantle location, r β= , where the flow changes direction.  Consequently, the core flow 
will coincide with the inner vortex bounded by the mantle and the free vortex will be strictly confined to the annular 
region situated between the mantle and the sidewall.  To facilitate this patching, we equate both the velocities and 
the slopes of the inner (i) and outer (o) solutions at .r β=   These conditions translate into 
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whence 
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The inner solution that we collect for the swirl velocity is therefore 
   ( )( ) 2 2 21 lniu r rθ β β− −⎡ ⎤= −⎣ ⎦  (19) 

Assuming that the velocity at the wall is equal to the injection velocity at entry, ( ) (1) 1ouθ = , a piecewise Rankine-
type formulation may be arrived at by setting 
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 At first glance, Eq. (20) may be viewed as being conspicuous by its omission of viscosity.  To justify its 
character, one may bring into perspective the Reynolds number similarity and assume that the gross characteristics 
of the flowfield may be taken to be independent of the viscosity at sufficiently high Reynolds numbers.  
Nonetheless, this hypothesis is supposed to hold far from solid boundaries, namely, in a wall-free shear flow where 
motion is unaffected by fluid friction. As well put by Kundu and Cohen:23 “This is not true of a turbulent flow 
bounded by a solid wall.”  Being fundamentally incomplete, Eq. (20) will be referred to as the inviscid, constant 
shear model (ICSM). 
 Equation (20) suppresses the unbounded behavior of the swirl velocity at the centerline, but it captures neither 
the observed increases in swirl velocity maxima nor the radial shifts in their loci.7  No matter what the flow 
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circumstance may be, it predicts a maximum velocity of max( ) 2 2 / 1.71553u eθ =  at a constant radius of 
max 1/ 2 0.428882.r e=  In many experiments and numerical simulations, the peak velocity can be more than 

double the injection speed.16-19 The location of the peak is also sensitive to the inlet conditions.  A more precise 
modulation is certainly needed and one may be established by realizing that the surface of the mantle does not 
necessarily delimit the free vortex region.  In reality, the free vortex can be either narrower or wider, extending to an 
area much closer to the center of the flowfield.17,19  One straightforward solution to this problem is to follow 
Rankine1 and define a variable patch-point radius that scales with the vortex Reynolds number.  As such, viscous 
effects can be accounted for to the extent that, given a set of experimental data, a piecewise Rankine-like solution 
may be readily obtained that closely resembles the observed flowfield.  For the moment, we simply solve for an 
unspecified patch-point ( )X f V= , where X is the unspecified location written as a function of the vortex Reynolds 
number.  At the outset, Eq. (20) may be expressed as 
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In what follows, this combined vortex model will be referred to as the constant shear model (CSM).  The 
incontrovertible analogy with Rankine’s laminar model (RLM) is evident.  Using our nomenclature, Rankine’s 
combined vortex may be represented by 
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Here / ( )X U u aXθ=  is the point where the inner vortex line intersects with the sloping tail of the outer vortex. This 
location also defines Rankine’s maximum swirl velocity max( ) ( ).u u aXθ θ=  In contrast to the CSM solution which 
predicts constant shear throughout the core region, Rankine’s model predicts constant vorticity for .r X≤   

C. Pressure Distribution 
 Given that the inner core velocity is bounded at the centerline, a companion pressure may be obtained that does 
not exhibit the inviscid singularity of its predecessor.6  From Eqs. (4) and (6), the axially and radially integrated 
pressures become 
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Integration and combination of these equations provides the pressure distribution 
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where (1,0).p p pΔ = −   The constant 1K  is determined by securing the boundary condition at the origin, while 2K  
is calculated by setting the piecewise parts equal at :r X=  
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We hence extract the piecewise distribution 
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IV. Results and Discussion 

