
1 
American Institute of Aeronautics and Astronautics 

 

Energy Steepened States of the Taylor-Culick Profile 

Joseph Majdalani* and Tony Saad† 
University of Tennessee Space Institute, Tullahoma, TN 37388  

The Taylor-Culick solution for a porous cylinder has long been used to describe the bulk 
gas motion in idealized representations of solid rocket motors.  By superimposing an 
arbitrary headwall injection velocity, a modified form of this solution can be extended to 
hybrid rocket applications and to solids with reactive headwall.  However, the Taylor-Culick 
solution appears not to be unique for a prescribed set of boundary conditions.  Other 
solutions may be found that satisfy the same fundamental constraints.  As alluded to in the 
literature, steeper or smoother profiles can be observed in both experimental and numerical 
tests, particularly in the presence of intense levels of acoustic energy. In this study, we 
present the system of equations that leads to multiple solutions. We then search for the 
extreme states that require the least or the most kinetic energy.  These solutions are derived 
and found to be dependent on the chamber aspect ratio and the headwall injection profile.  
They are evaluated for several baseline cases and compared to numerical simulations.  By 
assuming a sufficiently large aspect ratio, simple expressions are obtained over a finite range 
of kinetic energies.  Some exhibit steep, turbulent-like features that confirm the 
experimental and numerical findings by CSAR, ATK Thiokol, and ONERA investigators 
who have often reported steeper profiles than predicted by Taylor-Culick’s basic cold flow 
model. The solutions presented here are quasi-viscous, specifically in their ability to secure 
the no slip condition at the sidewall. They are evaluated for several headwall injection 
patterns and cataloged based on their kinetic energies.  In practice, the 
steepening/dampening process can be sustained through acoustic energy buildup and 
release, a common occurrence in rocket chambers.  In this vein, the advent of energy-
sensitive mean flow solutions enables us to conceptualize a two-way coupling theory 
connecting the mean flow to the unsteady wave motion. 

Nomenclature 
a  = chamber radius 
r , z   = normalized radial and axial coordinate, /r a , /z a  
u  = normalized velocity ( ru , zu )/ wU  

cU  = headwall injection velocity, (0,0)zu  
cu  = normalized injection velocity, /c wU U  
wU  = sidewall injection velocity, ( , )− ru a z  

η  = action variable, 21
2 (2 1)π +n r  

ν  = kinematic viscosity, /μ ρ  
ρ  = density 
 
Subscripts and Symbols 
c  = centerline property 
h  = headwall property 
r , z  = radial and axial component or partial derivative 
w  = sidewall property 

 = overbars denote dimensional variables  
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I. Introduction 
T may be argued that the Taylor-Culick model for approximating the internal flowfield in solid rocket motors 
stands at the foundation of a host of theoretical problems that are of fundamental interest to the propulsion 

community.1  For example, in the study of aeroacoustic instability,2-4 it has provided a mean flow approximation 
about which fluctuations may be induced.5 In studying the effect of particle addition and particle-mean flow 
interactions, it has fallen at the epicenter of hydrodynamic instability theory.6,7  In large-scale numerical simulations 
that involve particle burning and agglomeration, average speeds and accelerations within the chamber have routinely 
been estimated directly from the Taylor-Culick solution. One may refer in this regard to the work of Najjar et al.,8,9 
Balachandar, Buckmaster and Short,10 as well as others.  In reactive flow simulations, the Taylor-Culick solution is 
so valuable in estimating the bulk gas motion that it has been either built into the codes or used as a benchmark to 
verify computations.  This is illustrated by Chu, Yang and Majdalani11 in their premixed propane-air simulation of 
solid propellant burning, and by Chedevergne, Casalis and Majdalani12 in their DNS simulations of an idealized 
solid rocket motor (SRM). 
 The basic Taylor-Culick solution is incompressible, rotational, axisymmetric, and quasi-viscous.13 It has been 
extended by Majdalani and co-workers to account for viscous stresses and regressing walls,14 and, subsequently, for 
arbitrary headwall mass addition.15 By permitting variable headwall injection profiles, the extended Taylor-Culick 
approximation can be a viable model for idealized hybrid rocket chambers.15-17 Its accuracy has been verified in 
several investigations including computational,18-20 experimental,20-22 and theoretical pursuits carried out in both 
cylindrical14 and planar (slab) configurations.23,24 Recently, it has been extended to noncircular cross-sections by 
Kurdyumov.25  It is clearly one of the most ubiquitous cold flow approximations for a full-length cylindrical 
motor.26  This is especially true in applications that require an analytical mean flow formulation; examples abound, 
and one may cite those studies concerned with vortico-acoustic wave propagation5 and hydrodynamic instability 
treatment in porous chambers with6,7 and without particle interactions.27-33 The compressible Taylor-Culick solution 
has also been developed under compressible isentropic flow conditions by Majdalani.34 
 In this study, we revisit the procedure leading to the Taylor-Culick incompressible model. In the process, we 
construct multiple approximate solutions that will satisfy the problem’s constraints. Among those, we apply the 
energy optimization principle to identify the particular forms that require the most or the least kinetic energy to be 
manifested.  The bracketing solutions are determined and cataloged for several headwall injection profiles. Solutions 
are then compared and classified according to their energy signature.  In all cases, simple approximations are 
obtained assuming sufficiently long chambers.  These solutions are characterized and discussed. 

II. Formulation 
 The basic rocket chamber can be modeled as a porous cylinder of length 0L  and radius a .  We also permit the 
forward end to be porous while assuming an open aft end. As shown in Fig. 1, r  and z  stand for the radial and 
axial coordinates. Note that the porous headwall permits the injection of a fluid at a prescribed velocity profile, 0u .  
Special cases of 0u  include 
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Our solution domain extends from the headwall to the parallel, virtual nozzle attachment plane at the aft end.  
 At the headwall, an axial jet enters the chamber at a maximum centerline speed, cU .  This stream is then 
augmented by uniform mass addition along the porous sidewall.  In what follows, we seek to approximate other 
solutions that may exist besides Taylor-Culick’s basic relation. In particular, we hope to identify those particular 
solutions that require the least or most energy to excite. 

A. Equations 
 An inert flow may be assumed, prompted by the typically thin reactive zone above the grain surface. Following 
rote, the basic flow can be taken to be steady, inviscid, incompressible, rotational, and axisymmetric. The inviscid 
equations of motion become 
 

I 
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B. Boundary Conditions 
 These are physically connected to 
  (a) axial symmetry and therefore no flow across the centerline; 
  (b) vanishing parallel flow at the sidewall to secure the no slip boundary condition;  
  (c) uniform injection at the cylindrical sidewall; and 
  (d) a user-prescribed injection pattern at the headwall. 
Mathematically, these particulars can be written as 
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C. Normalization  
 All recurring variables and operators may be normalized via 

   2 2;  ;  ; ; ψψ
ρ

= = ∇ = ∇ = =
w w

z r pz r a p
a a U a U

 (6) 

   0;  ; ;  ;   = = = = =cr z
r z c

w w w w

U Lu u au u u L
U U U U a

ΩΩ  (7) 

Here (0,0)=c zU u  and ( , )= −w rU u a z  designate the fluid injection velocities at the headwall and sidewall, 
respectively. For steady inviscid motion, the vorticity transport equation reduces to  
   0∇× × =u Ω ;  = ∇×Ω u  (8) 
Similarly, the dimensionless boundary conditions take the form 
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Figure 1. Simulated rocket chamber as a porous cylinder with arbitrary headwall injection. 
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D. Vorticity-Stream Function Approach 
 The Stokes stream function may be introduced through 

   
1 ψ∂= −
∂ru

r z
      and      

1 ψ∂=
∂zu

r r
 (10) 