A. Laminar Core Model (LCM) Representation 
 To illustrate the ability of the heuristic solution to embody different models, we start by reproducing the laminar 
core boundary layer model derived by Vyas, Majdalani and Chiaverini.8  Clearly, if we are to claim a portable 
solution, the swirl velocity calculated from the present work must approximate key features connected with the 
boundary layer model.  For a simple demonstration of the matching paradigm, we implement the notion that swirl 
velocities from the laminar and constant shear models must exhibit the same maxima.  This is achieved by first 
setting the derivatives of both models equal to zero and solving for the corresponding radii.  While the inner part of 
the piecewise velocity yields 
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These positions can be substituted back into their respective equations and then set equal to each other.  One gets 
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Equation (29) enables us to solve for X as a function of V directly from 
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This Rankine-like patch-point X permits our piecewise velocity to capture the same peak velocity that the laminar 
boundary layer solution projects as a function of V.   
 A comparison of the different swirl velocity models at four increasing vortex Reynolds numbers is presented in 
Fig. 2.  While the free vortex is invariant with respect to V, both the present study (CSM) and the laminar boundary 
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Figure 2. Velocity comparison at several vortex Reynolds numbers illustrating the ability to duplicate laminar behavior. 
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layer model (LCM) capture the increasing velocity peaks 
and their translation toward the centerline with successive 
increases in V.  Note that the two models match identically 
at the point of highest velocity, owing to the imposed 
patch-point treatment. They also behave rather similarly 
elsewhere in the domain.  The incomplete ICSM model 
remains invariant throughout, thus establishing a low-end 
datum for the velocities. This ICSM baseline is difficult to 
undershoot without exiting the range of meaningful vortex 
Reynolds numbers (below 90V ≈ ).  
 Figure 3 compares the pressure distributions of the two 
models at two vortex Reynolds numbers.  It also displays 
the ICSM prediction.  The radial pressure gradient in Fig. 
3a is slightly higher in the case of the constant shear 
model, especially in the core region.  This behavior can be 
accounted for by the slightly increased velocity 
anticipated from the piecewise model near the centerline.  
The noted increase is magnified by squaring the velocity 
and dividing by the small distances near the core, as per 
the last term on the right-hand-side of Eq. (23).  Except 
for these differences, the piecewise model faithfully 
captures the general shape of the radial pressure 
distribution.  The actual pressure drop is shown in Fig. 3b.  
The CSM pressure starts slightly higher, but then quickly 
diminishes to match the LCM approximation.  The ICMS 
model remains flat, displaying a weaker sensitivity to spatial variations and an indifference to the Reynolds number.  
It should be noted that the CSM solution offers one degree of freedom that can be adjusted to suit a particular 
application.  For example, should accurate prediction of the pressure stand as the most valuable requirement for a 
specific problem, then the patch-point radius could be adjusted to best fit the experimental pressure data near the 
core. A similar patching paradigm is used in modeling large atmospheric flows where only pressure related 
measurements are available. 
 Before concluding this comparison, it may be instructive to examine the behavior of shear and vorticity near the 
axis of rotation.  In view of the shear stress being a quintessential contributor in the derivation of the CSM 
approximation, we compare the present result to the LCM solution by Vyas, Majdalani and Chiaverini.8  The latter is 
given by 

   
( ) 21

42 21
42 1 1 Vr

r r r V eθτ ε −− ⎡ ⎤= − − +⎢ ⎥⎣ ⎦
 (31) 

Since only amendments to the swirl velocity are considered here, the affected member of the shear stress tensor is 
rθτ .  Recalling the general form from Eq. (14), we find after substitution  
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2

2 ;  

2 ;    
r

r Xu Xr
r r r X

r

θ
θ

ε

τ ε
ε

⎧− ≤⎪∂ ⎛ ⎞ ⎪= = ⎨⎜ ⎟∂ ⎝ ⎠ ⎪− >
⎪⎩

 (32) 

For the vorticity, we similarly find 

   2
4 ln ;  ( )1

0 ;                    
z

r r Xru
XX

r r
r X

θΩ
⎧ ⎛ ⎞− ≤∂ ⎪ ⎜ ⎟= = ⎝ ⎠⎨

∂ ⎪ >⎩

 (33) 

The resultant curves are plotted in Fig. 4 and compared to the results of the LCM treatment, namely, to 
( )21 1

2 4expz V VrΩ = − .  In both parts of Fig. 4, we see that past the patch-point radius, a good agreement between 
the models is realized.  Closer to the core, a deviation is manifested as a result of the constant shear stress model 
becoming uniform.  As shown in Fig. 4a, the constant core value of the absolute shear rθτ  is slightly lower than the 
maximum LCM value. Aside from this disparity near the centerline, the CSM and LCM curves are concurrent 
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Figure 3. Model comparison for a) the radial pressure 
gradient and b) the pressure distribution.  
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elsewhere in the domain.  Here too, the ICSM shear is 
seen to be the smallest.  In Fig. 4b, the vorticity prescribed 
by the piecewise model is seen to mimic the LCM curve. 
However, unlike the laminar model which smoothly tapers 
off in the vicinity of the core, the CSM vorticity does not 
approach a constant as 0.r →   This inability to predict 
solid body rotation near the axis of the chamber may be 
regarded as a weakness in the CSM representation. 