As usual, substitution into Eq. (8) requires 
   ( )θ ψ=Ω= Ω rF  (11) 
One then follows tradition13 and selects the simplest relation between Ω  and ,ψ  namely, 
   2 ψ=Ω C r  (12) 
Despite the non-uniqueness of this expression, it permits securing Eq. (9).  By inserting Eq. (12) into the vorticity 
equation, one eliminates Ω  and restores the PDE characteristic of this problem.  This is 
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with the particular set of constraints being: 
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By virtue of L’Hôpital’s rule, removing the singularity in Eq. (14)a requires that both 
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Equation (13) is then solved by separation of variables; one finds  
   2 21 1

2 2( , ) ( )[ cos( ) sin( )]ψ α β= + +r z z A Cr B Cr  (16) 
This expression satisfies Eq. (15)b identically.  So from this point forward, Eq. (14)a may be replaced by Eq. (15)a.  

III. Energy Triggered Solutions 

A. Solution by Eigenfunction Expansions 
 The application of the boundary conditions must be carefully carried out, preferably in the order in which they 
appear.  For example, Eq. (15)a gives:  
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or 0=A .   Without loss in generality, one may set 1=B  and rewrite Eq. (14)b as 
   21
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and so 1
2cos( ) 0=C ; this is satisfied by 

   (2 1) ; {0,1, 2,..., }π= = + = ∞ ∈`nC C n n  (19) 
Using (2 1)π= +nC n  enables us to sum over eigenfunctions corresponding to wall suction and injection. One must 
ignore negative integers to avoid self-cancellation.  One can put 

   21
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The headwall boundary condition may be satisfied by means of orthogonality; one recovers, for an injection profile 
0 ( )u r , the following compact form:  

   ( )1 21
0 20

4 ( ) cos[ ] d
(2 1)

β π
π

= +
+ ∫n u r n r r r

n
 (21) 

The third condition becomes 
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Clearly, an infinite number of possibilities exist that will, in principle, satisfy Eq. (22), depending on the behavior of 
αn . One of the choices for αn  may be arrived at by optimizing the total kinetic energy in the chamber. The 
underlying principle projects that a flow may choose the path of least or most energy expenditure. To test this 
behavior, we evaluate the local kinetic energy at ( , , )θr z  for each eigensolution using  



5 
American Institute of Aeronautics and Astronautics 

 

   2 2 2 2 21 1
, , ,2 2( , , , ) ( )L n r n n z nE r z n u u u uθθ = = + +  (23) 

where each mode is an exact solution bearing the form 
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By assuming a system of eigensolutions with individual kinetic energies, their cumulative energy can be written 
locally as 
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The total kinetic energy in the chamber volume V  may be calculated by integrating the local kinetic energy over the 
length and chamber cross-section.  One puts 
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Straightforward evaluation and simplification over the chamber volume yields 
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Here 0.577216�E  is Euler’s Gamma constant. At this point, one may seek the extremum of the total kinetic 
energy subject to the fundamental constraint 
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   (constant radial velocity from sidewall injection)  (29) 

To make further headway, the method of Lagrangian multipliers may be conveniently employed by first defining the 
constrained energy function 
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Equation (27) can then be maximized or minimized by imposing 0 1 2( , , ,..., , ) 0g α α α λ∇ =… . In shorthand notation, 
one puts 
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Subsequently, the constrained energy function may be differentiated with respect to each of its variables to obtain 
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Equation (32) can be solved for αi  in terms of λ  such that 

   
3 21

2
3 3 2 2

6( 1)
( )
λ π

α
π π − −

− +
= −

+

i
i

i
i i

b L
L a L d

 (34) 

The outcome can be suitably substituted into Eq. (33) to retrieve 
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When λ  is inserted into Eq. (34), the general solution for αn  is obtained.  In the interest of clarity, we restore the 
original indices and write 
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With this expression at hand, the total energy given by Eq. (27) is fully determined.  However, given that the Taylor-
Culick model is semi-infinite, it is useful to introduce a suitable form of energy density such as 2 3/= VE LE .  Then 
by plotting E  versus L  in Fig. 2, one is able to assess the energy requirements associated with several standard 
headwall injection profiles.  It can thus be seen that the headwall injection profiles that are accompanied by the most 
kinetic energy are, in descending order, the uniform, Berman (half-cosine), and Poiseuille solutions.  One also finds 
that as the length of the chamber is increased at fixed radius, E  approaches a constant asymptotic value of 