B. Heuristic Turbulent Model Representation 
 One of the chief attributes of the piecewise solution 
stems from its display of a single degree of freedom that 
can be tuned for better performance.  For example, 
knowing that the laminar boundary layer treatment can 
overpredict the velocity distribution near the core when 
the flow is turbulent, a heuristic correction can be sought.  
One avenue to resolve this issue when V is large is to 
introduce an effective turbulent vortex Reynolds number 
that will be larger than its laminar counterpart.  The actual 
turbulent Reynolds number based on laboratory tests 
could thus be converted into a smaller effective value that 
would be suitably retrofitted into the laminar model.  The 
development of such an approximation must of course be 
based on reliable experimental measurements and 
numerical simulations. Alternatively, one may assume that 
the laminar model accurately predicts the thickness of the forced vortex, maxc rδ = , given by Eq. (28).  Then, 
considering that the constant shear region must scale with cδ , one may let cX λδ= , where λ  is taken to match 
actual observations.  To illustrate this point, the velocities in Fig. 5 are compared using 3;λ =  such a value implies 
that the core region over which the shear stress remains uniform is thrice the thickness of the forced vortex. This 
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notion enables us to fit the empirical data without specifically solving a complicated turbulent model.  As seen in 
Fig. 5, the heuristic CSM model will, under these conditions, predict lower maximum velocities than projected by 
laminar theory.  In Fig. 5a, the CSM curve almost directly coincides with the fixed ICSM solution, given a low 
vortex Reynolds number of 100.  When the latter is increased by one order of magnitude in Fig. 5b, the peak CSM 
velocity is seen to increase, but not as rapidly as the laminar solution. The same may be said of the radial pressure 
gradient and its distribution shown in Fig. 6.  For the low vortex Reynolds number case, it is interesting that the 
heuristic CSM model can match rather well the ICSM line. In fact, one may solve for the value of V that reproduces 
the ICSM value by evaluating Eq. (28) at the mantle. One finds 

   
2.24181X

V
λ

=  (34) 

Thus using 3λ =  and 1/ 2X = , one retrieves the rather low Reynolds number of 90.463V = .  Later, when V is 
increased by one order of magnitude, a departure is noted wherein the heuristic CSM model is seen to occupy an 
intermediate position between the laminar and purely inviscid solutions.  The shear stress and vorticity associated 
with the heuristic model are also found to be conservative by comparison with the LCM projections.  These are 
illustrated in Figs. 7a and 7b. 
 It should be duly noted that the heuristic approach presented here is not yet tested, and other reconciliatory 
schemes may be arrived at.  The CSM swirl velocity overshoot and location must be thoroughly interrogated for 
validity via comparisons to experimental and robust computational predictions.  Another model that may be pursued 
consists of calculating the patch-point radius such that the integrated shear stress associated with the CSM 
approximation can be made to match the corresponding value predicted by the LCM solution.  At the outset, the 
surface areas under the rθτ  curves in Fig. 4a will be matched.  Whether such a scheme could produce a more 
accurate approximation will remain a matter of conjecture until such time when the model is compared to a 
sufficiently large collection of experimental and numerical data.  In like fashion, the pressure distribution could also 
be used as the target function for the model.  As alluded to earlier, one may attempt to match pressure profiles such 
as those arising in Fig. 6 to the observed patterns.  In short, the patch-point radius could be adjusted in a variety of 
ways to best fit laboratory or numerical experiments. 
 Before leaving this subject, it may be useful to note that with the onset of turbulence, the models presented 
heretofore become practical approximations at best.  When the core flow is turbularized, it will be difficult to state 

with certainty that the outer, annular flow remains 
irrotational, even if partly so.  A turbulent flow has the 
ability to attract the surrounding irrotational fluid inwardly 
through frictional effects, specifically through a process 
known as entrainment.  While the source of entrainment 
may be ascribed to viscous shear in laminar flows, it is 
mostly inertial in turbulent flows.  In fact, the entrainment 
rate under turbulent conditions can far exceed any effects 
that are attributable to fluid friction. After the irrotational 
outer fluid is drawn into the turbulent core, the new fluid 
is turbularized by the introduction of small viscous eddies 
that form at the interface between the rotational and 
irrotational regions. In the bidirectional vortex chamber, 
the turbulent core can therefore entrain the irrotational 
annular flow to the extent of causing further departures 
from the established solutions.  