2 / 3 2.0944,π∞ = �E  for each of the headwall injection patterns.  A critical aspect ratio crL  can therefore be 
conceived beyond which the kinetic energy will vary by less than 7.5% from its final asymptotic value ∞E .  The 
choice of a 7.5% variation is dictated by the slow monotonic decay of the kinetic energy density function shown in 
Fig. 2. Whereas the slope slips to 1% rather rapidly, its progression to the asymptotic value is exceedingly slow.  
Forthwith, a graph of crL  is provided in Fig. 3 as function of the headwall-to-sidewall injection velocity ratio, cu . 
Here too, the largest crL  corresponds to the uniform profile and is followed by Berman’s and Poiseuille’s.  For a 
chamber with ≥ crL L , one may safely assume an infinitely long chamber in evaluating Eq. (36), thereby achieving a 
substantial reduction in complexity.  In practice, when the headwall injection velocity is of order unity, as in the case 
of solid rocket motors (SRMs), the critical aspect ratio is relatively low.  For example, using 1

21, , 2cu π=  (i.e. 
assuming that headwall and sidewall grain surfaces are burning at equal rates, so that =c wU U ) crL  can be 
calculated to be 21.3, 27.1, and 21.4 for the uniform, Berman, and Poiseuille solutions, respectively. Because the 
aspect ratio of most SRMs exceeds 20, the large L approximation may be safely used for simulated SRMs. 

B. Large L Approximation 
 A simple case may be illustrated for a simulated rocket chamber with an aspect ratio that exceeds crL . Letting 
→∞L , Eq. (36) reduces to 
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This simple relation identically satisfies the fundamental constraint expressed through Eq. (29).  More importantly, 
Eq. (37) establishes that for long chambers, { }αn  becomes independent of the headwall injection sequence { }βn . 
This grants { }αn  a universal character, namely, specificity that is independent of the imposed fore-end profile.  In 
actuality, the cancellation of the role of 0u  may be physically explained.  Firstly, as confirmed in two former studies 
that consider similar solutions driven by arbitrary headwall injection,15,35 the influence of 0u  diminishes in the 
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Figure 3. Critical length beyond which the energy 
density varies by less than 7.5% for a given headwall-to-
sidewall injection velocity ratio. 
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Figure 2. Variation of kinetic energy for each of the
classic headwall injection profiles.  Results are shown for a
headwall-to-sidewall injection velocity ratio of unity. 
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downstream direction.  It thus becomes negligible in sufficiently long chambers.  Secondly, at its most fundamental 
level, the Taylor-Culick model is driven by sidewall injection. Suppressing sidewall injection will drastically change 
the character of the solution, whereas suppressing headwall injection does not.16  So while sidewall injection gives 
rise to the primary stream, headwall mass addition constitutes a secondary contribution.  Thirdly, flow steepening or 
flattening can occur in the absence of headwall injection, having been reported in chambers in which only sidewall 
injection is present.   

C. Least Kinetic Energy Solution 
 It should be noted that the optimization technique based on Lagrangian multipliers enables us to identify the 
problem’s extremum with no first-hand indication of whether the outcome corresponds to a minimum or a 
maximum. Nonetheless, a simple substitution of Eq. (37) into Eq. (27) provides a straightforward platform for 
comparing the energy content of the present approximation to that of Taylor-Culick’s. We find that the strategy just 
pursued exposes the solution that is accompanied by the least kinetic energy. For the inert headwall case, the energy-
minimized formulation that emerges from Eq. (20) collapses into 

   21
2 2 2

0

8 ( 1)( , ) sin (2 1)
(2 1)

ψ π
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∞

=

− ⎡ ⎤= +⎣ ⎦+∑
n

n
r z z n r

n
 (38) 

where only a few terms are needed for convergence. For other injection profiles, αn  remains the same while βn  
varies according to the imposed fore-end flow distribution. The stream functions and axial velocities with least 
kinetic energy are posted in Table 1 using four different headwall injection patterns. Other possible solutions could 
be just as easily obtained by direct substitution and evaluation of Eqs. (36), (21), and (20).  Corresponding 
streamlines are illustrated in Fig. 4 for zero headwall injection as well as for uniform, Berman (half cosine), and 
Poiseuille configurations.  Using solid lines to denote the traditional Taylor-Culick’s, the steepened solutions are 
shown using broken lines. The energy-minimized solutions exhibit steep curvatures that are reminiscent of those 
associated with turbulent or compressible flow motions.36  

D. Type I Solutions with Increasing Energy Levels 
 So far a Taylor-Culick type solution has been captured bearing the minimum kinetic energy that the flow may be 
able to sustain. If a family of solutions could be conceived with continuous or discrete/quantized energy states, then 
the particular solution that we have identified could be viewed as the datum, ground level, or anchor point. It would 
hence be valuable to identify alternative mean flow solutions that exhibit increasing levels of kinetic energy, 
specifically those leading to the flowfield with maximum kinetic energy. It would also be instructive to rank the 
Taylor-Culick solution according to its energy content within the set of possible solutions. To this end, we consider 
long chambers and make use of Eq. (37) as a guide. As indicated earlier, the source of steepening stems from 
sidewall injection, and thus the sidewall injection sequence { }αn  will comprise the key parameters that control the 
energy level for a given flowfield.  From this standpoint, we introduce an alternative formulation for { }αn . Inspired 
by the form obtained through Lagrangian optimization, we note that 

Table 1. Mean flow solutions with least kinetic energy for several headwall injection patterns 
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where 2
2 8 /π=A  can be deduced from the radial inflow requirement given by Eq. (29).  Its subscript is connected 

with the power of (2 1)+n  in the denominator.  To generalize, one can assume the generic Type I form 
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Figure 4. Comparison of the Taylor-Culick (solid) streamlines and the Type I energy-minimized solution with steeper 
curvature (broken lines). 
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where 2=q  reproduces the state of least energy expenditure.  This relation will be made to satisfy Eq. (29) when  
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where ζ  is Riemann’s zeta function.  Note that the 2≥q  condition is needed to ensure series convergence.  
Backward substitution enables us to collect the proper form of αn , namely, 
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The exponent q  may be dubbed the kinetic energy power index.  With the form given by Eq. (42), one can plot the 
variation of the total kinetic energy versus the kinetic energy power index q . This plot is shown in Fig. 5a for zero 
headwall injection. Interestingly, as →∞q , Taylor-Culick’s classic solution is strictly recovered. In fact, using Eq. 
(42), it can be rigorously demonstrated that 

   ( ) 1; 0
lim

0; elsewherenq

n
qα−

→∞

=⎧
= ⎨
⎩

 (43) 

This result identically reproduces Taylor-Culick’s expression. All of the Type I formulations that can be precipitated 
from Eq. (42) possess kinetic energies that are lower than Taylor-Culick’s.  They can be bracketed between Eq. (38)  
and 21

2( , ) sin( )ψ π=r z z r . In practice, all solutions with 5q ≥  will be Taylor-Culick-like as their energies will 
differ by less than 1%. The most distinct solutions will correspond to q = 2, 3, and 4 with energies that are 81.1, 
91.7, and 97.3% of Taylor-Culick’s.  
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Figure 5. Total kinetic energy density in a simulated SRM chamber for either (a,c) Type I solutions (left) with increasing 
energy levels or (b,d) Type II solutions (right) with decreasing energy levels.  Results are for L = 10 and 20. 
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E. Type II Solutions with Decreasing Energy Levels 
 To capture solutions with energies that exceed that of Taylor-Culick’s, a modified formulation for αn  is in order. 
One may set  

   ( )
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; 2
2 1

q
n q

B
q q

n
α + = ≥

+
 (44) 