C. Analogy with the Rankine Model 
 Figure 8 compares the shapes of the swirl velocity 
profiles for the LCM and CSM solutions to Rankine’s.  In 
order to draw meaningful comparisons, both dependent 
and independent variables are renormalized.  First, the 
radial coordinate is normalized by maxr  such that the 
maximum velocity occurs at a value of unity.  Second, 
each velocity is divided by its respective peak value in 
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order to enforce uniformity of height.  The unified 
normalization used here enables us to capture the basic 
similarities shared by these profiles.  While the combined 
Rankine model consists of patching the forced vortex line 
with the outer vortex, both LCM and CSM curves 
represent smooth blending of the inner and outer regions.  
In conformance with turbulent flow theory, a slight 
bulging or flattening of the CSM velocity is observed 
(chained line) in relation to the laminar models (solid or 
broken lines). 

D. Wall-to-Wall, Uniformly Valid Representation 
 The swirl velocity described above appears to be a 
viable model for the bidirectional vortex core.  However, 
it does not satisfy the no-slip condition at the wall.  

Instead, the tangential velocity at the sidewall remains equal to the circumferential injection speed, ( , ) .u a z Uθ =  
This particular requirement coincides with the wall boundary condition that one would impose in a centrifuge where 
the cyclonic motion is induced by the rotating sidewall.  The corresponding circular speed may be calculated to be 

/ .U aϖ =   A model that more adequately captures the behavior of the bulk gas motion in the VCCWC engine is 
one that assumes a stationary sidewall.  The wall-bounded counterpart of the present solution may hence be obtained 
by combining the CSM-based core approximation with an outer, annular profile that observes the velocity adherence 
condition.  Such profile may be directly obtained from the work of Vyas and Majdalani7 for the tangential velocity.  
Furthermore, the axial and radial velocity components may be asymptotically enhanced to account for the confining 
wall.  As shown in the companion paper by Batterson and Majdalani,10 a wall-bounded solution may be arrived at 
using the tools of matched-asymptotic expansions.   At length, a uniformly valid wall-to-wall approximation may be 
constructed in which the three components of the velocity are given by 
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 (35) 

Equation (35) is a modified form of the CSM approximation that is rectified so as to satisfy the no slip condition.  It 
will closely resemble Eqs. (21) and (10) except in the vicinity of the sidewall.  

V. Conclusions 
 In this article, a heuristic formulation for the swirl velocity of the bidirectional vortex is presented and discussed.  
A constant shear stress model is employed to extract the velocity near the core, which is then patched to an outer 
solution that is mainly irrotational.  The ensuing approximation exhibits one degree of freedom that grants us the 
possibility to anchor our solution for a given flow pattern.  This predictive feature is set by relating the patch-point 
radius of the constant shear model to the vortex Reynolds number arising in a given application.  Since the patch-
point radius delimits the inner zone where the shear stress may be taken to be uniform, linking this radius to the 
vortex Reynolds number enables us to control the thickness of the core region along with the maximum speed that 
the tangential velocity can reach.  The unspecified patch-point radius imparts our heuristic model with the ability to 
conform to a nearly arbitrary swirl pattern over a practical range of Reynolds numbers.   
 While the present solution offers a useful compromise between the simplicity of the laminar core layer model 
and the validity of the constant shear stress model at high Reynolds numbers, it also has some drawbacks.  The most 
obvious of these is the piecewise character of the swirl velocity.  Further extensions to the solution, such as 
compressible corrections, will also have to be piecewise in nature.  Another shortcoming stands in its inability to 
predict solid body rotation near the core.  To improve this model, more work lies ahead, particularly in the need to 
canvas the literature for turbulent flow data and to set up experiments that can validate and help to refine the present 
analysis. 
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