The key difference here stands in the exclusion of the ( )1− n  multiplier which was previously retained in Eq. (40).  
Unless this term is lumped into qB , no solutions can be captured with higher energies than Taylor-Culick’s.  The 
remaining steps follow similar lines as before.  Substitution into Eq. (29) unravels 
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where ( , )q xζ  is the generalized Riemann zeta function.  Equation (45) enables us to retrieve 
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It can be shown that all Type II solutions emerging from Eq. (46) dispose of higher kinetic energies than Taylor-
Culick’s. The variation of the solution with respect to q  is illustrated in Fig. 5b. According to this form of { }α −

n , 
Taylor-Culick’s model is recoverable asymptotically by taking the limit as →∞q .  Here too, most of the solutions 
will exhibit energies that lie within 1% of Taylor-Culick’s. The most interesting solutions are, in descending order, 
those corresponding to q = 2, 3, and 4 with energies that are 47.0, 8.08, and 2.40% larger than Taylor-Culick’s.  So 
in view of the two types of solutions obtained heretofore, specifically with energies lagging or exceeding that of 
Taylor-Culick’s, the latter appears to constitute a stable saddle function to which other possible forms will quickly 
converge when their energies are either increased or decreased.  
 When the energy level is fixed at 2q = , a simplification follows.  Catalan’s constant emerges in Eq. (46), 
namely, in the form 
     2

0
( 1) (2 1) 0.915966k

k
n∞ −

=
= − +∑ �C  (47) 

Several Type II solutions that carry the most energy at 2q =  are plotted in Fig. 6 and listed in Table 2.  In Fig. 6, 
the Type II approximations are seen to overshoot the Taylor-Culick streamline curvature for four cases 
corresponding to different headwall injection patterns. These cover standard configurations such as: a) inert 
headwall, b) uniform flow, c) Berman’s half cosine, and d) Poiseuille profiles.   
 In Fig. 7, the least and most kinetic energy densities for 2q =  and either Type I or Type II solutions are 
compared to Taylor-Culick’s energy density given several headwall injection profiles. While the highest and lowest 
borderlines restrict the range of physically possible excursions in energy, it is interesting that the energy density 
associated with Taylor-Culick’s acts as a bisector, distinctly splitting the domain into low and high energy bands.  

Table 2. Mean flow solutions with most kinetic energy for several headwall injection patterns 
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F. Vorticity 
 The vorticity may be determined from 
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Figure 6. Comparison of the Taylor-Culick (solid) streamlines and the Type II energy-maximized Taylor-Culick 
solution with overshooting curvature (broken lines).  
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This expression is evaluated for the least and most kinetic energy formulations ( 2q = ), as well as for the 
representative injection profiles considered in this work. These are provided in Table 3. 

G. Asymptotic Limits of the Kinetic Energy Density 
 In the large L approximation with 2,q =  the Type II kinetic energy density E  approaches a constant value of 

5 2/(96 ) 3.79944π∞ = �CE . Note that the asymptotic value for Taylor-Culick’s, 3 /12 2.5838π∞
∞ ≡ �E , is recovered 

as →∞q .  This explains the reason for the energy bands in Fig. 7 to become more parallel at constant q  as L is 
increased.  In general, provided that cu  is finite, the limit of the kinetic energy density can be written as 
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n n
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For the Type I solutions, substitution of Eq. (42) yields a closed form expression, namely, 
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Figure 7. Total kinetic energy density for Type I and Type II solutions tailing and leading Taylor-Culick’s. Results are 
for L = 10 (left) and 20 (right) given: (a,b) uniform, (c,d) Berman, and (e,f) Poiseuille headwall injection profiles. 
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In like manner, for the Type II solutions, Eq. (46) leads to 
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It is interesting to note that these asymptotic limits are independent of headwall injection ( cu  or nβ ).  Specific 
values of these limits are ( )2 2 / 3 2.0944π−

∞ = �E , ( )4 4 / 5 2.5133,π−
∞ = �E

 
and ( )6 155 /189 2.5764π−

∞ = �E  for 
the Type I, and ( )2 3.7994+

∞ �E , ( )4 2.6457,+
∞ �E

 
and ( )6 2.5907+

∞ �E  for the Type II.  Both types approach ∞
∞E  

either from below or above.  Since these limits are quickly achieved as the length of the chamber is increased, they 
are directly applicable to simulated rocket motor flows.  The energy associated with each kinetic energy power 
index may be inferred from Fig. 8 below.  Note that the Taylor-Culick limit of 2.5838  is practically reached by both 
Type I and Type II solutions with differences of less than 0.287 and 0.265% at 6q = . Given the maximum range at 

2,q =  the total allowable excursion in energy that the mean flow can undergo may be readily estimated at 
( ) ( )2 2 / 66%,+ − ∞

∞ ∞ ∞⎡ ⎤− =⎣ ⎦E E E  an appreciable portion of the available energy. 

IV. Conclusions 
 In the past four decades, the Taylor-Culick solution with impermeable headwall has been extensively used in the 
propulsion community.  Recently, an extended form has been presented in which variable headwall injection could 
be accommodated.17,37  In this article, we show that for each type of headwall injection pattern and chamber aspect 
ratio, other solutions may be obtained, and these are accompanied by lower or higher kinetic energies that vary by 
up to 66% of their mean value.  After identifying that 2~ ( 1) (2 1)n

n nα − −− +  yields the profile with least kinetic 
energy, similar (Type I) solutions are unraveled in 
ascending order, ~ ( 1) (2 1) ; 2n q

n n qα − −− + > , up to 
Taylor-Culick’s. The latter is asymptotically recovered 
in the limit as →∞q .  In practice, however, most 
solutions become indiscernible from Taylor-Culick’s for 

5.q ≥   Interestingly, those obtained with q = 2, 3, and 4 
exhibit energies that are 18.9, 8.28 and 2.73% lower 
than their remaining counterparts.  When the same 
analysis is repeated using ~ (2 1) ; 2,q

n n qα + −+ ≥  a 
complementary family of (Type II) solutions is 
identified with descending energy levels.  Their most 
notable profiles correspond to q = 2, 3, and 4 with 
energies that are 47.0, 8.08, and 2.40% higher than 
Taylor-Culick’s.  Here too, all Type II solutions 
resemble the classic form which is identically regained 
as →∞q .  Effectively, both Type I and II solutions 
converge to the Taylor-Culick representation when their 
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Figure 8. Asymptotic limits of the kinetic energy density 
for large L showing rapid convergence of both Type I and 
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Table 3. Vorticity with least or most kinetic energy for several headwall injection patterns 
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energies are reduced or augmented, respectively.  Profiles belonging to these families of solutions with →∞q  and 
1
21, , 2cu π=  (corresponding to uniform, Berman, and Poiseuille injection) have been verified in separate work by 

the authors37 using computational fluid dynamics.  Additional experimental validation is hoped to be achieved from 
sensitive test measurements that utilize modern instrumentation. 
 The generation of blunter or smoother profiles with decreasing or increasing chamber energy can have important 
implications on combustion instability analysis.  Such behavior can be used to explain why the mean flow can be 
blunter or steeper during acoustic wave growth. It may also be used to institute a meaningful theory to capture the 
inevitable two-way coupling that exists between the bulk gaseous motion and the unsteady wave disturbances.  As a 
windfall, it may be used to explain the increased mean pressure (DC shift) during acoustic energy amplification and 
cascading.  A plausible hypothesis is this: as unsteady energy seeks to escape from a rocket chamber or combustor, 
transfer to the mean flow will immediately constitute one of the possible avenues by which acoustic energy may be 
expended, thus leading to a dynamic energy exchange between the steady and unsteady flowfields. In the past, such 
an avenue has not been considered.  In practice, both fields, not only the unsteady waves, can alter character and 
absorb or release energy.  The energy transferred from the unsteady waves to the mean flow can, under one scenario, 
increase the wall shear stress, grain regression, mass addition, and the engendered mean pressure shift.  
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